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Introduction

The question of the integral representation for the zeta-function associated with some entire

function was studied by V.B. Lidskii and V.A. Sadovnichii in [1], where an entire function f (z)

of a certain type was considered.

In [2] A.M.Kytmanov and S.G.Myslivets introduced the concept of the zeta-function as-

sociated with a system of meromorphic functions f = (f1, . . . , fn) in C
n. Using the residue

theory, these authors gave an integral representation for the zeta-function, but the system of

functions f1, . . . , fn was subject to rigid constraints.

Let f (z) be an entire function of order ρ with zeros z1, z2, . . ., such that f (0) 6= 0. Then,

according to Hadamard’s theorem on factorization (see, for example, [3, Chapter VIII, S. 8.2.4]),

the function f (z) is represented in the form

f (z) = eQ(z)P (z) ,

where P (z) is the canonical product constructed by the zero set of the function f (z), and Q (z)

is a polynomial with the degree not higher than ρ. In this case, the canonical product P (z) has

the form

P (z) =

∞
∏

n=1

E

(

z

zn
, p

)

=

∞
∏

n=1

(

1 − z

zn

)

e
z

zn
+( z

zn
)
2
/2+...+( z

zn
)

p
/p
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and p 6 ρ.

Thus, under f (z) 6= 0 we have locally (in accordance with [3, Chapter VIII, S. 8.2.4])

ln f (z) = ln
(

eQ(z)P (z)
)

= ln eQ(z) + lnP (z) =

= Q (z) + ln

[

∞
∏

n=1

(

1 − z

zn

)

e
z

zn
+( z

zn
)
2
/2+...+( z

zn
)

p
/p

]

=

= Q (z) +
∞
∑

n=1

ln

[(

1 − z

zn

)

e
z

zn
+( z

zn
)
2
/2+...+( z

zn
)

p
/p

]

=

= Q (z) +

∞
∑

n=1

[

ln

(

1 − z

zn

)

+ ln e
z

zn
+( z

zn
)
2
/2+...+( z

zn
)

p
/p

]

=

= Q (z) +

∞
∑

n=1

[

ln

(

1 − z

zn

)

+
z

zn
+

(

z

zn

)2

/2 + . . . +

(

z

zn

)p

/p

]

.

Differentiate this relation once. We obtain

f ′ (z)

f (z)
= Q′ (z) +

∞
∑

n=1

[

1

1 − z
zn

·
(

− 1

zn

)

+
1

zn
+

z

zn
· 1

zn
+ . . . +

(

z

zn

)p−1

· 1

zn

]

=

= Q′ (z) +

∞
∑

n=1

[ −1

zn − z
+

1

zn
+

z

z2
n

+ . . . +
zp−1

zp
n

]

.

We rewrite the expression under the summation sign to get

1

zn
+

z

z2
n

+ . . . +
zp−1

zp
n

=
1

zn
·
1 −

(

z
zn

)p

1 − z
zn

=
1

zn
·
1 −

(

z
zn

)p

zn − z
· zn =

1 −
(

z
zn

)p

zn − z
,

−1

zn − z
+

1

zn
+

z

z2
n

+ . . . +
zp−1

zp
n

=
−1

zn − z
+

1 −
(

z
zn

)p

zn − z
=

−
(

z
zn

)p

zn − z
= − zp

(zn − z) zp
n
.

Thus
f ′ (z)

f (z)
= Q′ (z) −

∞
∑

n=1

zp

(zn − z) zp
n
.

The resulting series converges absolutely and locally uniformly for z 6= zn since p 6 ρ1 6 ρ

([3, Chapter VIII, S. 8.2.3]). Here ρ1 is the index of convergence of zeros.

Recall ([3, Chapter VIII, S. 8.2.2]) that the lower boundary of positive numbers α for which

the series
∑ |zn|−α

converges is called the index of convergence of zeros. Denote it by ρ1.

Henceforth we assume |z1| 6 |z2| 6 . . . 6 |zn| 6 . . .. Let some number n0 of zeros of the

function f (z) lies inside the circle |z| = R, and the rest lies out. Then

∞
∑

n=1

zp

(zn − z) zp
n

=

n0
∑

n=1

zp

(zn − z) zp
n

+

∞
∑

n=n0+1

zp

(zn − z) zp
n
.

