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Introduction

The problem of summation of functions i.e the computation of the sum S (x) =
x∑

t=0
ϕ (t) with

a variable upper limit x for a given function ϕ (t) is a classical one. The sum of the sequence

of powers of natural numbers ϕ(t) = t2 was first computed by Jakob Bernoulli. His studies led

to the development of several branches of the combinatorial analysis. Euler proposed a method,

which reduces the problem to solving the difference equation

f (x + 1) − f (x) = ϕ (x) , (1)

where f (x) is an unknown function, and showed that f (x) satisfies the differential equation

Df (x) =

∞∑

µ=0

Bµ

µ!
Dµϕ (x), (2)

where Bµ are the Bernoulli numbers. If the functional series on the right-hand side of the

equation can be integrated term by term, then from (2) we obtain the Euler-Maclaurin formula

for the solution f to equation (1), which expresses the unknown function in terms of the integral

and derivatives of ϕ (t) ([1]):

f (x) =

∫
ϕ (x) dx +

∞∑

µ=1

Bµ

µ!
Dµ−1ϕ (x).

Other approaches for solving the problem of summation we can find in [2]. Recently, there

has been a surge of interest in problems of summation thanks to the development of symbolic al-

gorithms of summation of rational functions in papes by S.A.Abramov [3] and S. P. Polyakov [4],

who call these problems "the indefinite summation". In some cases, however, it is more appro-

priate to use a more general difference equation than (1).

∗olga_a_sh@mail.ru
c© Siberian Federal University. All rights reserved

– 86 –



Olga A. Shishkina The Euler-Maclaurin formula and differential operators of infinite order

Denote δ a linear shift operator δf (x) = f (x + 1) and define a polynomial difference operator

P (δ) =
p∑

α=0
cαδα, where cα are constant coefficients. Consider the difference equation

P (δ) f (x) = ϕ (x) (3)

and show that some problems of indefinite summation can be reduced to solution of equations of

this form. To solve equation (3) we use the methods of the theory of pseudodifferential operators

namely the differential operators of infinite order [5].

With some additional conditions on the characteristic polynomial P (z) =
p∑

α=0
cαzα and the

function ϕ(x) in (3) we construct a differential operator of infinite order (see Theorem 1), and

use it to obtain the following analogue of formula (2) for the solution f (x) of the equation (3)

Dmf (x) =
∞∑

µ=0

Bµ (m)

µ!
Dµϕ (x). (4)

In this formula Bµ (m) are the generalized Bernoulli numbers, m is the multiplicity of the root

z = 1 of the characteristic polynomial P (z) , and the functional series on the right-hand side

converges for all x. If P (δ) = δ − 1 and m = 1 then the generalized Bernoulli numbers coincide

with the Bernoulli numbers, and formula (4) with formula (2).

The indefinite summation problem in several variables can be stated differently. If ϕ (t) is

a polynomial in t = (t1, ..., tn) and the summation is taken over the integer points of a rational

convex polytope with variable faces, the multidimensional analogue of formula (4) is obtained

in [6, 7].

In Section 2 of this paper we apply Theorem 1, or rather a corollary of it, to one problem of

the multiple summation, namely the problem of finding the sum of the form
∑

‖t‖6x

ϕ (t), where

ϕ (t) = ϕ (t1, ..., tn) is a given function and ‖t‖ = t1+...+tn, tj are non-negative integer numbers.

Sometimes this summation is referred to as the "triangle" summation. If ϕ is a function of one

variable, then this sum can be written as

S (x) =
∑

‖t‖6x

ϕ (x − ‖t‖). (5)

We show that it satisfies (Proposition 2) the difference equation

(δ − 1)
n
S (x) = ϕ (x + n) (6)

that makes possible to apply formula (4) and solve the problem of indefinite summation (5). The

analogue of the Euler-Maclaurin formula for the sum (5) is then (Theorem 2)

S (x) =
n−1∑

µ=0

Bµ (m)

µ!
Pn−µϕ (x + n) +

∞∑

µ=0

Bµ+n (m)

(µ + n)!
Dµϕ (x + n),

where Pn−µϕ (x + n) is the antiderivative of order n − µ of the function ϕ (x + n), and Bµ (m)

are the generalized Bernoulli numbers.

