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The identification of an unknown constant coefficient in the main term of the partial differential equation

−kMψ(u)+g(x)u = f(x) with the Dirichlet boundary condition is investigated. Here ψ(u) is a nonlinear

increasing function of u, M is a linear self-adjoint elliptic operator of the second order. The coefficient

k is recovered on the base of additional integral boundary data. The existence and uniqueness of the

solution to the inverse problem involving a function u and a positive real number k is proved.
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This paper proceeds the investigation started in [5,6] and is concerned with an inverse problem
for the second order differential equation

−div(k(x, u)∇ψ(u)) + γ(x, u) = f (0.1)

with the Dirichlet boundary data

u
∣

∣

∣

∂Ω
= β(x) (0.2)

where k(x, u) is a matrix of functions, ψ(u) and γ(x, u) are scalar functions. We assume that Ω
is a bounded domain in R

n with the boundary ∂Ω ⊂ C2.
Applications of this problem deal with the recovery of unknown parameters indicating physical

properties of a medium (the heat conductivity, the permeability of a porous medium, etc.).
Various aspects of such problems are discussed in [1–8] (see also the references given there). Of
special interest is the problem of finding the leading coefficients of (0.1) given the additional
boundary data on ∂Ω or a part of ∂Ω. In [1,2,7,8] this problem is investigated in the case where
ψ(u) = u, γ(x, u) ≡ 0, k(x, u) = k(x)E, a function k(x) is unknown, E is the identical matrix.

In this paper we study the problem of the identification of the constant coefficient k in
equation

−k{div(M(x)∇ψ(u)) +m(x)ψ(u)} + g(x)u = f(x), x ∈ Ω, (0.3)

under the boundary data (0.2). Here ψ(u) is a known function, M(x) is a matrix of functions
mij(x), i, j = 1, 2, . . . , n. The functions m(x), f(x), g(x), β(x) are given. In physical context
the constant coefficient k is interpreted as the average conductivity of a medium.

As an additional data for the recovery of the coefficient k we take the condition of overdeter-
mination

k

∫

∂Ω

∂ψ(u)

∂N
ω ds = ϕ (0.4)

where ∂u/∂N ≡ (M(x)∇u,n)R is the conormal derivative, n is a unit outward normal to ∂Ω, ω is
a given function, ϕ is a given real number. Physically, (0.4) describes, for instance, the total flux
of the liquid through the surface of the rock [3]. Inverse problems with similar nonlocal boundary
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conditions for elliptic equations were considered in [5,6]. The results of [6] are concerned with the
existence and uniqueness of the solution to the problem (0.2)–(0.4) where ψ(ρ) = (p−1)−1|ρ|p−2ρ
and p > 2 is a real number. The inverse problem for linear elliptic equation (0.3) with ψ(ρ) = ρ
is discussed in [5].

The goal of our paper is to establish the existence and uniqueness of a solution to the nonlinear
problem (0.2), (0.3), (0.4). We discuss it in Section 2. In Section 3 we present examples and
comments to the results of Section 2 and the inverse problem involved.

1. The preliminaries

We start with preliminary results for the direct problem (0.2), (0.3). The results concern the
existence, uniqueness and certain properties of the solution to this problem.

From now on we keep the notations: ‖ · ‖R, (·, ·)R is the norm and the inner product of R
n;

‖·‖, (·, ·) is the norm and the inner product of L2(Ω); ‖·‖j ,
〈

·, ·
〉

1
is the norm of W j

2 (Ω), j = 1, 2,

and the duality relation between
◦

W 1
2 (Ω) and W−1

2 (Ω), respectively; a(x) is the solution of the
Dirichlet problem

−div(M(x)∇ψ(a)) +m(x)ψ(a) = 0, x ∈ Ω, a
∣

∣

∂Ω
= β(x); (1.1)

b(x) is the solution of the Dirichlet problem

−div(M(x)∇b) +m(x)b = 0, x ∈ Ω, b
∣

∣

∂Ω
= ω(x). (1.2)

We introduce the linear operator M : W 1
2 (Ω) → (W 1

2 (Ω))∗ of the form M = −div(M(x)∇)+
m(x)I where I is the identity operator and reckon that the following assumptions hold throughout
the paper.

