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Introduction

According to A.Z. Petrov’s algebraic classification, Weyl tensor Cijm,n of conformal curvature
of the square-law differential form of 4 variables is subdivided into three types I, II, III and three
subtypes D, O, N (see [1,2]). In case of Einstein metrics its curvature tensor R} is subdivided
into the same 6 kinds, while Weyl tensor and Riemann tensor are always of the same kind.
Therefore in all cases it is possible to be limited to metric classification by the type of its Weyl
tensor. It is clear, that this classification conformally invariant.

The subtype O means, that Weyl tensor vanishes, i.e. the metric is conformally flat. All
conformally flat metrics automatically satisfy Yang-Mills equations. The equations for confor-
mally flat metrics are much easier than Yang-Mills equations. Therefore this kind of metrics
does not represent any interest from the point of view of searching solutions of Yang-Mills equa-
tions (though the most discussed in cosmology Robertson-Walker metric which is the solution of
Friedmann equations belongs to type O). Solutions of Yang-Mills equations for kinds I, D and
O already took place in our works. All central-symmetric metrics belong to kind D or O. The
full solution of Yang-Mills equations for central-symmetric metric has been found in [3]. In [4]

solutions of Yang-Mills equations for the metric
Y = —dt? +a® (t) da® + b*(t)dy? + *(t)dz?

were searched. If a # b # ¢ this metric is referred to the types I or O, if b = ¢ — to the types D
or O. In particular, when a = t**, b = t“2, ¢ = t*3 the metric satisfies Yang-Mills equations, if

1
(041)2 + (Oé2)2 + (043)2 — 1= 5 (a1 + oo + ag — 1)2 .
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When a1 # as # a3 we obtain a metric of type I, when as = ag # 0, we get metric of subtype
D, when a3 = 1, as = a3 = 0 — metric of subtype O.

Therefore the purpose of present paper is searching the solutions of Yang-Mills equations for
the remained three types II, N, III. In the modern literature such solutions have already been
met. In particular, the solutions of Yang-Mills equations are found in [5] for homogeneous (i.e.
allowing 3-parametrical invariancy group) Fefferman metric. The solution is

2 1 11
g =dz? +dy* + 3 (y*du — dx) <ydr + §y3du + 9da:> )

Authors of that work do not notice that the metric is of the type N, since their paper has another
purpose.

In this article we adhere to same tactics: Yang-Mills equations are made and solved only
for the metrics allowing not less, than 2-parametrical invariancy group. Only in this case there
is a hope to receive "solvable" Yang-Mills equations. It has appeared, that for metrics of type
N the Yang-Mills equation most often are solvable, and with the big arbitrariness. For metrics
of type III classes of metrics with solvable Yang-Mills equations are also rather easily found.
The greatest difficulties for authors have caused searches of metrics of type II with solvable
Yang-Mills equations since more often for such metrics the Yang-Mills equation do not allow
to solve themselves though the solution may exist with arbitrariness in several functions. But
if in addition to impose a stationary curvatures equality condition (A.Z.Petrov’s terminology
[1, Section 17]) the metric of a type II turns into the metrics of type N, or of type III, and the
equations are often can be solved.

Further for brevity we will apply the term "Yang-Mills metric" to the metrics, satisfying
Yang-Mills equations.

1. Solving Yang-Mills equations for metrics of type N
1. We will begin with a metric of the type II
Y =2dt (g (y)dz +h(t)dy + f (t,y,2)dt) + dy* + dz?, (1)

to illustrate, how the structure of Yang-Mills equations improves when type II turns into type N.
Put

1
wlo= (2 — f) dt — gdz — hdy, w? = dy,
2 1 4
w: = <2+f> dt + gdx + hdy, w* =dz.