Suppose that for the zeros of the function f (z) the following estimates hold:

|z − zn| > δ |z| , when |zn| < |z| , (1)

|z − zn| > δ |zn| , when |zn| > |z| , (2)
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where for convenience only one constant δ > 0 is introduced. We discuss the conditions under

which the estimates (1) and (2) would hold true below.

Estimate the first sum using (1) and the fact that
1

|z| <
1

|zn|
. We have

∣

∣

∣

∣

∣

n0
∑

n=1

zp

(zn − z) zp
n

∣

∣

∣

∣

∣

6

n0
∑

n=1

∣

∣

∣

∣

zp

(zn − z) zp
n

∣

∣

∣

∣

6 |z|p
n0
∑

n=1

1

|zn − z| |zn|p
< |z|p

n0
∑

n=1

1

δ |z| |zn|p
<

<
|z|p
δ

n0
∑

n=1

1

|zn|p+1 < |z|p · ε1.

Estimate the second sum using (2). We get
∣

∣

∣

∣

∣

∞
∑

n=n0+1

zp

(zn − z) zp
n

∣

∣

∣

∣

∣

6

∞
∑

n=n0+1

∣

∣

∣

∣

zp

(zn − z) zp
n

∣

∣

∣

∣

6 |z|p
∞
∑

n=n0+1

1

|zn − z| |zn|p
< |z|p

∞
∑

n=n0+1

1

δ |zn| |zn|p
=

=
|z|p
δ

∞
∑

n=n0+1

1

|zn|p+1 < |z|p · ε2.

Let us now discuss the conditions (1) and (2). Let

|z − zn| > |z| − |zn| > δ |z| ,

i. e.

|z| − δ |z| > |zn| , |z| >
|zn|
1 − δ

.

Setting z = zn+1, we obtain the following system of inequalities:

|zn+1| >
|zn|
1 − δ

>
1

1 − δ
· |zn−1|

1 − δ
=

|zn−1|
(1 − δ)

2 > . . . >
|z1|

(1 − δ)
n ,

1

|zn+1|
<

(1 − δ)
n

|z1|
.

Then

∞
∑

n=1

1

|zn+1|
<

1

|z1|

∞
∑

n=1

(1 − δ)
n

=
1

|z1|
· S,

∞
∑

n=1

1

|zn+1|α
<

1

|z1|α
∞
∑

n=1

(

(1 − δ)
α)n

=
1

|z1|α
· Sα, α > 0,

where S and Sα denote the corresponding sums of the series. Thus, we have shown that the

conditions (1) and (2) would be true for an entire function with ρ1 = 0.

In what follows we consider entire functions f (z) of the zero order with the index of conver-

gence of zeros ρ1 = 0. The conditions (1) and (2) hold for the zeros of such functions.

Given the above calculations and reasoning, as well as the fact that p 6 ρ1 6 ρ (see [3,

Chapter VIII, S. 8.2.3]), we obtain

f ′ (z)

f (z)
=

∞
∑

n=1

1

z − zn
(3)

if z 6= zn.
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1. The first integral representation

Let f (z) be an entire function of the zero order in C. Consider the equation

f (z) = 0. (4)

Denote by Nf = f−1 (0) the set of all roots of (4) with the multiplicity counted. The number of

zeros is at most countable.

Further assume that the following asymptotic representation holds true on a positive part of

the real axis (ν0 is a non-negative integer)

f ′ (z)

f (z)
∼

ν0
∑

ν=0

ων

zν
, z → +∞, i. e.

f ′ (z)

f (z)
−

ν0
∑

ν=0

ων

zν
= O

(

1

|z|ν0+1

)

. (5)

If ν0 = 0 then
f ′ (z)

f (z)
− ω0 = O

(

1

|z|

)

. (6)

Our goal is to obtain an integral representation for the zeta-function ζf (s) of (4) that was

defined in [2] as

ζf (s) =
∑

a∈Nf

(−a)
−s

,

where s ∈ C. We choose the minus sign in the definition of the zeta-function only for conve-

nience in writing the integral formulas; below we explain what value is taken for the multivalued

function (−z)
−s

.

Let z = x + iy. Suppose that the function f is not equal to zero at any point of R+ := {z ∈
C : x > 0, y = 0}. This means that Nf ∩ R+ = ∅.

Consider a domain D ⊂ C of the form

D = {z ∈ C : r < |z| < R} \ {z ∈ C : r < Re z < R, Im z = 0}

and 0 < r < R.