I. The operator M is elliptic. That is, m(x), mij(x), ∂mij/∂xl , i, j, l = 1, 2, . . . , n are
bounded, m(x) > 0 and there exist positive constants m1, m2 such that for any ξ̄ ∈ R

n

m1

n
∑

i=1

ξ2i 6

n
∑

i,j=1

mij(x)ξiξj 6 m2

n
∑

i=1

ξ2i . (1.3)

II. The operator M is self-adjoint. That is, mij(x) = mji(x) for i, j = 1, . . . , n.

III. The function ψ(ρ) is a continuous mapping of (−∞,+∞) onto itself . For any ρ1, ρ2 ∈
(−∞,+∞), ρ1 6= ρ2,

(ψ(ρ1) − ψ(ρ2))(ρ1 − ρ2) > 0, (1.4)

that is, the function ψ(ρ) is strictly monotone.

From the assumption III it follows that there exists an inverse ψ−1(ρ) of ψ(ρ). The inverse
ψ−1(ρ) is strictly monotone and continuous on (−∞,+∞).

By the assumptions I–III the problem (1.1) has a unique solution a and ψ(a) ∈W 2
2 (Ω) when

ψ(β) ∈ W
3/2
2 (∂Ω). If in addition β ∈ L∞(∂Ω), then, by the continuity of ψ and Theorem 13.1

of [9, Chapter 3], ψ(a) ∈ L∞(Ω). This means that a ∈ L∞(Ω).

Lemma 1.1. Let the assumptions I–III are fulfilled. Let also k be a given positive number,

f ∈ L2(Ω), ψ(β) ∈ W
1/2
2 (∂Ω), g ∈ C(Ω) and g > 0 in Ω. Then the following assertions are

valid.
1. There exists a unique solution u of the direct problem (0.2),(0.3) such that ψ(u) ∈W 1

2 (Ω).
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2. If ψ(β) ∈W
3/2
2 (∂Ω) and

|ψ(ρ)| > c|ρ|p (1.5)

for any ρ ∈ (−∞,+∞) where p > 1, c > 0 are constants, then u ∈ L2p(Ω) ∩W =
{

v | ψ(v) ∈
W 2

2 (Ω)
}

.

3. If g ≡ 0 and ψ(β) ∈ W
3/2
2 (∂Ω), then ψ(u) ∈ W 2

2 (Ω). If in addition β ∈ L∞(∂Ω), then
u ∈ L∞(Ω) ∩W .

Proof. 1. Let ã = ψ(a). From (1.1) it follows that ã solutions the equation Mã = 0 and
satisfies the boundary condition ã|∂Ω = ψ(β). Multiplying (0.3) by ψ̃(u) = ψ(u) − ã in terms of
the inner product of L2(Ω) and integrating by parts in the first term we obtain

k

∫

Ω

{

(

M∇ψ̃(u),∇ψ̃(u)
)

R
+m(x)ψ̃2(u)

}

dx+

∫

Ω

g(u− a)ψ̃(u)dx = (−ga+ f, ψ̃(u)). (1.6)

The estimation of the right side of (1.6) with the help of the Friedrichs inequality

‖v‖ 6 c0mes1/nΩ
(

∫

Ω

‖∇v‖2
Rdx

)1/2

for v ∈
◦

W 1
2 (Ω) (1.7)

leads to the relation

k

∫

Ω

{

(

M∇ψ̃(u),∇ψ̃(u)
)

R
+m(x)ψ̃2(u)

}

dx+

∫

Ω

g(u− a)ψ̃(u)dx 6

6
km1

2

∫

Ω

‖∇ψ̃(u)‖2
Rdx+

c20mes2/nΩ

2km1
‖ga− f‖2

whence, by (1.3), (1.4),
∫

Ω

‖∇ψ̃(u)‖2
Rdx 6

1

m1

∫

Ω

{

(

M∇ψ̃(u),∇ψ̃(u)
)

R
+mψ̃2(u)

}

dx 6

6
c20mes2/nΩ

k2m2
1

‖ga− f‖2 ≡ C. (1.8)

Here the positive constant c0 depends only on n. (1.7) and (1.8) implies

‖ψ̃(u)‖ 6
c20mes2/nΩ

km1
‖ga− f‖ (1.9)

and

‖ψ(u)‖1 6 ‖ã‖1 + C1/2max{1, c0mes1/nΩ} ≡ C1. (1.10)

To prove the existence and uniqueness of the solution of the problem (0.2), (0.3) we denote
ψ̃(u) by h. In view of the definition of ψ̃(u) the function h satisfies the equation

M̃h ≡Mh+ gψ−1
(

h+ ã
)