In this case ¥ = mjwiwj , where 7;; — Minkowski tensor with signature (— + ++). We compute
components of conformal connection matrix

0 w1 wy w3 Wy 0
w0 WP w} wt w1
w2 w0 —wd —wi —w

Q= 3.3 3 4 2)
w® Wy ws 0 —w; —ws
4 4 4 4

w* W] wy w3 0 —wy

0 w! —w? —w® —w* 0
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according to the standard scheme [3, p.351-352]. We will denote partial derivatives 88—{ = fi,

0
a—f = fy etc. At first we find external differentials
Y
1
dw' = —dw? = f. (W' + w?) Aw? + {fy —u (2 —|—f> —ht] wl Awd+
1 e

+{fy+u<2—f>—ht} w2 A w?, dw? = dw* =0, u g?y

Then we calculate Pfaffian forms of Christoffel for the metrics (1)

1 1
w? = §uw3, wi = (—fy +uf +he) (0 +w?) + §uw1, wi =0,
1
wy = (=fytuf+h) (W +w?) - §uw2, wi =wy =—f, (w' +w?).
Further we find external forms of Riemann curvature
1
R% = _ZUQW1 Aw?, R§ =0,
R} = |(f —luf (w1+w2)/\w4+(f —uf) (w1+w2)/\w3— 1u —|—1u2 wl A w?
1 = vz~ U]z Y y 2°Y 4 ’
R} = |(f fluf (w1+w2)/\w4+(f —uf) (w1+w2)/\w3+ 1u +1u2 w? A w?
2 = yz — Uz Y y 2°Y 4 ’
1
R‘lL = R% = f.. (wl —|—w2) Awt + (fyz — 2ufz> (wl —|—w2) Aw?.

We compute components of Ricci tensor R;; = Rfj . and its trace R = " R;;

1
Rz =Af —(uf),, Ry = Ri2 — 3 (uy +u?), Ry =0, @
1 1 3
R22:R12+§(uy+u2), R33:uy—|—§u2, R=2uy+§u2

1 1
*Rij — ERUU, we find

Here A is Laplacian on variables y and z. Hence, using formula b;; = 5

(nonzero) components of Pfaffian forms w; = b;;w’

1
biz = i(Af—(Uf)y), bin = b1z — K,
1 1,
by = b2+ K, b33:§uy+§ua
B 1 1, 1 1,
by = 6uy 8u , K= 12uy+ 8u .

As a result
w1 = bio (wl +w2) — le, wy = bigy (wl —I—wQ) + KwQ, w3 = b33w3, Wy = b44w4,

and the matrix of conformal connection is completely defined. Now we compute components of
a matrix of conformal curvature

D1 Py D3 Dy 0
0 &2 o3 ik D,
o2 0 —d3 P —d
o3 3 0 —®3 -3
ot @5 D3 0 —dy
0 O 0 0 0

O O O O O O
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in correspondence with formulas <I>{ = R{ +uw Aw; + njkwk Anisw?® and ®; = dw; + wi A wf

®? = R4 WIAw —wr Aw! =28w Aw?, 3 = —25w3 Aw?,
PP = T(w1+w2) 3—Sw1/\w3+P(w1+w2)/\w4,
o = (w —|—w) T(w1+w2)/\w4—5w1/\w4,
o3 = (w +w)Aw + Sw? Aw? —I—P(w —|—u))/\cu47
oy = (w +w)/\w fT(w +w)/\w + Sw? Awt,
where we denote S </ %uy, T . (fyy foz) — L (uf)y, pY Jyz — Ufz It means, that
components of Weyl tensor Czjmn = @{mn are equal to 2, =28, 3,5 = T S, ®3,, =T etc.
P = X(w1+w2)/\w + Zw' Aw? +Y(w +w)/\w, ;3 =0,
d = X (wl +w2) AN = ZW AP +Y (wl +w2) Awt, @y = (b44)yw3 Aw?,
. def 1 1 def
where for brevity we denote X = —(b12), + *blgu + 1w (fy—uf), Y = —(b2), —

1 ef 1 1
Zfz (uy +u?), Z e 1ol T gUrt: Petrov matrix @ (A) [1, formula (18.14)], made with the

help of the components of Weyl tensor, looks like

—25+ A 0 0
Q) = 0 ~T+S8+iP+X  —P—iT
0 —P—iT T+S—iP+ )

It is a matrix of type II with 1-fold eigenvalue \; = 25 and double eigenvalue Ay = —S. But if
S =0 it is of type N.

