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This paper deals with 2d Ising model in the scope of cluster perturbation theory. Ising model is defined

on a two-dimensional square lattice, the amount of nearest neighbors z=4. Lattice is divided into clusters

of a given size and a complete set of energy eigenvalues and eigenvectors of the cluster is defined by the

diagonalization method. On the basis of this, Hubbard operators are constructed and Green function is

calculated, taking into account intercluster interactions according to perturbation theory, it allows us to

obtain the dependence of the magnetization on the temperature in the Hubbard-I approximation. Obtained

results are compared with the exact solution of the two-dimensional Ising model.
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Introduction

As is known, Ising model is one of the basic model of the statistical physics and is used for

ferromagnets description. The presence of and exact solution in one- and two- dimensional cases

is one of the main advantages of this model, it allows us to check numerical methods of solving

statistical physics problems using it.

In the two-dimensional case Ising model was exactly solved by Onsager in 1944 [1]. Expression

for spontaneous magnetization was obtained by Onsager in 1949 and the full derivation was

represented by Yang in 1952 [2]. In the isotropic case the spontaneous magnetization has the

following form

M =

(

1 − sinh−4

(

J

kT

))1/8

,

where k is for Boltzmann constant. The value of the critical exponent β = 1/8, and the critical

temperature Tc =
J

k

1

ln(1 +
√

2)
≈ 1.135

J

k
.

In the case of mean-field theory (In this case it is corresponding to Hubbard-I decoupling)

results correspond to exact solution badly. The amount of critical exponent β and critical

temperature are, respectively β = 1/2 and Tc = 2.
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Over last two decades much attention is paid to the cluster approach during lattice models

study [3]. In this paper Cluster Perturbation Theory (CPT), previously used in the solution of

Hubbard model [4]. In this approach the representation of X-operators is used [5], on the basis of

which the Hubbard Green’s function is constructed and the average amount of spin is calculated.

1. Method

The Hamiltonian of the Ising model

H = −1

2

∑

i,j

JijS
z
i Sz

j − h
∑

i

Sz
i ,

where Jij = J for the nearest neighbours and is zero for non-nearest neighbours, h is the external

field, Sz
i is spin projection. By dividing the lattice into clusters (Fig. 1) and rearranging the terms

so as to separate intra-cluster and inter-cluster interaction, we get:

H =
∑

i

H0(i) +
∑

ij

H1(i, j),

where H0(i) is the intra-cluster part of the i-th cluster. This term is exactly diagonalized and on

the basis of its eigenvectors Hubbard operators are constructed. H1(i, j) are interactions between

cluster i and j.

Fig. 1. Cluster 2x2 (left) and cluster 3x2 (right)

The Hubbard operators used in the paper (X-operators) are described in more detail in [5].

Operators S+, S− and Sz can be represented by X-single-site operators, such as

S+ = X+−

f ,

S− = X−+

f ,

Sz =
1

2

(

X++

f − X−−

f

)

.

In general operator Xpq is a matrix whose elements are equal to zero, except for one, standing

on the intersection of the p and q-line and equal to 1

Xpq = |p >< q|.
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The action of such operator defines the system transition from q state to state p. Thus there

are 2N state (N is for amount of nodes in the cluster), each of them corresponds to one state of

cluster (2 × 2 cluster for example ):

|1 >= | ↑, ↑, ↑, ↑>

|2 >=
1

2
(| ↓, ↑, ↑, ↑> +| ↑, ↓, ↑, ↑> +| ↑, ↑, ↓, ↑> +| ↑, ↑, ↑, ↓>)

...

|16 >= | ↓, ↓, ↓, ↓> .

In this representation spin operators in the cluster f on the atom n = 1, ..., N have the following

form:

Sz
fn =

∑

p

γpnXpp
f ,

where the matrix element γpn are calculated directly, knowing the exact states of the cluster.

γpn =< p|Sz
n|p > .

From the point of view of Hubbard operators the new Hamiltonian has the following form:

H =
∑

f,p

ǫpX
pp
f +

∑

fg

∑

pq

∑

nm

γpnγqmJpq
fgXpp

f Xqq
g , (1)

where ǫp are eigenvalues energy of the cluster, Jpq
fg are interaction energy between clusters f and

g in the states p and q respectively.

Two-time Green functions are constructed to get the magnetization:

G(t, t′) =≪ A(t)|B(t′) ≫= θ(t − t′) < [A(t), B(t′)] >,

where θ(t− t′) is theta-function (Heviside function). The equation for the function is written as:

E ≪ Xmn
f |Xrs

g ≫=< [Xmn
f ,Xrs

g ] > + ≪ [Xmn
f ,H]|Xrs

g ≫ . (2)

Green function, which stands in the right part is more complex and has the form ≪
Xmn

f Xpq
h |Xrs

g ≫. It is necessary to record the same equation for this functions for exact solution,

which in turn leads to a chain of coupled equations. In this paper approximation Hubbard-I,

which is to facilitate the Green function, is used to disengaged the chain:

≪ Xmn
f Xpp

h |Xrs
g ≫=< Xpp

h >≪ Xmn
f |Xrs

g ≫, (3)

which allows to close the chain of equations. It should be noted that Hubbard-I approxima-

tion corresponds to the mean-field approximation for the Ising model. In non-cluster case, the

obtained solution correspond to well-known solution of the theory of Landau.