− ga = f − ga ≡ f̃ (1.11)

and h|∂Ω = 0. One can show that the operator M̃ as a map from
◦

W 1
2 (Ω) into W−1

2 (Ω) is

demi-continuous, coercive and strongly monotone. Hence, there exists a solution h ∈
◦

W 1
2 (Ω) of

equation (1.11) (see Theorem 2.1 [10, Chapter III]). Moreover, the solution h is unique. Indeed,

let h1 and h2 be two solutions of (1.11) in
◦

W 1
2 (Ω). Then by (1.3) and the strong monotonicity

of M̃ we have
0 =

〈

M̃h1 − M̃h2, h1 − h2

〉

1
> m1‖∇(h1 − h2)‖2,
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which implies h1 = h2.
Coming back to the original problem we conclude that the problem (0.2), (0.3) has a solution

u = ψ−1(h) ∈W and this solution is unique.
2. In the hypotheses of the lemma from (1.9) it follows that u ∈ L2p(Ω) and

‖u‖L2p(Ω) 6 ‖ψ(u)‖ 6
c20mes2/nΩ

km1
‖ga− f‖ + ‖ψ(a)‖ ≡ C2.

Multiplying (0.3) by Mψ(u) in terms of the inner product of L2(Ω) we obtain the equality

k‖Mψ(u)‖2 = −
(

gu,Mψ(u)
)

+
(

f,Mψ(u)
)

,

from which it follows by (1.9) and the Cauchy inequality that

k‖Mψ(u)‖2
6

1

k

[

‖g‖2
C(Ω)

‖u‖2
L2p(Ω)mes(p−1)/pΩ + ‖f‖2

]

+
k

2
‖Mψ(u)‖2

6

6
1

k

[

‖g‖2
C(Ω)

C2
2mes(p−1)/pΩ + ‖f‖2

]

+
k

2
‖Mψ(u)‖2

whence

‖Mψ(u)‖ 6

√
2

k

[

‖g‖2
C(Ω)

C2
2mes(p−1)/pΩ + ‖f‖2

]1/2

≡ C ′

2. (1.12)

In view of (1.8), (1.10) and Theorem 5.1 of [11, Chapter 2] the last inequality implies

‖ψ(u)‖2 6 c
(

‖Mψ(u)‖ + ‖ψ(u) − ψ(a)‖1

)

+ ‖ψ(a)‖2 6 c(C ′

2 + C1) + ‖ψ(a)‖2(c+ 1) (1.13)

where the constant c depends on n, m1, m2, vraimaxΩ

∣

∣∂mij/∂xl

∣

∣, i, j, l = 1, 2, . . . , n and mesΩ.
Thus, the solution u ∈ L2p(Ω) ∩W .

3. In the hypotheses of this part of the lemma Mψ(u) ∈W 2
2 (Ω) and the estimate (1.13) takes

the form
‖ψ(u)‖2 6 c(k−1‖f‖ + C1) + ‖ψ(a)‖2(c+ 1).

If in addition β ∈ L∞(Ω), then the boundedness of u follows from the assumption IV and
Theorem 13.1 [9, Chapter 3]. 2

Lemma 1.2. Let the assumptions of Lemma 1.1 be fulfilled and ga− f > 0. Then the solution
u of the problem (0.2), (0.3) satisfies the inequality u 6 a for almost all x ∈ Ω.

Proof. Let us consider the function w = a− u. By (0.3) and (1.1), we have

−kdiv(M(x)(∇ψ(a) −∇ψ(u))) + g(x)w = ga− f.

We multiply this equation by ψā− ψu where

ā =

{

u if u 6 a,
a if u > a,

in terms of the inner product of L2(Ω) and integrate by parts in the first term of the left side.
This yields

k

∫

Ω

[(

M∇
(

ψ(ā) − ψ(u)
)

,∇
(

ψ(ā) − ψ(u)
)

)

R
+m(ψ(ā) − ψ(u)

)2
]

dx+

+

∫

Ω

(gw − ga+ f)
(

ψ(ā) − ψ(u)
)

dx = 0. (1.14)

By (1.3), (1.4) and the nonnegativity of ga− f it follows from (1.14) that

km1

∫

Ω

(

∇ψ(ā) −∇ψ(u)
)2
dx 6 0,

which implies ∇
(

ψ(ā)−ψ(u)
)

= 0. In view of (0.2) and (1.1) ā|∂Ω = u|∂Ω. Hence ā− u = 0 that
is u 6 a for almost all x ∈ Ω. 2
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2. The main result

In this section we prove the existence and uniqueness theorem for the problem (0.2), (0.3),
(0.4). By a solution of this problem is meant the pair involving a function u ∈W and a positive
real number k which satisfy (0.2)–(0.4).