To compose Yang-Mills equations we will write components of a dual matrix *® (x is Hodge
star operator) [3, p. 352, item 6]

#®2 = 25w AWt x®F = 25w Aw?, *‘1’42—(544)ywl/\w27
#@ = P(w'+w?) A’ - T (0 +w?) Aw + Sw? Aw?,

@] = —T (w'+w?) /\w3 — S Aw? — P (w' +w?) Aw?,

«@3 = —T(w'+w?) Aw? = Sw Aw' + P (0 +w?) Aw,
*@% = —P(w1—|—w2)/\w — (w +w)/\w + Swt /\cu‘?’7
@ = —X (' 4w’ —ZWw At +Y (' +w?) AW,

) A
)

Yang-Mills equations d * ® + Q A x® — x® A Q = 0 for external forms *®3 and *®, are

xPy = X (wl +w) Awt + Zw' Aw? —|—Y(w +w )/\cu?’7 * O3 = 0.
d* B3 + wp AxDE — x®p AWk =0, d* @y +wp AxDY — x®p AWk = 0. (6)
In components they give two equations
25 (b44 - K) + Zu = 07 25 (K - b33) - (b44)y u — (b44)yy =0.

These equations are expressed only through the function u = g—y:
g

1
Uyyt = 5 (uy)? +uu, = 0, (7)
5 5 5 3
Uyyy + §“yy“ + 1 (uy)™ + 5“2“34 = 0

— 475 —



Leonid N. Krivonosov, Vyacheslav A.Lukyanov Solving Yang-Mills Equations for 4-metrics of Petrov...

1 3

If to denote L and @ the left parts of these equations, the formula Q = —L,, + §L shows that
u

the second of these equations is a differential consequence of the first.

Yang-Mills equation for the external form *®; produces

1
Xy+Z(fy7uf7ht)+YZ+2612S+(1)337b44)T*iuXZO,
1
Xy+Zy+Z(fy+<2—f>U—ht) +Y, +2b125+

+25K — (bss + b44) S+ (b33 —byy) T — iuX =0.

Their difference on account of (7) vanishes, therefore it is possible to leave only the first equation.
In detail it looks like

AA u 11
2f +ulf, + (3@; - ) Af +2uy fyy + 6 (Uyy — uyu) fiy+
(8)
Uyyy 5(%)2 _ DUyyu . Uyy _
+<2 6 6 ! h<12+8>*0'

The Yang-Mills equation for the external form *®5 does not result new equations. Thus, the
whole system of Yang-Mills equations is reduced to (7) and (8). The equation (8) serves to find
function f. Though it is linear it’s difficult to specify its solution without additional restrictions.
However if the type of the metric (1) turns from IT into N, i.e. at S = 0, that is equivalent to
uy =0, u = a, g = fe*, where o, f = const, then equation (7) is satisfied identically, and
equation (8) becomes good enough

AAf —2aAf, + a*Af = 0. (9)

In particular, at @ = 0 it turn into the well known equation AAf = 0. It is easy to specify its
solutions in the polynomial form.

o 502
Another special case, if f does not depend on y. Then equation (9) leads to a—f +a 7 J; =0.

Its general solution is f = Acosaz + psinaz 4+ §z + ¢, where A, u, d, € are arbitrary functions of
- ‘ ot Pr L0f

In the case, when f does not depend on z, equation (9) is reduced to ﬁ —2a @ +a PYE
0, ie. f=(Ay+p)e* +dy+e, where A, p, 6, € are arbitrary functlons of t.

Solutions of equations (7) and (8), not leading to type N, will be examined in the following
section.

Notice, that metric (1) will be Einstein metric, i.e. R;; = sm;j, iff g = const # 0, Af = 0. It
follows from (4).

Further we will omit detailed computations and will write only matrixes of conformal con-
nection 2 and curvature ® and final equations.