Observe that D is a simply connected domain. Its boundary γ = ∂D consists of the in-

tervals [r,R] on the real axis, the circle SR of radius R centered at the origin with positive

(counterclockwise) orientation, the interval [R, r] on R obtained from [r,R] by the change of

orientation, and the circle −Sr obtained from Sr by the change of orientation.

Choose the radii r and R so that γ ∩ Nf = ∅.

Consider the integral

I (s) =
1

2πi

∫

γ

(−z)
−s f ′ (z)

f (z)
dz. (7)

The functions (−z)
−s

= e−s ln(−z) are holomorphic in D, where ln ζ denotes the principal

branch of the logarithm, i. e. the holomorphic branch ln ζ on C \ {ζ ∈ C : Re ζ 6 0, Im ζ = 0}
equal to zero for ζ = 1. It is obvious that I (s) is an entire function in s ∈ C.

Note that I (s) can be written in the form (in accordance with the logarithmic residue theo-

rem)

I (s) =
1

2πi

∫

γ

(−z)
−s f ′ (z)

f (z)
dz =

1

2πi

∫

γ

(−z)
−s df

f
=

∑

a∈Nf∩D

(−a)
−s

.
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Thus

I (s) =
∑

a∈Nf∩D

(−a)
−s

.

Choose a sequence Rk so that SRk
does not contain the zeros of f .

Lemma 1. The integral

∫

SRk

(−z)
−s f ′ (z)

f (z)
dz → 0 as Rk → +∞ and Re s > 1.

Proof. We have

∣

∣

∣
(−z)

−s
∣

∣

∣
=
∣

∣

∣
e−s(ln Rk+i(ϕ−π))

∣

∣

∣
= e−Re s ln Rk+Im s(ϕ−π) = O

(

R−Re s
k

)

,

where ϕ = arg z.

Then the estimates hold for the module of the integral

∣

∣

∣

∣

∣

∣

∣

∫

SRk

(−z)
−s f ′ (z)

f (z)
dz

∣

∣

∣

∣

∣

∣

∣

6

∫

SRk

∣

∣

∣
(−z)

−s
∣

∣

∣

∣

∣

∣

∣

f ′ (z)

f (z)

∣

∣

∣

∣

|dz| 6 R−Re s
k ·C ·Rk = C ·R1−Re s

k =
C

RRe s−1
k

→ 0,

as Rk → +∞ and Re s > 1. �

Denote by Γ′

0 = (∞, r] ∪ [r,∞), Γ0 = Sr ∪ Γ′

0. Now, taking R = Rk and letting k tend to

infinity in (7), we obtain

I (s) =
1

2πi

∫

Γ0

(−z)
−s f ′ (z)

f (z)
dz.

Lemma 2. The integral I (s) can be continued analytically into the half plane Re s > −ν0 when

the condition (5) holds.

Proof. We argue as in [1]. For the proof of this lemma we write the integral I (s) as the sum

of four parts:

I (s) =
1

2πi

∫

Sr

(−z)
−s f ′ (z)

f (z)
dz +

1

2πi

∫

Γ′

0

(−z)
−s

(

f ′ (z)

f (z)
−

ν0
∑

ν=0

ων

zν

)

dz+

+
1

2πi

∫

Γ0

(−z)
−s

ν0
∑

ν=0

ων

zν
dz − 1

2πi

∫

Sr

(−z)
−s

ν0
∑

ν=0

ων

zν
dz = I1 (s) + I2 (s) + I3 (s) + I4 (s) .

We easily see that I1 (s) and I4 (s) are entire functions in s, and I2 (s), in view of the asymp-

totic representation (5), can be continued analytically into Re s > −ν0. Finally, I3 (s) is zero

for Re s > 1 and so its analytic continuation is equal to zero in the whole plane. �

Suppose further that ν0 = 0. Then, by Lemma 2, I (s) = I1 (s)+I2 (s)+I4 (s) and for Re s < 1

(as in Lemma 1) the integrals I1 (s) and I4 (s) tend to zero when r → 0. Thus, we have
Corollary 1. For 0 < Re s < 1

ζf (s) =
1

2πi

∫

Γ′′

0

(

f ′ (z)

f (z)
− ω0

)

(−z)
−s

dz,

where Γ′′

0 = (∞, 0] ∪ [0,∞).