Hereafter we keep the following notation: for v1, v2 ∈W 1
2 (Ω)

〈

Mv1, v2
〉

M
≡

∫

Ω

[(

M∇v1,∇v2
)

R
+mv1v2

]

dx.

Theorem 2.1. Let the assumptions I–III and the condition (1.5) be fulfilled. Let also

(i) f ∈ L2(Ω), ψ(β) ∈W
3/2
2 (∂Ω), ω(x) ∈W

3/2
2 (∂Ω), g(x) ∈ C(Ω);

(ii) ω(x) be nonnegative in ∂Ω;

0 6 g(x) 6 g1 = const < +∞ x ∈ Ω; (2.1)

Ψ ≡
〈

M∇ψ(a),∇b
〉

M
> 0; (2.2)

F (x) ≡ ga− f > 0; (2.3)

Φ ≡ ϕ− (ga− f, b) > 0. (2.4)

Then the problem (0.2)–(0.4) has a solution (u(x), k). Moreover, u(x) ∈ L2p(Ω) and

u(x) 6 a(x) (2.5)

for almost all x ∈ Ω. If in addition g ≡ 0 or the inequalities

B ≡ Ψ−1
〈

Mψ(a), ψ(a)
〉1/2

M

〈

Mb, b
〉1/2

M
< 2 (2.6)

and
Φ > 2c0m

−1/2
1 mes1/nΩ ‖F‖

(

2 −B
)

−1〈
Mb, b

〉1/2

M
(2.7)

are valid, then the solution of the problem (0.2)–(0.4) is unique.

Proof. We multiply (0.3) by b in terms of the inner product in L2(Ω) and integrate by parts
in the first term of the resulting equality twice. In view of (0.3) we obtain

−ϕ+ kΨ +

∫

Ω

g(x)ub dx =

∫

Ω

fb dx. (2.8)

By (2.2) and the definition of Φ in (2.4) we can rewrite (2.8) as

k =
(

Φ + (g(a− u), b)
)

Ψ−1. (2.9)

If g ≡ 0, then k = Φ/Ψ > 0 is known function. By Lemma 2.1 the problem (0.2), (0.3) with
such k has a unique solution u ∈ L2p ∩W .

Let now g 6= 0 and (2.1), (2.4) holds. We introduce the operator A mapping the set R
+ of

the positive real numbers into R according to the following role: for any y ∈ R
+

A(y) =
(

Φ + (g(a− uy), b)
)

Ψ−1 (2.10)

where uy is a solution of the direct problem (0.2), (0.3) with k = y. According to Lemma 1.1,
the problem (0.2), (0.3) has a unique solution uy ∈ W and hence the value of A(y) defined by
(2.10) is meaningful for any y ∈ R

+. Therefore (2.9) can be consider as the operator equation

k = A(k). (2.11)
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Following the idea of [12, Chapter 1] one can show that the problem (0.2)–(0.4) has a solution if
and only if the operator equation (2.11) is solvable.

According to Lemma 1.2 in the hypotheses of the theorem 3.1 uy 6 a that is (2.5) is valid.
By (2.2) and (2.5),

0 < k0 ≡ Φ

Ψ
6 A(y) 6

|ϕ| + |(f, b)| + g1‖uy‖‖b‖
Ψ

(2.12)

for y ∈ R
+. The left inequality in (2.12) enables to estimate ‖uy‖. As shown in Lemma 1.1, the

estimate (1.12) is valid for ψ(uy). Therefore for every y > k0

‖uy‖ 6 c−1(mesΩ)
p−1

2p ‖ψ(uy)‖ 6 c−1(mesΩ)
p−1

2p

[c20mes2/nΩ

k2
0m

2
1

‖ga− f‖ + ‖ψ(a)‖
]

≡ C3. (2.13)

Then for y > k0

k0 6 A(y) 6
|ϕ| + |(f, b)| + g1C3‖b‖

Ψ
≡ K0. (2.14)

This inequality implies that the operator A maps [k0,K0] into itself.
Furthermore, A is a continuous operator on [k0,K0]. Indeed, let y1, y2 ∈ [k0,K0] and uy1, uy2

be solutions to problem (0.2), (0.3) with y1 and y2 instead of k, respectively. In accordance with
the definition of the operator A, we have