2. Let’s investigate metric
¢ = 2dt (dz + B (t,y) dt) + (A (t,y) dy)® + dz>. (10)

We denote with dot differentiation with respect to ¢, and the stroke ’ denotes a derivative with
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respect to y. The matrix of conformal connection (2) is

1 1
wl o= (2 B) dt — dz, w? = <2+B> dt + dz, w3 = Ady, wt = dz,
! A
B o= wlmwlmelo0, Wl mwde B (w4 Al
A A
1
wy = WinK(wl+w2), ws =wyq =0,
a1 (B A .
where K = T\ ta The matrix of conformal curvature (5) has components
P? = P3=0, P} =d5 = ~K (w' +w?) Aw?, b3 =P, =0,
K/
<I>‘11 = (D%:— K(w1+w2)/\w4, P = Py —ﬂ(wl+w2)/\w3
Petrov matrix looks like
A 0 0
0 1k a ik
QM) = 2 : . 2

It is a matrix of type N.
Yang-Mills equation (6) for forms *®3 and *®, are satisfied identically, and equations for

I\ 7
forms *®; and x®, result in the same equation (I) = 0, or in the unwrapped shape
.. /
1(1/BY A\ . . .
alalg + i = 0. We have derived one equation on two functions A and B of two

variables. An arbitrariness of solutions is great: one of functions A or B can be unrestricted.
It is easy to specify many particular solutions in an explicit form. For example, if A does not
depend on y, then B = ay® + fy% + vy + 8, where a, 8,7, are arbitrary functions of ¢.

3. For metric

¢ = 2dt (dz — ezdy) + (a (t) dy + b (t) dz)* + (c(t) dz)?, (11)

where & = const, the matrix of conformal connection (2) has components

1 1
wl = §dt —dz +ezdy, w? = idt +dx — ezdy, W = ady + bdz, w* = cdz,
2 _ 3_ 03 0 5 1 EN a a_ 1 € 1 2
w] = O,wl—w2—aw +§(P—%)w,w3—§(P+%)(w —I—w),
1 ,
w‘f = w%zf(P—Fi)wB’—FEufl, wlzwgzK(w1+w2),w3:w4=O,
2 ac c
def b ab _ger1 (i ¢ 1 _, 1 ¢
h P = - - — K = — — - 7P R —
where c ac’ 2( Tt 2 a?c?
Components of conformal curvature matrix (5) are
P = Pi=0) =Dy =P3=>y =0,
P} = P}=85(w'+w?) AP +T (0" +w’) AW,

of 3 =T (w' +w’) Aw® = S (w! +w?) Aw?,
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WhereSd£f1<déP2P6>, T 1PJréPJr =a fs—é.
2\a ¢ ac 2 a 2a%c¢  ac?

Yang-Mills equations for the metric (11) are satisfied identically. The metric has a type N.
It is Einsteinian, if K = 0.

Many known metrics for which Einstein equations were solved, are of type N and are reduced
to metrics (1), (10) or (11). We will bring several examples.

4. Peres metric

Y= —dt? +do® +dy* +d2? + f(t —x,y,2) (dt — cla;)2
1
after the substitution of variables ¢t —z = —u, t + = 2v, F (u,y,2) = §f (t — x,y, z) turns into

Y = 2du (dv + F (u,y, 2) du) + dy? + d2>,

which is a special case of metric (1) with g (y) = 1 and h (u) = 0. Therefore for Peres metric
Yang-Mills equation consist of one equation (9) AAF = 0, where A is Laplacian with respect to
variables y and z.

5. Takeno metric

Y = — (P +S)dt? +2Sdtdr + (P — S) de* + Ady* + 2Bdydz + Cdz?,

where A, B,C, P, S are functions of t— x, after the substitution of variables u =t —x, v=t+x
turns into

Y = —P (u) dudv — S (u) du® + A (u) dy? + 2B (u) dydz + C (u) dz>.

S (u
P (u

1
Now, instead of v, we introduce a new variable w = —3 (v + / ))du> , then we introduce a

new parameter 7 = /P (u) du. As a result,

Y = 2drdw + A (u (7)) dy* + 2B (u (1)) dydz + C (u (1)) d2?,

i.e. special case of the metric (11). Yang-Mills equations and Petrov type of the metric are
invariant with respect to performed operations, that’s why the Takeno metric is of type N and
identically satisfies Yang-Mills equations.