Consider the integrals over the intervals with opposite orientation. Since

(−z)
−s

=
(

−xe2πi
)−s

= e−2πis (−x)
−s

,
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we obtain

∫ 0

∞

(

f ′ (z)

f (z)
− ω0

)

(−z)
−s

dz =

∫ 0

∞

(

f ′ (x)

f (x)
− ω0

)

e−2πis (−x)
−s

dx =

= −e−2πis

∫

∞

0

(

f ′ (x)

f (x)
− ω0

)

(−x)
−s

dx.

Summing all integrals over the intervals, we obtain

∫

∞

0

(

f ′ (x)

f (x)
− ω0

)

(−x)
−s

dx − e−2πis

∫

∞

0

(

f ′ (x)

f (x)
− ω0

)

(−x)
−s

dx =

=
(

1 − e−2πis
)

∫

∞

0

(

f ′ (x)

f (x)
− ω0

)

(−x)
−s

dx.

By obvious calculations we have

1 − e−2πis = e−πis
(

eπis − e−πis
)

= e−πis2i
eiπs − e−iπs

2i
= e−πis2i sin πs = (−1)

−s
2i sin πs.

Summing all integrals over the intervals, we arrive at the integral

2i sin πs

∫

∞

0

(

f ′ (x)

f (x)
− ω0

)

x−s dx.

Summarizing the above, we obtain the integral representation for the zeta-function ζf (s) in

the strip 0 < Re s < 1.

Theorem 1.1 Let f (z) be an entire function of the zero order in C and satisfy the condition (6).
Suppose that 0 < Re s < 1. Then

ζf (s) =
sin πs

π

∫

∞

0

(

f ′ (x)

f (x)
− ω0

)

x−s dx,

where ω0 is the limit value of
f ′ (x)

f (x)
at infinity.

The method of proof shows that if the asymptotic condition (5) holds, we have the following

result.

Corollary 2. Suppose that the asymptotic condition (5) holds. Then for −ν0 < Re s < 1 the
following holds

ζf (s) =
sinπs

π

∫

∞

0

(

f ′ (x)

f (x)
−

ν0
∑

ν=0

ων

xν

)

x−s dx.

To conclude this section we compare the obtained integral representation with the integral

representation for the classical Riemann zeta-function ζ (s) (see, for example, [4, Chapter 2, S. 9])

in the strip 0 < Re s < 1. Namely,

ζ (s) = − sin πs

π

∫

∞

0

{

Γ′ (1 + x)

Γ (1 + x)
− lnx

}

x−s dx, 0 < Re s < 1.
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2. The second integral representation

Consider an entire function f (z) of order ρ. In this section we obtain another integral

representation for the zeta-function ζf (s) of the zeros zn of f that have the form

zn = −qn + isn, qn > 0. (8)

For this purpose we consider the integral

∫

∞

0

xs−1eznx dx, in which we make the change of

variables

zn · x = −y, x =
y

−zn
, dx =

1

−zn
dy.

Thus, by (8)

∫

∞

0

xs−1eznx dx =

∫

l

ys−1

(−zn)
s−1 e−y 1

(−zn)
dy =

1

(−zn)
s

∫

∞

0

ys−1e−y dy =
Γ (s)

(−zn)
s ,

where l is a ray (corresponding to the change of variables zn · x = −y) from the origin, and Γ (s)

is the Euler gamma-function defined by the formula

Γ (s) =

∫

∞

0

xs−1e−x dx.

Further, we consider the product

Γ (s) · ζf (s) = Γ (s)
∞
∑

n=1

(−zn)
−s

= Γ (s)
∞
∑

n=1

1

(−zn)
s =

∞
∑

n=1

Γ (s)

(−zn)
s =

∞
∑

n=1

∫

∞

0

xs−1eznx dx =

=

∫

∞

0

∞
∑

n=1

xs−1eznx dx =

∫

∞

0

xs−1
∞
∑

n=1

eznx dx.

Denoting

F (f, x) =

∞
∑

n=1

eznx, (9)

we obtain

Γ (s) · ζf (s) =

∫

∞

0

xs−1F (f, x) dx,

or

ζf (s) =
1

Γ (s)

∫

∞

0

xs−1F (f, x) dx.

It is necessary to justify the change of the order of summation and integration and explain

why the series (9) converges.