A(y1) −A(y2) = Ψ−1 (g(uy1 − uy2), b) . (2.15)

On the other hand, the difference w̄ = uy1 − uy2 obeys equation

y1M(ψ(uy1) − ψ(uy2)) + gw̄ = (y1 − y2)Mψ(uy2) (2.16)

and the boundary condition (uy1 − uy2)|∂Ω = 0. Multiplying (2.16) by ψ(uy1)−ψ(uy2) in terms
of the inner product of L2(Ω) and integrating by parts in the first term of the resulting equation
yields

y1
〈

M(ψ(uy1) − ψ(uy2)), ψ(uy1) − ψ(uy2)
〉

1
+ (gw̄, ψ(uy1) − ψ(uy2)) =

= −(y1 − y2)
〈

Mψ(uy2), ψ(uy1) − ψ(uy2)
〉

1
. (2.17)

The second term of the left side of (2.17) is nonnegative by the assumption (1.4). Multiplying
(0.3) for uy2 by ψa = ψ(uy2) − ψ(a) in terms of the inner product of L2(Ω) and integrating by
parts in the first term one can obtain

y2
〈

Mψ(uy2), ψ(uy2)
〉

M
+ (g(uy2 − a), ψa) = y2

〈

Mψ(uy2), ψ(a)
〉

M
+ (f − ga, ψa)

from where in view of (1.4), (1.9) and the Cauchy inequality it follows that

〈

Mψ(uy2), ψ(uy2)
〉

M
6

〈

Mψ(a), ψ(a)
〉

M
+
c20mes2/nΩ

y2
2m1

‖ga− f‖2. (2.18)

The right-hand side of (2.17) can be estimated with the help of (2.5) and (2.18).

|y1 − y2|
∣

∣

〈

Mψ(uy2), ψ(uy1) − ψ(uy2)
〉

1

∣

∣ 6
y1
2

〈

M(ψ(uy1) − ψ(uy2)), ψ(uy1) − ψ(uy2)
〉

1
+

+
[

〈

Mψ(a), ψ(a)
〉

M
+
c20mes2/nΩ

y2
2m1

‖ga− f‖2
] |y1 − y2|2

2y1
. (2.19)
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Then, by (2.5), (2.18) and (2.19), the equality (2.17) yields

y1
〈

M(ψ(uy1) − ψ(uy2)), ψ(uy1) − ψ(uy2)
〉

1
6

[

〈

Mψ(a), ψ(a)
〉

M

+
c20mes2/nΩ

k2
0m1

‖ga− f‖2
] |y1 − y2|2

y1
≡ C4|y2 − y1|2. (2.20)

Next, multiplying (2.16) by b in terms of the inner product of L2(Ω) and integrating by parts
with the use of the fact that

∫

∂Ω

∂(y1ψ(uy1) − y2ψ(uy2))

∂N
ωds = 0, (2.21)

we obtain

(

g(uy1
− uy2

), b
)

= −y1
〈

M(ψ(uy1) − ψ(uy2)), b
〉

M
− (y1 − y2)

〈

Mψ(uy2), b
〉

M
,

whence, by (2.18) and (2.20),

|
(

g(uy1
− uy2

), b
)

| 6

[

y1
〈

M(ψ(uy1) − ψ(uy2)), ψ(uy1) − ψ(uy2)
〉1/2

M
+

+|y1 − y2|
〈

Mψ(uy2), ψ(uy2)
〉1/2

M

]

〈

Mb, b
〉1/2

M
6 C5|y1 − y2|. (2.22)

Joining (3.15) and (2.22) we are led to the inequality

|A(y1) −A(y2)| 6
C5

Ψ
|y1 − y2|

proving the continuity of A on [k0,K0]. By Brouwer’s theorem, equation (2.11) has a solution
k ∈ [k0,K0]. This in turn implies the existence of the solution {u(x), k} of problem (0.2)–(0.4).
The solution satisfies (2.5), (2.13), (2.14). Moreover, by Lemma 1.1 the estimates (1.8)–(1.12)
holds with k0 instead of k in the constants C1 and C2.