6. Rosen metric

¥ = —exp (2p) (dt* — dz?) + u® exp (2v) dy® + exp (—2v) d2?,
where p and v are functions of u =t — x, is a special case of the metric
Y1 = D (u) (dt* — da?) + A (u) dy* + 2B (u) dydz + C (u) d2°,

and the latter is conformally equivalent to the metric (11) at e = 0. Therefore, Yang-Mills
equations for the Rosen metric are satisfied identically.
7. Bondi-Piranha-Robinson metric

Y = dt? — da? + ady® + 2Bdydz + ~vdz?,

where «, § and v are functions of ¢ + z, is obviously isomorphic to the metric (11) at € = 0.
Therefore, Yang-Mills equations for this metric are satisfied identically.
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2. Solving Yang-Mills equations for metrics of type II
1. Let’s construct and solve Yang-Mills equations for the metric
¢ =2dt (dz + A(t,z)dt) + (e*'C (2) dy)2 +dz2?, a = const. (12)

As we shall see, this metric can be of all types, except type I, and for types II, III, N Yang-
Mills equations admit explicit nontrivial solutions. Derivative with respect to z is denoted by a
stroke .

Then we compute the components of the conformal connection matrix (2)

1 1
W' = <2 - A) dt —dr, w* = <2 + A) dt +dz, W = Ce™dy, w* = dz,
wi = 0, w;= —fC,w?’ W =wd=awd, wi=wi=-A (w1 +w2)
1 » W3 C ’ 1 — %2 = ) 1 — %2 — .

The components of the Ricci tensor and its trace are

!
R11 == R22 == R12 = AH + QA/ + 042,
C/ C// C// (13)

R14:R24:a67 3332344277 322?

The remaining 4 Pfaffian forms of the conformal connection matrix €2 are

i 1 ! i
w; = b2 (wl —|—w2) + @wl + ia%w47 w3 = g—cw?’,
i !
Wy = b12 (w1 + wz) — %WQ + 50&%&]47
! i 1 /
wy = a% (w1 +w2) + g—cw4, b1 = 3 <A” + A’% + a2> .

Now we write down the components of the conformal curvature matrix (5), where for brevity
P (A” By a2)

C
1 Cl
P2 = —%wl A w? —I—a% (wl +w2) Awt,
C// C/
@? = (66’ —P) wh Aw3—Pw2Aw3—a%w3Aw47
1 I
<I>g = —Pw'Awd— (g'c,—i—P) w2 AW —a%w3Aw4,
1 /
@‘11 = PW*Awt+ ((?C +P> wl/\w4+o¢20—cwl /\w2,
C// C/
<I>‘21 = (P— 60) wQ/\w4—|—Pwl/\w4—|—0¢%wl/\wz7
Cl/ !
@g = @wi& /\w4 — aﬁ (wl +w2) /\w37
AN Yalli
(I)l = — <§C> wl /\w4 + (_b/12 + 22:) (wl +w2) /\(.d4,
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O// AIO//
o, = (60) Wi Aw +< 12+72C )(w1+w2)/\w4,
"\’ 3 s, o (¢ / 1 2 3
b3 = —(30> w® Aw +2<C) (w —|—u))/\u)7
!
b, = -3 (g) (w1+w2)/\w4.

Petrov matrix Q(\) is

c” 2 iaC’ _al
3C 2C 20
. ! "
”;g —g—c +P4A iP
! "
- C;g iP —%C —P+2A

PC” 1 7\ 2 7 1 ’
It has type Il when C” # 0, g -|—5 (ag ) £0; type Dif C” #0, C 5 (aC)

type T if C” =0, aC’ # 0; type Nif C” =0, aC’' =0, P #0; typeOwhenC’zO aC’ =0,
P=0.
Yang-Mills equation for the external form x®3 gives

(&) -4(5) -

Yang-Mills equation for the external form *®,4 results
ol 4 ok c"
_— —_— - = 1

(&) a-3(%) = o 1
c" / 2 /C"C!

