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The Cauchy type problem for a differential equation with fractional derivative and self-adjoint operator
in a Hilbert space is considered. The problem of parameter determination in equation by the value of the

solution at a fixed point is presented. Theorems of existence and uniqueness of the solution are proved.
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Introduction

In recent years, theory of differential equations with fractional derivatives has attracted con-
siderable interest. This is primarily due to the application of this theory to new models of
physical processes. However the theory has been developed for some time. The first steps were
made by L. Euler, P. Laplace and J. Furier. Further development of this theory was associated
with the works of N.H. Abel, J. Liouville and B.Riemann. An important advancement in the
development of the theory is presented in [1-4].

One of the modern methods for studying equations of mathematical physics is the theory of
differential equations in Banach and Hilbert spaces. Abstract differential equations of fractional
order are considered in [5-8].

Let us consider a closed linear operator A in a Banach space H. The operator domain D(A)
is dense and 0 < a < 1, ug € H. Consider the following Cauchy-type problem

Dou(t) = Au(t) + f(t), t > 0, (1)
lim D u(t) = ug, (2)

where D® is the Riemann-Liouville fractional derivative of order o:
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and I is the Gamma function.

A solution of (1), (2) is a continuous function u(t) in H for ¢t > 0 such that D> 1lu(t) is
continuously differentiable in H for ¢ > 0. Function u(t) takes its values in D(A) and satisfies
(1), ) CI7D-

Along with problem (1), (2), let us consider the homogeneous problem

D%u(t) = Au(t), t >0, (3)
P_I)% D lu(t) = uy. (4)

We say that the problems (1), (2) and (3), (4) are uniformly well-posed ( [7]) if there is
operator function V(¢) (solution operator) that commutes with A. There are also two constants
M > 0 and w € R such that for every ug € D(A) function V (¢)ug is the only solution of problem
(3), (4) and for any ¢ > 0 the following estimate

V()] < Mtetet ()

is valid.

If space H has the Radon-Nikodym property (every absolutely continuous function repre-
sented by the integral of its derivative) then problem (3), (4) is uniformly well-posed if and only
if when ReA > w the operator A has the resolvent R(A*) = (A — A)™". The resolvent satisfies
the following inequality [9]

‘ ’ MT(n + «)
< n+ao’
(ReA — w)

In this case the solution operator has the following representation [9]

an()\a>
dan

wo—+1i00
1
V=Dl v, / NLAMROC)IA  (wy > max(0,w)).
s
wo—100

Let us consider the Cauchy type problem (1), (2) assuming that problem is uniformly well-
posed. The solvability of this problem can be proved if

(C1) functions f(t) and Af(t) are continuous for ¢ > 0 in H and absolutely integrable at ¢t = 0;

(C2) function D=1 f(t) is continuous for ¢ > 0 and continuously differentiable for ¢ > 0, function
D f(t) is absolutely integrable at ¢t = 0.

If any of these two conditions is satisfied then the solution of problem (1), (2) exists. The
solution is unique and it is given by the formula [9]

u(t) =V (t)ug + /0 V(t—s)f(s)ds. (6)

The principle of subordination is one of the important properties of equations with fractional
derivatives. Along with problem (3), (4) we consider another Cauchy type problem with other
differentiation order 8 (a < 8 < 1)

DPu(t) = Au(t), t >0, (7)
}Lr% DP=Yu(t) = uy. (8)
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We also consider function f-,(t) defined by the equality
o+1i00

1
exp(tz — 72")dz, t > 0,

fT,V(t) = 2i

o—100

0, t<0

where 0 > 0, 7 > 0, 0 < v < 1 and branch z” is selected such that Re z¥ > 0 for Rez > 0. This
function is non-negative ( [10] and [11])

9)

/ fro®erdr =t"71E, ,(\MY), (10)
0

where E, g(x) is the generalized Mittag-Leffler function
o0 xn
Baplz) =S — 2
8(2) nz:% Tan 1)
The principle of subordination ( [11]) states that if problem (7), (8) is uniformly well-posed then
problem (3), (4) is also uniformly well-posed. Moreover, the solution operator V(t) of problem
(3), (4) is expressed in terms of the solution operator U(t) of problem (7), (8) by the following
relation

V(t) = /0 LU,

where v = o/ 3.