The only point remaining concerns the uniqueness of the solution. Let (u1, k1) and (u2, k2)
be two solutions of problem (0.2)–(0.4). By (0.2), (u1−u2)|∂Ω = 0. Subtracting (0.3) for (u2, k2)
from (0.3) for (u1, k1), we obtain

k1M(ψ(u1) − ψ(u2)) + gũ = −(k1 − k2)Mψ(u2). (2.23)

Multiplying this difference by ψ(u1)− ψ(u2) in terms of the inner product of L2(Ω), integrating
by parts and applying the arguments proving (2.20) to the resulting identity one can derive a
similar inequality. Namely,

〈

M(ψ(u1) − ψ(u2)), ψ(u1) − ψ(u2)
〉

1
6

6

[

〈

Mψ(a), ψ(a)
〉

M
+
c20mes2/nΩ

k2
0m1

‖ga− f‖2
] |k1 − k2|2

k2
1

. (2.24)

Furthermore, we multiply (2.23) by b in terms of the inner product of L2(Ω). Integrating by
parts and taking into account (2.21) for y1 = k1 and y2 = k2 we are lead to the identity

(

g(u1 − u2), b
)

= −k1

〈

M(ψ(u1) − ψ(u2)), b
〉

M
− (k1 − k2)

[〈

M(ψ(u2) − ψ(a), b
〉

M
+ Ψ

]

. (2.25)

Subtracting (2.9) for (u2, k2) from (2.9) for (u1, k1), we obtain

k1 − k2 = Ak1 −Ak2 =
(g(u1 − u2), b)

Ψ
. (2.26)
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Without loss of generality we can suppose that k1 > k2. Then (g(u1 −u2), b) > 0. Let us rewrite
(2.25) as

(

g(u1 − u2), b
)

+ Ψ(k1 − k2) =

= −
〈

k1M(ψ(u1) − ψ(u2)) + (k1 − k2)M(ψ(u2) − ψ(a), b
〉

M
. (2.27)

We can estimate the right term of (2.27) with the help of (1.8), (2.14), (2.24).

− k1

〈

M(ψ(u1) − ψ(u2)), b
〉

M
− (k1 − k2)

〈

M(ψ(u2) − ψ(a), b
〉

M
6

6 k1

〈

M(ψ(u1) − ψ(u2)), ψ(u1) − ψ(u2)
〉1/2

M

〈

Mb, b
〉1/2

M
+

+ (k1 − k2)
〈

M(ψ(u2) − ψ(a), ψ(u2) − ψ(a)
〉1/2

M

〈

Mb, b
〉1/2

M
6

6

[2c0Ψmes1/nΩ

Φm
1/2
1

‖ga− f‖ +
〈

Mψ(a), ψ(a)
〉1/2

M

]

〈

Mb, b
〉1/2

M
(k1 − k2). (2.28)

Thus, (2.26)–(2.28) lead to the inequality

Ak1 −Ak2 6
1

2

[2c0mes1/nΩ

Φm
1/2
1

‖ga− f‖ + Ψ−1
〈

Mψ(a), ψ(a)
〉1/2

M

]

〈

Mb, b
〉1/2

M
(k1 − k2)

proving the contractibility of the operator A by (2.6) and (2.7), from which and (2.26) it follows
that k1 − k2 = 0 and in view of (1.4), (2.24) u1 − u2 = 0 for almost all x ∈ Ω. 2

The condition ψ(u) > c|u|p for p > 0 provides that u ∈ L2p(Ω) and ψ(u) ∈ W 2
2 (Ω). This

condition can be ignored under additional assumptions on f , β and ψ.

Theorem 2.2. Let the assumptions I–III and the hypotheses (i) and (ii) of Theorem 3.1 be
fulfilled. Let also β ∈ L∞(Ω), f > 0 and β > ρ0 = min{0, ρ∗} for almost all x ∈ ∂Ω where a real
number ρ∗ is such that ψ(ρ∗) = 0. Then the problem (0.2), (0.3), (0.4) has a solution (u(x), k).
Moreover, u(x) ∈ L∞(Ω) and

ρ0 6 u(x) 6 a(x) (2.29)

for almost all x ∈ Ω. If in addition g ≡ 0 or the inequalities (2.6) and (2.7) are valid, then the
solution of the problem (0.2), (0.3), (0.4) is unique.

Proof. The proof of the theorem repeats the proof of Theorem 3.1 almost at all. We need only
establish (2.29) and show that the solution of the direct problem (0.2), (0.3) belongs to W for
every k > 0 because in the hypotheses of the theorem this fact is not evidenced by Lemma 2.1.