=) -= = 0. 16

. (( )3 (e )) (16)

The remaining two equations for forms *®; and *®, with the help of the equalities (14)—(16)

lead to
1 c 1 /C\?* 20"
Y L C) Ry, i _ "
AT et 2(0) 50 |4

o ore’ 1 /¢ 3 ) C’ 2 20"
- — == A — ) - = 0.
T\ "0 T ez 2(0) ta <c> 5c ) =0
Thus, the system of Yang-Mills equations is reduced to (14)—(17). To solve it, we first note

that the equation (14) is a differential consequence of (15). Equation (15) allows reduction of
order. It is equivalent to

(17)

= (BC? + 7)% (18)

where 3 and ~y are constants.
Put a # 0. Then, eliminating the third derivative from (15) and (16), we obtain

S (5-3(8))
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In equation (19) we initially set to zero the second factor. The resulting equation can be easily

integrated
1
C=——, A, 4 = const. (20)
(A2 +p)°
This corresponds to (18) at v = 0. Substituting (20) to (17), we obtain the differential equation

of Euler type
3N, A2 ” 2503 , a?)\?

_iA(4)+)\Z+NA _2(/\z+u)2A _2(/\z+u)3A - Az +p)° -0
Its general solution
p [ pNG  o® %
A=ertenfa+ ff+ (ol +5]) (+5) + 5 (+5) 2D

where €1, €9, €3, €4 are arbitrary functions of ¢t. By making the change of variable z + % — Z, we
obtain the final solution
2 9 1

e
A:51+521n\z|+(63+541n|z\)26+3—22, C=

(22)

o" o1 ou 2
depending on four arbitrary functions of the variable t. Since C” # 0 and P el + 3¢ ( C’) £ 0,

this solution gives the metric of type II.

Although the solution (22) is obtained for a # 0, it is also a solution in the case o = 0, but
it is not a general solution, because equation (18) besides the solution (20) at v = 0, has other
non-elementary solutions at v # 0. But in the latter case we cannot find explicit solutions of the
equation (17). Solution (22) in the case of o = 0 gives the metric of type II.

Now we consider the second possibility of the equality (19), C” = 0, which is equivalent to
C = Az + p, where A, u = const. Substituting this in (17), we again obtain the equation of Euler

type

—EA(4) _ A A A2 " o_ A? Al + a?\? —=0.
2 Az +p 2 (A\z + p)? 2 (A\z + p)° Az + p)?
In its general solution, we replace z + § with z and get
a2
A=¢ei+erIn|z|+ <83+€4IHZ|+41n2 |z> 22, C =z (23)

At o # 0 this solution gives the metric of type III, and at @ = 0 the metric of type N, different
from the metric of type N in section 1.

If C' = const equation (17) has a general solution A = ey (t) + &2 (t) z + 3 (t) 2% + &4 (¢) 2°.
This solution gives the metric of type N, but it is conformally equivalent to the special case of
the metric (10).

From (13), it follows that (12) is Einstein metric in cases

1)a # 0, C=const, A= 7%0[222+61 (t)z+ea(t);
a = 0,C:)\z—i—u,Azel(t)ln‘z—l—%’—i—sz(t).

In both cases, the metric has a type N.
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2. Let’s return to the metric (1) and Yang-Mills equations (7) and (8). We will show that
under the additional condition: f (¢,y, z) doesn’t depend on z, equation (8) already has explicit
solutions. In this case it turns into

1 Tu u? 11
_gfyyyy + ufyyy + <y - 2) fyy + 6 (Uyy — uyu) fy+

3
2 24
+ “yyy_5(“y) Uy f—h (M+M):0 (24
2 6 6 L1278 ‘
Equation (7) allows reduction of order u, = —2u? + A\/u, where A = const. If A = 0 we obtain
the solution in terms of elementary functions
u= 3 = const (25)
From (3) we obtain
3
g=72y+p?, 7, p=const (26)
Substituting (25) to (24), we obtain the equation of Euler type
6 37 154 324 hy
Fowpy — 5———Fuy + ———fyy — fy+ f= :
Ty 2y )y’ )t 20u+ )’
Its general solution
20+ p 3 3
=gt (e texinf2y+ul) 2y +p)" + (s +ealn 2y +ul) @y +p)*,  (27)

¢; are arbitrary functions of ¢. Formulas (26) and (27) give an explicit solution (but not general)
of Yang-Mills equations for the metric (1), h (¢) is an arbitrary function. This solution gives the
metric of type II.