To prove that the series (9) is convergent we use the Cauchy criterion. Consider

|eznx| =
∣

∣

∣
e(−qn+isn)x

∣

∣

∣
=
∣

∣e−qnx · eisnx
∣

∣ =
∣

∣e−qnx
∣

∣ = e−qnx.

Then for the convergence of the series (9) it is necessary and sufficient that

lim
n→∞

n
√

e−qnx = lim
n→∞

e−
qnx

n = lim
n→∞

1

e
qnx

n

< 1,

i.e.

lim
n→∞

qn

n
> 0. (10)
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To justify the change of the order of summation and integration it is necessary to prove

the uniform convergence of the series
∞
∑

n=1
xs−1eznx on the set [0;+∞). We enumerate the ze-

ros z1, . . . , zn, . . . in the order of increasing absolute values of the real parts, i.e., q1 6 q2 6 . . . 6

qn 6 . . ., and let Re s = σ > 1. Consider the series of modules

∞
∑

n=1

∣

∣xs−1eznx
∣

∣ =

∞
∑

n=1

xσ−1e−qnx =

∞
∑

n=1

xσ−1e−q1xe(q1−qn)x = e−q1x
∞
∑

n=1

xσ−1e(q1−qn)x.

Consider the function gn (x) = xσ−1e(q1−qn)x and find its extremums. Consider the equation

g′n (x) = 0.

For root x0 of this equation we have the relation

σ − 1 + x (q1 − qn) = 0,

σ − 1 = x (qn − q1) ,

x0 =
σ − 1

qn − q1
.

It is easy to see that for x > x0 the function gn (x) is decreasing, and for 0 < x < x0 the

function gn (x) is increasing. Thus, the point x0 is a local maximum of the function gn (x).

Then

∞
∑

n=1

∣

∣xs−1eznx
∣

∣ = e−q1x
∞
∑

n=1

xσ−1e(q1−qn)x
6 e−q1x

∞
∑

n=1

(

σ − 1

qn − q1

)σ−1

e(q1−qn) σ−1

qn−q1 =

= e−q1x
∞
∑

n=1

(

σ − 1

qn − q1

)σ−1

e−(σ−1) = e−q1x
∞
∑

n=1

(

σ − 1

e

)σ−1(
1

qn − q1

)σ−1

=

= e−q1x

(

σ − 1

e

)σ−1 ∞
∑

n=1

(

1

qn − q1

)σ−1

.

For the uniform convergence of the series under study it is necessary that the se-

ries
∞
∑

n=1

(

1

qn − q1

)σ−1

converges. The convergence of this series is equivalent to the conver-

gence of the series
∞
∑

n=1

(

1

qn

)σ−1

. Thus, to change the order of summation and integration it is

necessary that

the series
∞
∑

n=1

(

1

qn

)σ−1

is convergent. (11)

We have proved the following result.

Theorem 2.1 Suppose that the conditions (10) and (11) are satisfied and Re s > 1. Then

ζf (s) =
1

Γ (s)

∫

∞

0

xs−1F (f, x) dx, (12)

where F (f, x) is defined by formula (9).
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Corollary 3. Suppose that the conditions of Theorem 2.1 are satisfied. Then for 0 < Re s < 1
the following formula holds

ζf (s) Γ (s) =

∫

∞

0

(

F (f, x) − 1

x

)

xs−1 dx,

where F (f, x) is defined by formula (9).

Proof. We write the expression (12) in the form

ζf (s) Γ (s) =

∫

∞

0

F (f, x) xs−1 dx =

∫ 1

0

(

F (f, x) − 1

x

)

xs−1dx+

∫ 1

0

1

x
xs−1dx+

∫

∞

1

F (f, x) xs−1dx.

In the last equation we calculate the second integral. We have

∫ 1

0

1

x
xs−1 dx =

∫ 1

0

xs−2 dx =
xs−1

s − 1

∣

∣

∣

∣

1

0

=
1

s − 1
,

since Re s > 1.

Thus, for Re s > 1 the following equalities hold

ζf (s) Γ (s) =

∫ 1

0

(

F (f, x) − 1

x

)

xs−1 dx +
1

s − 1
+

∫

∞

1

F (f, x) xs−1 dx.