We first note that by Lemma 2.1 the direct problem (0.2), (0.3) has a unique solution u and
ψ(u) ∈W 1

2 (Ω) for every k > 0. By Lemma 2.2 the solution satisfy the right inequality of (2.29).
Moreover, by the maximum principle for linear elliptic equations, ψ(a) > ψ(ρ0) and hence a > ρ0

for almost all x ∈ Ω. In order to prove the left part of (2.29) we define the function

ū =

{

u u < ρ0,
ρ0 u > ρ0

and multiply (0.3) by h̄ = ψ(ū) − ψ(ρ0) in terms of the inner product of L2(Ω). Integrating by
parts in the first term of the resulting identity gives

k
〈

Mh̄, h̄
〉

M
+

∫

Ω

{

k mψ(ρ0) + gū− f
}

h̄ dx = 0.
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In the hypotheses of the theorem the second term is nonnegative. Therefore, by (1.3), the last
equality implies ∇h̄ = 0 from which we conclude that h̄ = 0 for almost all x ∈ Ω because
h̄|∂Ω = 0. In view of monotonicity of ψ this means that u > ρ0 for almost all x ∈ Ω.

As mentioned above, if β ∈ L∞(∂Ω), then ψ(a) ∈ L∞(Ω) by the continuity of ψ and Theo-
rem 13.1 of [9, Chapter 3]. In the hypotheses of the theorem this means that a ∈ L∞(Ω). Hence
u ∈ L∞(Ω) and ‖u‖L∞(Ω) 6 max{|ρ0|, ‖a‖L∞(Ω)} in view of (2.29). Repeating the arguments
led to (1.12) one can obtain the inequality

‖Mψ(u)‖ 6

√
2

k

[

‖g‖2
C(Ω)

max{|ρ0|2, ‖a‖2
L∞(Ω)}mes2Ω + ‖f‖2

]1/2

≡ C ′′

2 .

By (1.8), (1.9) and Theorem 5.1 of [11, Chapter 2] the last inequality implies

‖ψ(u)‖2 6 c(C ′′

2 + C1) + ‖ψ(a)‖2(c+ 1),

which proves that the solution u belongs to W . 2

Certain inverse problems can be reduced to the problem (0.2)–(0.4). This allows to establish
the existence and uniqueness theorems for such problems with the help of Theorems 2.1 and 2.2.
In particular, the problem of the identification of the constant coefficient ν in equation

−νdiv(M(x)∇ψ1(v)) + g(x)ψ2(v) = f(x) (2.30)

with the boundary condition v|∂Ω = µ(x) and the condition of overdetermination

ν

∫

∂Ω

∂ψ1(v)

∂N
ω ds = ϕ1

are reduced to the problem (0.2)–(0.4) if the function ψ2(ρ) is an injection in (−∞,+∞). Indeed,
we can define a function u = ψ2(v) and rewrite this problem as (0.2)–(0.4) with k = ν, ψ(ρ) =
ψ1(ψ

−1
2 (ρ)), β = ψ2(µ) and ϕ = ϕ1.

The inverse problem (0.2), (0.3) with the condition of overdetermination given only on a part
Γ of the boundary ∂Ω, that is

k

∫

Γ

∂ψ(u)

∂N
ω ds = ϕ, (2.31)

can also be reduced to the problem (0.2), (0.3), (0.4). If the function ω ∈W
3/2
2 (Γ) is finite on Γ

and suppω ⊂ Γ then one can extend ω into ∂Ω setting ω = 0 in ∂Ω \Γ and consider the integral
in (2.31) over the whole boundary ∂Ω. In this case Theorem 2.1 is formulated as follows.

Theorem 2.3. Let the assumptions I–III and (1.5) be fulfilled, f ∈ L2(Ω), ψ(β) ∈ W
3/2
2 (∂Ω),

ω(x) ∈ W
3/2
2 (Γ), g(x) ∈ C(Ω). Let also ω(x) be nonnegative and finite on Γ, suppω ⊂ Γ,

ω(x) = 0 on ∂Ω \ Γ and (2.1)–(2.4) hold. Then the problem (0.2), (0.3), (2.31) has a solution
(u(x), k). Moreover, u(x) satisfies (2.5) for almost all x ∈ Ω. If in addition g ≡ 0 or (2.6), (2.7)
are fulfilled, then the solution of the problem (0.2), (0.3), (2.31) is unique.

Theorem 2.2 can be reformulate for the problem (0.2), (0.3), (2.31) in a similar manner.