3. For the following metric

W = 2dt (de + A (z,z) dt) + (C’(z)ef‘ndy)2 + d2?, o = const (28)

Yang-Mills equations are very complicated, but all the same they are solved.
Components of the conformal connection matrix €2 are

1 1
wlo= (2 - A) dt —dz, w? = (2 + A) dt + dz, w* = Ce “dy, wt = dz,
wi = —A, (W +w?), wgf:—%w?’, W =wh = —aw®, wf =w; = —A, (W' +w?).

The components of the Ricci tensor and its trace are

C.

Ry = A, +a®>—ad, + 6‘423 Ryy = Rig+ Age, Rog = Rig — Auo,

C C C
Rss = Ru=—2 Riu=Ros=—-A,, —a—, R=—24,, +2—==.
33 44 c 14 24 « C + C
The coefficients of Pfaffian forms w;:
1 C, 1 C.

b12 = 5 (Azz —+ a2 — CVAI + CAZ) s b14 = b24 = —5 (sz + Oéc> .
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1 C 1 C,. C,, 1
5 zx =~ bag = _7Aza: - b P bss = bay = — sz7
3 6C 22 3 el + 012, 033 44 = 30 +

Pfaffian forms w;:
1 C, 1 aC,
wp = ( ) 1 5 ( zz+0[2_O[A1;+AZ> (w1+w2) —5 (Azz+ C >w4,
B 1 C,., 2 1 9 C, 1 9 1 aC, 4
wy = <3A +60)w 2<Azz+a aAIJrAZC)(w +w) 5 A, + o )Y

(C.. 1 s 1 aC\ o oL (C
w3z = (3C+6A;wc>wa Wy = 2<Aacz+ C)(w +w)+<30 xm)

Then we compute the components of the conformal curvature matrix ®. For brevity we
C C C
denote S & Ay, — == T A, a2 LY A, —a?+ad, — A2

by =

T

Q

C b) Tz C C
2 Loy 2, 1 1 2 4
o7 = §Sw Aw +§T(w +w)/\w,
1 1 1
3 = —§L (wl+w2)/\w3—65w1/\w3—§Tw3/\w4,
1 1 1
ol = 5Twl Aw? — éSwl Awt + iL (W' +w?) Aw?,
1 1 1
oy = 5L (w' +w?) /\w4+65’w2/\w4+§Tw1 Aw?,
1 1
o3 = —§Sw3/\w4—§T (w1+w2)Aw3,
1 1 1
o3 = —§Tw3/\w4+65w2/\w3— §L (w' +w?) Aw?,
1 1 1 2 1 1 2 4, 1 1 4
o, = gAzm A—§ —(b12), |w Aw” + P_ZAMZ (w +w)/\w +ESZW A w®,
1 1 1 2 1 1 2 4 1 1 3
®y = gAIT’I‘ A+ 5 - (b12)$ w AW+ | P+ ZATTZ (w tw ) Aw™ — ESZW Aw?,
1
by, = K (wl + w2) Awd — fAmzwl Awd — (bss), w3 A w?,
1 1
o, = ZAMZw Aw?+ M (w +w ) Awt — gAzmwl A w.
In the last four formulas we denoted
def 1 C.. 1
P = 7Az Axa: — | = 7A1::va Azb ’
5 ( + C ) (b12), + 3 + 14
def C, a/C? O, 1
K AzzzA A:L’z a = — - Ax:r 7AI£EI)
Todee Ty (02 c T
def 1 aC,, aC? 1 1
M= - Azzz — - == - 7szzA 7Aa:a:a:
> ( T T e T3 1
Petrov matrix Q(X) is
1 7 1
—=5+ A 5T —5T
7 1 1 7
5T gS+5L+A 'L
1 1
—5T L g5 gL+
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It has type II when S # 0, type III when S = 0, T' # 0, subtype N when S =T =0, L # 0,
subtype O when S =T =L =0.