Throughout this paper it is assumed that the space H is a Hilbert space and operator A is
self-adjoint and non-positive. Any reflexive Banach space has the Radon-Nikodym property so
in our case this property is satisfied.

Lemma 1. Let us assume that H is a Hilbert space, operator A is self-adjoint and bounded from
above, element ug € D(A) and one of the conditions (C1) or (C2) is satisfied. Then the solution
of Cauchy type problem (1), (2) exists, it is unique and has the form

u(t) = £ B o (£ A)uo + /O (t = ) Bua((t — 5)*A) f(s)ds. (1)

Proof. It is known that any self-adjoint bounded from above operator is a generator of a
strongly continuous semigroup. This means that problem (7), (8) is uniformly well-posed when
B = 1. Applying the principle of subordination, we obtain that problem (3), (4) is also uniformly
well-posed for any 0 < o < 1. The solution operator of problem (7), (8) is U(t) = exp(At),
therefore by virtue of the principle of subordination (taking into account that v = «) we have
the equality

V(t) = / " fraltezp(Ar)dr = / ) ( / ; wm) dr = / N / ; Fra(t)edBrdr,

where F is a spectral resolution of the operator A and b is its upper bound. As the integrand is
non-negative function, we can change the order of integration. Taking into account equation (10),
we obtain

— 00

b 7 b
V(t)= / / frat)erTdr | dEy = / 7 B 0 (M*)dEy =t Eq o (t* A).
oo \J
Relation (11) directly follows from equality (6). O
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1. Inverse problem

Let us assume that H is a Hilbert space, operator A is self-adjoint and non-positive, 0 < o < 1,
©(t) is a scalar non zero function and wg,u; € H. Let us find function u(t) with values in the
space H and element p € H that satisfy the following system of equations

Du(t) = Au(t) + ¢(t)p, t >0, (12)
lim D tu(t) = o, (13)
u(T) = uy. (14)

where T" > 0.

According to the adopted terminology problem (12)—(14) belongs to the class of inverse prob-
lems. A review of publications on this subject can be found in [12-19|. Inverse problems for
equations of fractional order in Banach spaces was considered in papers [20,21]. Similar problem
was considered for the first order equation (when o = 1) but with a fractional integral in the
additional boundary condition [22].

The behavior of the entire function

T
F) = [ (1= 9" B (T = 5 )p(s)ds. (15)
0
is the key to the solvability of problem (12)—(14).

Function (15) will be denoted the characteristic function of inverse problem (12)—(14).

Theorem 1. Let us assume that H is a Hilbert space, operator A is self-adjoint and non-positive,
0 < a < 1, function ¢(t) € C[0;T] N CY0;T), it is not identically equal to zero for t € (0;T).
The derivative of function (t) is absolutely integrable at t = 0 and the elements ug,u; € H.
The solution of problem (12)—(14) is unique if and only if point spectrum of the operator A does
not contain zeros of the characteristic function (15). The solution of problem (12)-(14) exists if
and only if

[ i < . (16)

— 00

where Ey is a spectral resolution of the operator A, and the element
h=u; — T By oT*A)ug. (17)

Proof. According to lemma 1 the solution of direct problem (12)—(13) is given by formula (11)
where one should set f(t) = ¢(¢)p. Setting in this formula t=T and taking into account (14), we
obtain the following equation for the unknown element p

T
Uy = T“_lEa’a(T“A)uo + / (T - s)“_lEa’a((T — 8)*A)p(s)pds.
0

This equation can be written in the following form
Bp =h,

where operator B is defined by the relation

By = [ (1= By (T = )" (s,
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and element h is given by (17).
Let us transform the expression that represents the operator B. For this we use the spectral
decomposition of the operator A
0
A= / AE),.
—o00

According to the operator calculus of self-adjoint operators, we have

0
Boo((T — 5)*A) = /_ Ba.o(MT — s)*)dE}.

Therefore . o
B=A</MG—WJQMMTﬂPM@MO®.