– 87 –



Olga A. Shishkina The Euler-Maclaurin formula and differential operators of infinite order

1. Differential operators of infinite order and difference

equations

To derive formula (4) for the solution of the difference equation (3) and justify the convergence

of the functional series in its right-hand side we need some information from the theory of

pseudodiferential operators [5].

Let C
d be the complex d-dimensional space with points z = (z1, ..., zd) . Let Exp

(
C

d
)

be the

space of entire functions ϕ (z) of exponential type i.e. entire functions satisfying inequality

|ϕ (z)| 6 M er|z|,

where M > 0, r > 0 are some numbers (its own for each function), and |z| = |z1| + ... + |zd| .

We denote D = (D1, ...Dd), where Dj =
∂

∂zj

, and Dα = Dα1

1 ...Dαd

d for the multi-index

α = (α1, ..., αd) .

Let R > 0 be a fixed number and r < R is arbitrary. We denote ExpR

(
C

d
)

the space of

entire functions of exponential type ϕ (z) such that for some M > 0 and any r < R

|Dαϕ (z)| 6 Mr|α|er|z|

for all multi-indexes α and for all z ∈ C
d.

Let A (ξ) be an analytic function in the polycylinder UR =
{
ξ ∈ C

d : |ξj | < R, j = 1, ..., d
}

with the expansion into the power series A (ξ) =
∞∑

|α|=0

aαξα. We can associate a differential

operator of infinite order A (D) with each analytic symbol A (ξ) formally replacing the argument

ξ = (ξ1, ..., ξn) by the differentiation symbol D = (D1, ...Dd) . The function A (ξ) is called the

symbol of the operator A (D) .

The action of the operator A (D) on the function ϕ (z) is defined by

A (D) ϕ (z) =

∞∑

|α|=0

aαDαϕ (z).

We denote H (UR) the space of holomorphic functions in UR, and A (ξ) ∈ H (UR) . It is well

known (see [5], Theorem 5.1) that for any function ϕ (z) ∈ ExpR

(
C

d
)

the function A (D) ϕ (z)

is defined and belongs also to ExpR

(
C

d
)
. Moreover, the mapping

A (D) : ExpR

(
C

d
)
→ ExpR

(
C

d
)

is continuous, and the set of the differential operators of infinite order {A(D)} forms an algebra.

([5], Theorem 5.2). In particular, if in addition the (multiplicative) inverse function A−1(ξ) is

analytic in UR then the operator A−1(D) is the inverse operator for A (D) .

First, we show that a polynomial difference operator Q (δ) =
∑

|α|6m

aαδα, where δα =

δα1

1 ...δαd

d , acts exactly as some differential operator of infinite order. Consider an entire function

Q
(
eξ

)
= Q

(
eξ1 , ..., eξd

)
in ξ = (ξ1, ..., ξd) ∈ C

d, then the differential operator of infinite order

Q
(
eD

)
= Q

(
eD1 , ..., eDd

)
is defined on the space of functions Exp

(
C

d
)
.

Proposition 1. Q (δ) = Q
(
eD

)
on the space Exp

(
C

d
)
.

Proof. For any function ϕ (z) of exponential type we have

Q (δ) ϕ (z) =
∑

|α|6m

aαδαϕ (z) =
∑

|α|6m

aαϕ (z + α) ,
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and expanding ϕ (z + α) in powers of α, we obtain

Q (δ) ϕ (z) =
∑

|α|6m

aα

∞∑

|k|=0

ϕ(k) (z)

k!
αk =

∑

|α|6m

aα

∞∑

|k|=0

(αD)
k

k!
ϕ (z).

On the other hand, Q
(
eξ

)
=

∑

|α|6m

aα

(
eξ

)α
=

∑

|α|6m

aαeαξ =
∑

|α|6m

aα

∞∑

|k|=0

(αξ)
k

k!
. Therefore,

Q
(
eD

)
ϕ (z) =

∑

|α|6m

aα

∞∑

|k|=0

(αD)
k

k!
ϕ (z).