Theorem 2.4. Let the assumptions I–III be fulfilled, f ∈ L2(Ω), ψ(β) ∈ W
3/2
2 (∂Ω), ω(x) ∈

W
3/2
2 (Γ), g(x) ∈ C(Ω), β ∈ L∞(Ω). Let also (2.1)–(2.4) hold, f > 0 for almost all x ∈ Ω, the

function ω(x) be nonnegative and finite on Γ, suppω ⊂ Γ, ω(x) = 0 on ∂Ω \ Γ and β > ρ0 for
almost all x ∈ ∂Ω. Then the problem (0.2), (0.3), (2.31) has a solution (u(x), k). Moreover,
u(x) ∈ L∞(Ω) and (2.29) is fulfilled for almost all x ∈ Ω. If in addition g ≡ 0 or the inequalities
(2.6) and (2.7) are valid, then the solution of the problem (0.2), (0.3), (2.31) is unique.
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3. Examples and comments

As mentioned above the interest to the identification of coefficients in the elliptic equations,
among them (0.3), is due to its extensive applications. Certain examples of such problems were
considered in [6]. In particular, the special case of (0.3)

−kdiv(M(x)|u|p−2∇u) = 0 (3.1)

describes the steady-state isothermal gas filtration [13] where p = 3, M(x) = (mµ1)
−1

E, u is the
pressure of a liquid in the pores, µ1 is the viscosity of liquid, k and m are the average permeability
and the porosity of the rock. In this case ψ(ρ) = (p− 1)−1|ρ|p−2ρ and g ≡ 0. The equation (4.1)
satisfies the assumptions I–III. If the other hypotheses of Theorem 2.1 coincide, then the inverse
problem (3.1), (0.2), (0.4) has a unique solution.

In [14] the physical model of the non-equilibrium effects in a simultaneous flow of immiscible
fluids in porous media is presented. For the steady-state flow with capillary counter-current
imbibition the basic equation for the effective water saturation assumes the form

k∆ψ(u) = 0 (3.2)

where u is the actual water saturation, the coefficient k depends on the air permeability of the
porous medium, its porosity (the relative volume occupied by the pores), the surface tension and
a (conventional) contact angle at the triple water-oil-solid boundary,

ψ(ρ) = −
∫ ρ

0

f1(s)f2(s)

f1(s) + f2(s)
J ′(s)ds.

The dimensionless nonnegative quantities f1 and f2 are called the relative permeabilities and
satisfy the inequality 0 6 fi 6 1. The function Leverett J is the dimensionless capillary pressure.
f1(s) is a monotonic non-decreasing smooth function. The function f2(s) is a monotonic non-
increasing smooth one. Finally, the nonnegative function J(u) monotonically decreases. The
function ψ is continuous and strictly increases on (−∞,+∞). Therefore under the hypotheses
of Theorem 3.2 the inverse problem (0.2), (0.4), (3.2) has a unique solution (u(x), k).

Some kinds of equations (2.30) are involved in modeling the electric fields of semiconductors.
In the absence of an external electric field the stationary nonlinear dissipative equation for the
potential u of the self-consistent electric field of a semiconductor takes the form [15]

−k∆(u+
ε

2
u2 +

ε2

6
u3) + λ|u|qu = 0

where the positive parameters k and λ depends on the electric susceptibility of the semiconductor,
the parameter ε > 0 depends on the temperature of free electrons, q > 0. These equations can
be reduced to (0.3) with the appropriate function ψ(ρ) satisfying the assumption IV.

The last point of our considerations is the stability of the solution to (0.2), (0.3), (0.4) with
respect to ϕ. One can prove it much as the contractibility of the operator A was established in
Theorem 3.1.
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Об одной обратной задаче для квазилинейного
эллиптического уравнения

Анна Ш. Любанова

Исследуется задача идентификации неизвестного постоянного коэффициента в старшем члене

уравнения с частными производными −kMψ(u) + g(x)u = f(x) при граничном условии Дирихле.

Здесь ψ(u) – нелинейная возрастающая функция от u, M – линейный самосопряженный эллипти-

ческий оператор второго порядка. Коэффициент k восстанавливается по дополнительным инте-

гральным данным на границе. Доказывается существование и единственность решения обратной

задачи, включающего функцию u и положительное действительное число k.

Ключевые слова: обратная задача, краевая задача, эллиптическое уравнение второго порядка, тео-

рема существования и единственности, фильтрация.
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