Since the measure dEy Q) ds is finite on the (—oo;0] x [0; 7] then by Fubini’s theorem we have

— 00

0 T .
B = / (/ (T — S)afltha(A(T — 3)"‘)90(5)(18) dE)\ = / F()\)dE)\ _ F(A)
—oo \Jo
Therefore, the equation for the unknown element p takes the form
F(A)p = h. (1)

Equation (18) was studied in [23]. It was proved that the solution of this equation is unique
if and only if point spectrum of the operator A does not contain zeros of F'(z). The existence
of a solution of the equation follows from condition (16). The application of this result proves
theorem 1. |

Theorem 2. Let us assume that H is a Hilbert space, operator A is self-adjoint and non-positive,
0 < a < 1, function p(t) € C[0;T] N CL(0;T) and its derivative is absolutely integrable at t = 0,
everywhere either ¢(t) = 0 or o(t) <0 and o(T) # 0, ug,u1 € D(A). Then solution of problem
(12)—(14) exists and it is unique.

Proof. Since ug € D(A) and every function of the self-adjoint operator A commutes with A,
then the element E, o(T*A)ug belongs to D(A). Since u; € D(A) then h € D(A). It follows
directly from the definition of the Mittag-Lefler function that

d
s By o (28%) = o [sYEq,q+1(25Y)].
Integrating (15) by parts, we obtain

T T
F(z)= /0 (T — 8)* ' By o(2(T — 5)*)p(s)ds = /0 $ B a(28%) (T — s)ds =

= /T o(T — s)d {saEa,aH(zsa) + j ds = o(T — s) {saEa,aH(zsa) + j : +
T : (19)
+ $%FEa.at1(28%) + = | ¢ (T — s)ds = p(0) |T*Eq a+1(zT%) + = | — +
[ s Bamnstasn) + 2] o0 - 1t = 0 [ Buppa a7y + 1] - 202

T
1
+/ [so‘EmaH(zsa) + ] &' (T — s)ds.
0 z

Let us consider first and last terms in the right hand side of (19).
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It is known ( [24, p.12|) that when 0 < a < 1

Eop(z) = —m +0(]z]™%) (z€R, z— —0).

Then for z — —oo we have

Faati() = — + (12l ™). (20)

From the last relation we obtain

TEy 01 (2T%) =T <— z;a + O(l/(zT“)2)> = —% +0(1/2%)
when z € R, z — —oo. Thus
e} Y 1 2
»(0) {T Eoa+1(ZT%) + z} =0(1/z%). (21)

It follows from (20) that for sufficiently large negative values of z

C

Eaa a X 7. N9
‘ s +1(ZS )+ (ZSO‘)2

28%

where constant C does not depend on s. Multiplying the last inequality by s® we obtain the
following estimate

1
$YEq a+1(25%) + 2 <

C

2230"

and we have

C M@=, _C [T WO,
< /0 ds = /O —ds.  (22)

T 1
aEaa o - /T_ d —
/0 [5 at+1(28%) + z] ©'( s)ds 2 e 52 (T —s)

According to the theorem condition, the function |¢’(s)] is integrable at zero and the integrand
in the last integral is equivalent to |¢’(s)|/T*. Hence the integral converges at zero. For s — T
the same function is equivalent to |¢'(T)|/(T — s)®. Since a < 1 then the integral also converges
at s =1T.

It follows from (21), (22) that the characteristic function

F(z) ~ _<p(T)7 z€R, z— —o0. (23)

Let us use now the results presented in [24]. It follows from reviews of Chapter 4 of this work
(theorem 4.4.1, p.101) that when 0 < oo < 1 and 3 > « the Mittag-Leffler function E, 5(z) > 0
when z < 0. Therefore, it follows from conditions of the theorem that characteristic function
(15) has no zeros on the real semiaxis z < 0. It follows from the calculus of self-adjoint operators
that operator B = F(A) is invertible. We obtain from the asymptotic equality (23) that domain

of the operator
B1_ /0 dE\
—oo FI(X)
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coincides with D(A). The element h is defined by formula (17) and it belongs to D(A) then
equation (18) has the unique solution p = B~'h and function u(t) is defined by equality (11)
where one should set f(t) = ¢(¢)p. This completes the proof of theorem 2. O