Thus, Q (δ)ϕ (z) = Q
(
eD

)
ϕ (z) for any ϕ (z) ∈ Exp

(
C

d
)
. �

We now define the needed differential operators of infinite order. Denote by ℵ the set of all

differential operators of infinite order with analytic symbol in the circle UR. They form an algebra

isomorphic to the algebra of all analytic in UR functions. Let z = 1 be a root of multiplicity m

of the characteristic polynomial P (z) of the difference equation (4), the multiplicity m can be

any integer from 0 to p. We construct a differential operator of infinite order associated with this

polynomial. To this end, denote by R the distance from ξ = 0 to the nearest zero of the function

P
(
eξ

)
and consider the function A (ξ) =

ξm

P (eξ)
=

∞∑

µ=0

Bµ (m)

µ!
ξµ, where m is the multiplicity

of the root ξ = 0. We shall call the numbers Bµ (m) the generalized Bernoulli numbers. The

function A (ξ) is holomorphic in the disk UR =
{
ξ ∈ C

1 : |ξ| < R
}

, therefore the differential

operator A (D) is defined on the space ExpR (C) .

It is obvious that in the algebra ℵ we have

P
(
eD

)
A (D) = Dm. (7)

Indeed, the operators P
(
eD

)
and A (D) belong to the algebra ℵ, and since for their symbols

P
(
eξ

)
and A (ξ) in the disk UR the equality P

(
eξ

)
A (ξ) = ξm is true, for any ϕ (z) ∈ ExpR (C)

we have P
(
eD

)
A (D) ϕ (z) = Dmϕ (z).

Theorem 1. Let ϕ (z) ∈ ExpR (C) , and z = 1 be a root of multiplicity m of the characteristic
polynomial. The function f (z) ∈ ExpR (C) is a solution to the difference equation (3) if and
only if f (z) is a solution to the differential equation

Dmf (z) = A (D) ϕ (z) , (8)

where A (D) =
∞∑

µ=0

Bµ (m)

µ!
Dµ, and Bµ (m) are the generalized Bernoulli numbers.

Proof. First, we prove the necessity. Let ϕ (z) ∈ ExpR (C) and f (z) ∈ ExpR (C) is the

solution to the equation (3). By Proposition 1 we have P (δ) = P
(
eD

)
. From (3) we ob-

tain P
(
eD

)
f (z) = ϕ (z) . Then, after multiplication by A (D) we have P

(
eD

)
A (D) f (z) =

A (D) ϕ (z) . According to (7) we get Dmf (z) = A (D) ϕ (z) , i.e. f satisfies (8).

To prove the sufficiency, we prove that if the function u (z) ∈ ExpR (C) then any its

antiderivative belongs to ExpR (C) . In fact, if we suppose that u (z) ∈ ExpR (C) and its

antiderivative ũ (z) /∈ ExpR (C), then for any M > 0 and r < R there are α0 and a

point z0 ∈ C such that |Dα0 ũ (z0)| > Mr|α0|er|z0|, then
∣∣Dα0−1u (z0)

∣∣ > Mr|α0|er|z0| and∣∣Dα0−1u (z0)
∣∣ > Mr r|α0−1|er|z0|. This means that u (z) does not belong to ExpR (C) .

Now we prove that if f (z) is a solution to the differential equation (8) then f (z) is a solution
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to the difference equation (3). Since Dmf (z) = A (D) ϕ (z), and according to the equality (7),

we have Dm = P
(
eD

)
A (D), P

(
eD

)
A (D) f (z) = A (D) ϕ (z) . Apply the operator A−1 (D)

to the both sides of the last equality to obtain P
(
eD

)
f (z) = ϕ (z) , and taking into account

Proposition 1 we get

P (δ) f (z) = ϕ (z) .