According to the principle of analytic continuation, this formula holds for Re s > 0. Moreover,

for 0 < Re s < 1 we have

−
∫

∞

1

xs−1

x
dx = −

∫

∞

1

xs−2 dx = − xs−1

s − 1

∣

∣

∣

∣

∞

1

= − 1

s − 1
· 1

x1−s

∣

∣

∣

∣

∞

1

= − 1

s − 1
(0 − 1) =

1

s − 1
.

Hence we obtain

ζf (s) Γ (s) =

∫ 1

0

(

F (f, x) − 1

x

)

xs−1 dx −
∫

∞

1

xs−1

x
dx +

∫

∞

1

F (f, x) xs−1 dx.

Simplifying the expression, we obtain the statement of the corollary. �

In the conclusion of this section we give (see, for example, [4, Chapter 2, S. 4]) one more

integral representation for the classical Riemann zeta-function ζ (s). Namely,

ζ (s) =
1

Γ (s)

∫

∞

0

xs−1

ex − 1
dx, Re s > 1. (13)

If 0 < Re s < 1 the integral representation (13) can be written (see, for example, [4, Chapter 2,

S. 7]) in the form

ζ (s) Γ (s) =

∫

∞

0

(

1

ex − 1
− 1

x

)

xs−1 dx, 0 < Re s < 1.

The difference between the classical integral representation (13) and the obtained integral

representation (12) is that in the classical case it is possible to calculate explicitly the series (9),

since the Riemann zeta-function is defined by the zeros of
1

Γ (1 + x)
, i.e., zn = −1,−2,−3, . . ..

Therefore, this classical formula follows from the formula of Corollary 3.
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3. Examples

In this section we consider the examples of entire functions f (z) of zero order, constructed

by the zero set zn, for which the following relation holds

lim
x→+∞

f ′ (x)

f (x)
= ω0,

where the ratio
f ′ (z)

f (z)
is defined by formula (3).

It is well-known that the limit of the sum of a series is equal to the sum of the series consisting

of the limits of its terms, when there is the uniform convergence, i. e.

lim
x→a

∞
∑

n=1

un (x) =

∞
∑

n=1

{

lim
x→a

un (x)
}

. (14)

Example 1. Let zn = −2n. Then, in accordance with formula (3)

f ′ (x)

f (x)
=

∞
∑

n=1

1

x + 2n
.

Since
1

x + 2n
6

1

2n
, where x > 0, the series

∞
∑

n=1

1

x + 2n
converges uniformly on the set [0,+∞)

in accordance with the Weierstrass criterion of a uniform convergence of functional series.

Given formula (14), we have

lim
x→+∞

f ′ (x)

f (x)
= lim

x→+∞

∞
∑

n=1

1

x + 2n
=

∞
∑

n=1

lim
x→+∞

1

x + 2n
= 0,

i. e. ω0 = 0 and
f ′ (x)

f (x)
∼ 0 as x → +∞.

Example 2. Let zn = −qn + isn, qn > 0. Then, in accordance with formula (3)

f ′ (x)

f (x)
=

∞
∑

n=1

1

x − zn
.

Estimate the terms:

1

|x − zn|
=

1

|x + qn − isn|
=

1
√

(x + qn)
2

+ s2
n

6
1

√

q2
n + s2

n

=
1

|zn|
, x > 0.

Since the series
∑ 1

|zn|α
converges ([3, Chapter VIII, S. 8.2.2]), when α > ρ, the series

∞
∑

n=1

1

|zn|

converges. Then the series

∞
∑

n=1

1

x − zn
converges uniformly on the set [0,+∞) in accordance with

the Weierstrass criterion of a uniform convergence of functional series.

Given formula (14), we have

lim
x→+∞

f ′ (x)

f (x)
= lim

x→+∞

∞
∑

n=1

1

x + qn − isn
=

∞
∑

n=1

lim
x→+∞

1

x + qn − isn
= 0,

– 498 –



Vyacheslav I.Kuzovatov On the Zeta-Function of Zeros of a Some Class of Entire Functions

i. e. ω0 = 0 and
f ′ (x)

f (x)
∼ 0 as x → +∞.
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О дзета-функции корней одного класса целых функций

Вячеслав И. Кузоватов

Алексей А. Кытманов

С использованием теории вычетов дается интегральное представление для дзета-функции, ко-

торое позволяет построить аналитическое продолжение дзета-функции.

Ключевые слова: дзета-функция, интегральное представление, целая функция.
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