Let us consider the model case ¢(t) = t%. The conditions of theorem 2 for this case are
valid when 8 > 0. Moreover, in this case one can write the characteristic function explicitly.
Performing the substitution s = T¢ in (15), we obtain

T T n
F(z) = /0 (T — s)o‘flEa,a(z(T — s)a)sﬁds = /0 —8)*” 1408 Z M T s =

cm + a
oo T
Zn nTozn+a+[3
— e T — an+a—1 ﬂd _ / 6 an+a—1d _
Z_%F(om—i—a)/o ( 2 s I‘an+a & ¢
" (24)
o0
ZnTan+oz+ﬁ Z71Tan+a+[3 F(ﬁ —+ 1)1_‘(057’1 + Oé)
nz:;)l"(om—ka) (6+1,an+a) ;I‘(an—ka) Flan+a+0+1)
2T)"
D(3+ 1T+ Z T D(8+ DT Byt i (:T°).

om+oz+ﬂ+l)

It follows from the above-mentioned properties of the Mittag-Leffler function that character-
istic function (24) is positive on the negative semiaxis and it has asymptotic bound const/z at
—oo. Hence it follows that operator B is invertible on D(A).

Corollary 1. Let us assume that H is a Hilbert space, operator A is self-adjoint and non-positive,
0<a<l, 8>0 and elements ug,u; € D(A). Then the solution of problem

Du(t) = Au(t) +t°p, t > 0,
. a—1 .
}51(1) D" u(t) = uy,
exists, it is unique and has the form

1 —1

— o' a—1 et
p= WEOZ,@+5+1(T A) (Ul — T EQ’Q(T A)uo) s

t
() = 15 By o (£ A + / (t = )% Baa((t — )" A)s p ds.
0

Remark 1. The last formula can be simplified. Let us note that equality (11) can be written in
the form
u(t) = %7 Boo (t" A)uo + Fy(A)p,

where Fy(z) is obtained from characteristic function (15) by replacing T with t. Since in our
particular case F(z) = T(B+ D)TPE, a1 511 (2T%), then function

Ft(Z) = F(ﬁ + 1)ta+ﬁEa,a+g+1(Zta)

and
u(t) = t* By o (t*A)ug + T(B + D)t P E, oy g1 (t“A)p.

We should also mention the case § = 0. The study of inverse problems of the type considered
here began with this option (see [14-16]).
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Corollary 2. Let us assume that H is a Hilbert space, operator A is self-adjoint and non-positive,
0 < a <1, elements ug,u; € D(A). Then the solution of problem

D%u(t) = Au(t) +p, t >0,
: a—1 _
tlgr(l)D u(t) = ug,
w(T) = wuy

exists, it is unique and has the form
1 — [e% o— [e%
p= 7T0‘ Ea,lo¢+1(T A) (U1 -T lEa’a(T A)Uo) s

u(t) = t* 1By o (t*A)ug + t*Eg ap1 (t*A)p.
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Omnpenenenue nmapamerpa auddepeHInaIbHOTO ypaBHEHUSA
JApoOHOTO TIopsiJika ¢ IMpou3BoaHoli Pumana -JInmyBusiis
B I'MJIbOEPTOBOM MPOCTPAHCTBE

Hmvurpuii I'. OpJjioBckuii

B euavbepmosom npocmparcmee pacemompena 3adaua muna Kowu das duddepenyuanrvrozo ypasHe-

HUA ¢ IPOOHOT NPOU3BOOHOT U camoconpadicertbim onepamopom. Ilocmasaena 3adavwa onpedenernus na-

pamempa 6 HEOOHOPOOHOM YAEHE YDABHEHUSA NO 3HAUEHUIO PEWEHUA 6 PuKCUPo8aHHot mouke. loka3arvy

MEOPEMDBL CYULECMBOBAHUA U eduHcmeeHHoCmU peweruA.

Karoueswie caosa: ypasrernue 0pobrozo nopadka, 2uibbepmoso npocmpaHcmeon, camoCONPAAHCEHHbLT one-

pamop, 3adayua muna Kowu, ¢ynryus Mummae-Jledpaepa, obpamnas 3adaua, Tapaxmepucmuieckas,
PYHKYUA.
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