Therefore, if ϕ (z) ∈ ExpR (C) then the solution f (z) to the difference equation (3) is also in

this space. �

Successively integrating (8), we obtain as a corollary the formula for the solution to the

difference equation (3):

Corollary of Theorem 1. Under the conditions of Theorem 1 the function f (z) ∈ ExpR (C)
is a solution to (3) if and only if

f (z) =

m−1∑

µ=0

Bµ (m)

µ!
Pm−µϕ (z) +

∞∑

µ=0

Bµ+m (m)

(µ + m)!
Dµϕ (z),

where Pn−µϕ (z) is an antiderivative of order n − µ of the function ϕ (z) , and Bµ (m) are the

generalized Bernoulli numbers.

Example 1. As en example of applaying of the Theorem 1 we solve the equation (3) for ϕ(z) =

qz, q > 0. Since qz = ez ln q, ϕ (z) ∈ ExpR (C) for q < eR. Let m be the multiplicity of the root

z = 1 of the characteristic polynomial P (z) , then by Theorem 1 Dmf (z) =

∞∑

µ=0

Bµ (m)

µ!
Dµqz.

Rewrite this equality

Dmf (z) =

∞∑

µ=0

Bµ (m)

µ!
(ln q)

µ
qz = qz

∞∑

µ=0

Bµ (m)

µ!
(ln q)

µ
=

qz(ln q)
m

P (eln q)
=

qz lnm q

P (q)
.

Integrating the last equality, we obtain a formula for the solution of the equation P (δ) f (z) = qz

for m > 1

f (z) =
qz

P (q)
+ C1z

m−1 + ... + Cm−1z + Cm,

where Cj are arbitrary constants.

2. A generalization of the Euler-Maclaurin formula

In this section we apply Theorem 1 to the problem of finding the sum (5). Similar sums

appear, for example, in some problems of the enumerative combinatorial analysis and are called

the sum with linear constraints on the summation indexes [8, 9].

If ϕ (x) is a function of one variable, then the sum (5) can be written as

S (x) =

x∑

k=0

Ck
k+n−1ϕ (x − k), (9)

where Ck
k+n−1 =

(k + n − 1)!

k! (n − 1)!
is the number of non-negative integer solutions t = (t1, ..., tn) to

t1 + ... + tn = k.

– 90 –



Olga A. Shishkina The Euler-Maclaurin formula and differential operators of infinite order

The right-hand side of (9) involves a single sum, but in contrast to the classical case, we

need to sum over k the function Ck
k+n−1ϕ (x − k), which depends on the parameter x. This is

similar to the problem of calculating an integral with a parameter and a variable upper limit.

For example, for n = 2 this sum can be written as

S (x) =

x∑

k=0

(k + 1) ϕ (x − k) =

x∑

t=0

(x − t + 1) ϕ (t).

Theorem 2. If ϕ (z) ∈ Exp2π (C) then for the sum (9) we have

S (x) =

n−1∑

µ=0

Bµ (n)

µ!
Pn−µϕ (x + n) +

∞∑

µ=0

Bµ+n (n)

(µ + n)!
Dµϕ (x + n), (10)

where Bµ (n) =
∑

‖k‖=µ

‖k‖!

k!
Bk, k = (k1, ..., kn) , k! = k1!...kn!, Bk = Bk1

· ... · Bkn
, and Bkj

are the Bernoulli numbers, Pn−µ is the antiderivative of order n − µ.

For the proof we need the following proposition.

Proposition 2. The function S (x) defined by (9) satisfies the difference equation

(δ − 1)
n
S (x) = ϕ (x + n) . (11)

Proof. For t = 1, 2, ..., n − 1 we have the formula

(δ − 1)
t
S (x) =

x+t∑
k=0

Ck
n+k−t−1ϕ (x + t − k). Let t = n − 1, then

(δ − 1)
n−1

S (x) =

x+n−1∑

k=0

Ck
kϕ (x + n − 1 − k) = ϕ (0) + ϕ (1) + ... + ϕ (x + n − 1) . (12)

Applying the operator δ to (12) we obtain

δ (δ − 1)
n−1

S (x) =

x+n∑

k=0

Ck
kϕ (x + n − k) = ϕ (0) + ϕ (1) + ... + ϕ (x + n − 1) + ϕ (x + n) . (13)