Explicitly the Green function obtained from the equation (2), with (1) and (3), has the

following form:

≪ Xpq
f |Xqp

g ≫=
< Xpp > − < Xqq >

E + ǫp − ǫq − 2J
∑

j,m

∑

rs γmr < Xmm >
(

γqsJ
mq
fj − γpsJ

mp
fj

) .

Using the spectral theorem, we will find the occupation numbers < Xpp
f >:
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< Xpq
f Xqp

f >=< Xpp
f >= lim

δ→0

1

2N

∑

q

∫

1

eβE − 1

(

i

π

)

Im
(

≪ Xpq
f |Xqp

g ≫E+iδ

)

dE,

where β =
1

kT
. This we obtain the system of 2N equations, by solving which we will obtain the

occupation numbers.

Because we obtain 16 equations even for 2×2 clusters, their solution is carried out numerically,

after taking normalization conditions into account:

∑

p

Xpp
f = 1,

average amount of spin(magnetization) is calculated:

< Sz >=
1

N

∑

p,j

γpj < Xpp
f > .

2. Critical temperature and critical exponent β

We have considered numerical solution of the model for a number of square clusters n × n

for n2 = N up to N = 16. Normal mean-field approximation is obtain for N=1. The values of

magnetization obtained as a result of calculation are presented in Fig. 2.

N=16 N=9 N=4

0

0.25

0.5<Sz>

MF

exact

T/J

Fig. 2. The average amount of spin projection Sz in dependence on the temperature and cluster
size. Blue color indicates the solution in the mean-field approximation, red color is the exact
solution, black color is the solution for different values of the cluster size

The obtained values of critical temperature are shown in Tab. 1.

Table 1.

N 1 (MF) 4 6 9 12 16 20 25* 30* exact
kTc/J 2 1.596 1.451 1.347 1.259 1.197 1.162 1.15 1.145 1.135

* is approximated value.
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Fig. 3. The dependence of the critical temperature on the cluster size. The blue line corresponds
to the approximated curved line, the "+"corresponds to the calculated values, the black direct
line corresponds to the precise value.

The dependence of the critical temperature on the cluster size can be approximated by the

following function:
k(Tc(N) − Tc(exact))

J
= e−0.185N .

The obtained values of critical exponent β do not depend on the size of cluster and are equal

to 1/2, at the same time index β = 1/8 gives the exact solution. Function β(T ) is introduced

for the behaviour of magnetization curve analysis

β(T ) =
d(ln < Sz >)

d(ln(k(Tc − T )/J))
.

Also in should be noted that:

lim
T→Tc

d(ln < Sz >)

d(ln(k(Tc − T )/J))
= β.

The values of β(T ) obtained as a result of calculation are presented in Fig. 4.

Fig. 4. Diagram of the dependence of the function β(T ) on the size of cluster N
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The graphic shows that if N is increasing in the temperature range T < Tc the curve f(T )

approaches to exact solution, but at the transition point the exponent β would be equal to 1/2

for any finite size of the cluster. This is due to the fact that the correlations length of Tc tends to

infinity, while this method is to the correlations length equivalent to the size of the cluster. Thus,

at the phase transition point the size of cluster does not matter, since it is infinitely smaller than

the correlations length.

Conclusion

In conclusion of this paper the advantage of the calculation speed of this method with respect

to the Monte-Carlo Method, which is used for calculation of magnetization in the Ising mode,

should be noted. The time of calculation in the Monte-Carlo method is proportional to the size

of cluster as:

tMC ∼ N,

while the time of calculation the cluster perturbation theory is

tCPT ∼ 2N .

On the other hand, the mistake in the calculation of the critical temperature:

kδTMC

J
∼ 1√

N
,

kδTCPT

J
= e−0.185N .

Thus:

tMC ∼ 1

(kδTMC/J)2
,

tCPT ∼ 1

(kδTCPT /J)3.747
.

Calculations show, that for the same accuracy, which corresponds to 4 × 4 for CPT and

300× 300 for MC time ratio of calculating by method of cluster perturbation theory and Monte-

Carlo method are respectively equal
tMC

tCPT
≃ 10.

This shows that for small cluster sizes CPT is more effective than Monte-Carlo theory, which

provides a speed advantage only for big cluster sizes.

Our comparison of the exact and CPT solutions has revealed that for a lattice of 4×4 clusters

the deviation of thermodynamics from the exact occurs at T/Tc > 0.5, while for standard mean

field theory it starts (as can be seen from the fig.3) at T/Tc > 0.2. Obviously the reason of

better behavior of CPT over standard mean-field approach is exact accounting for the short

range magnetic order inside the cluster.

The authors are grateful to Sergey V.Nikolaev for useful discussions and President of Russia,

grant nsh-2886.2014.2.
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Кластерная теория возмущений для двумерной модели
Изинга

Илья Д. Иванцов

Сергей Г. Овчинников

В настоящей работе проводится исследование двумерной модели Изинга в рамках кластерной

теории возмущений. Модель Изинга задана на двумерной квадратной решетке с числом ближай-

ших соседей z=4. Решетка разбивается на кластеры заданного размера и методом точной диа-

гонализации определяется полный набор собственных значений энергии и собственных векторов

кластера. На этом базисе строятся операторы Хаббарда и вычисляется функция Грина с учетом

межкластерных взаимодействий по теории возмущений, позволяющая получить зависимость

намагниченности от температуры в приближении Хаббард-I. Полученные результаты сравни-

ваются с точным решением двумерной модели Изинга.

Ключевые слова: модель Изинга, кластерная теория возмущений, Х-операторы.
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