If we subtract equation (12) from (13), we obtain

(δ − 1)
n
S (x) = δ (δ − 1)

n−1
S (x) − (δ − 1)

n−1
S (x) = ϕ (x + n)

�

Proof of Theorem 2. According to Proposition 2 the sum (9) satisfies the difference equation

(11) with the characteristic polynomial P (z) = (z − 1)
n

. For the function P
(
eξ

)
=

(
eξ − 1

)n

the point ξ = 0 is a root of order n, and the distance from it to the nearest root is R = 2π. It is

not difficult to verify that the function A (ξ) =
ξn

(eξ − 1)
n is analytic at the point ξ = 0, and the

series A (ξ) =
∞∑

µ=0

Bµ (n)

µ!
ξµ converges in the circle U2π = {ξ ∈ C : |ξ| < 2π} .

The differential operator of infinite order corresponding to the function A (ξ) is defined on
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functions from the space Exp2π (C) , that is why by Theorem 1 we see that for ϕ (z) ∈ Exp2π (C)

any solution S (z) to the equation (9) in Exp2π (C) satisfies the equation

DnS (z) =
∞∑

µ=0

Bµ (n)

µ!
Dµϕ (z + n).

If we denote by P1u (z) =

∫ z

z0

u (τ) dτ the antiderivative of the function u (z), then we obtain

the following formula on the real axis for the required sum

S (x) = Pn

∞∑

µ=0

Bµ (n)

µ!
Dµϕ (x + n) =

n−1∑

µ=0

Bµ (n)

µ!
Pn−µϕ (x + n) +

∞∑

µ=0

Bµ+n (n)

(µ + n)!
Dµϕ (x + n),

(14)

where Pn−µϕ (x + n) is an antiderivative of order n − µ of the function ϕ (x + n) .

The generalized Bernoulli numbers Bµ (n) can be found by means of classical ones Bµ. It is

known that the Bernoulli numbers appear as the coefficients in the power series expansion of the

function
ξ

(eξ − 1)
=

∞∑

µ=0

Bµ

µ!
ξµ. Raising this equality into power n, we get Bµ (n) =

∑

‖k‖=µ

‖k‖!

k!
Bk,

where k = (k1, ..., kn) , k! = k1!...kn!, Bk = Bk1
· ... ·Bkn

. Note that for n = 1 formula (14) is the

Euler-Maclaurin formula. �

Example 2. For the sum of the geometric series S(x) =
x∑

k=0

qk, by Proposition 2, this problem is

reduced to the solution of the equation (δ − 1)S(x) = qx+1, S(0) = 1. In this case P (z) = z − 1,

R = 2π, and q < e2π. According to Example 1, we have S (x) =
qx+1

q − 1
+ C. Using S (0) = 1, we

find the constant C, and see that the required sum is equal to S (x) =
qx+1 − 1

q − 1
.

Example 3. The problem of finding the sum (9) for ϕ(x) = qx with n = 2, i.e. S (x) =
x∑

k=0

(k + 1)qx−k is less trivial. By Proposition 2 we have to solve the equation (δ − 1)
2
S (x) =

qx+2 with the initial conditions S (0) = 1, S (1) = q + 2. In this case P (z) = (z − 1)
2
, R = 2π,

and q < e2π. According to Example 1 we obtain S (x) =
qx+2

(q − 1)
2 +C1z +C2. The constants can

be found by using the initial data. Thus,

S (x) =
qx+2

(q − 1)
2 −

1

q − 1
x +

1 − 2q

(q − 1)
2 .
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Формула Эйлера -Маклорена и дифференциальные
операторы бесконечного порядка

Ольга А. Шишкина

Методы теории дифференциальных операторов бесконечного порядка использованы для нахожде-

ния решений разностных уравнений и обобщения формулы Эйлера-Маклорена на случай кратного

суммирования.

Ключевые слова: неопределенное суммирование, разностные уравнения, псевдодифференциальные

операторы.
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