Proceeding from the specifics of the conformal curvature matrix, it’s best to start compiling
Yang-Mills equations for the difference between *®; and *®,, i.e. with the equation

d (%@ — *Pg) + wy, A (*<I>’f — *<I>’§) —xBp A (w’f — wé) =0.

We obtain three equations

AII‘T) A(EIL‘ZZ Awwzcz (AQZI)Q CZZZZ CZZZCZ 1 CZZ 2 02202
A, — — — — — =0. (30
g (Aeta)=—3 3C 6 sc ez T3l 6C7 (30)
Equalities (29) mean that
Agzr = [ = const. (31)

Taking into account these equations, Yang-Mills equations for the external form *®; provide two
new conditions

7%Azzzz + ArzzzA — OéﬁA + Azzz <A% + 5Az) - ArzzA.r + aAzzz - A 66112 +
2 20 5 o2 2 C, C. C..

2 3 2
+AZZ <C72 . 2022) +Az (szcz B szz _ CYZ> +C¥2 (@ . 2sz> :0,

202 3C C? 6C 203 C? 3C
AzmAmz + Arz CZZ - 7614 + szzz - gAzmz*
3 60 3 2 (33)
4 02 A C, 1 oA C, —|—O¢CZZZ _a5czzcz -0
Troc2 T U0 30 2C 6C2

Taking into account (31), Yang-Mills equations for the external form *®3 yield one new
equality

1 3 C. af 1/(C.. 1/C..\° 1,
7Arxzz - *A:v Amrzi - 5 5 - = —A =Y, 4
6 g e+ Aaasp 2*3(0)22 6<C)+6m 0 (34)

and for the external form *®, one new equation
1 C, ﬂ cz, C.(C.. af
_7Axaczz - Ax;cz 7142 - — — U
2 6C 6 6C? 30(0) 5 =0 (35)
Equation (31) is equivalent to
1

:65x3+f(z)x2+g(z)x+h(z). (36)

Six equations (30), (32), (33), (34), (35) and (36) connect with differential relations five
functions A, f, g, h and C. But equations (33), (34) and (35) are linearly dependent: 2Ly + Ly =
Lj, where Ly, Lo, L3 are left sides of the equations (33), (34) and (35). Therefore, equation (35)
may be discarded. The rest of the equations impose to functions f, g, h and C' seven differential
relations, only four of which are independent (we denote with stroke ’ the derivative with respect

to z):
p afs c” Lo\ ¢
7= f ‘2(c> +z<c> -0 (37)
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p 1C 2, By af 1(CV\' 1(C"\'C_
Frsel+3F -5 -5 5\¢) t3l¢) =" (38)
g" 28W ., C o, 2fg 2afC’  [C" 1/C\?\ aC” 5aC"C’"
s~ 3 ettt el e\E) | Te T e =0 39
1 c Af 20" 1 /C\?
) = g " = I
LT i ST 2<0>)+

(10f  4afct cm ool 1[C! 3 . .C’ "
+h< + 5 _60+C2—2<C> +h(2f"+2f 5 —aB) —g"(9—a) (40)

n_ o C ag'C’+g(2af_aC”>_5a2f 2 2o"+<0f>2>:0.

TT9TT9set T 5 30 5 ¥\ T30 T\

Without additional constraints, the system of equations (37)—(40) can not be solved explicitly.
The first of these constraints is

C=e7 ~ = const # 0. (41)

In this case system (37)—(40) is solved in terms of elementary functions, but the results are
different if 8 # 0 and § = 0.

At 3 # 0 we obtain solution

T L G

f=aty, CRE R

Directly through 2 and z formula (36) can be written as

B a )\’ a \* 2 2 7 o 4(er)’
A 6(x+,yz) +€1<x+’yz> +6<(51) 4> (Cﬂ+72)+ 72 + €2, (42)

€1, €2, B, 7y are arbitrary constants, but 3 # 0 and - # 0. Formulas (42) and (41) together with
(28) give Yang-Mills metric of type II.

From (41) and 8 = 0 it follows, that (by virtue of equations (37) and (38)) there are only two
possibilities for the function f(z):

f= %72. (43)

If the sign is + the following solution to the equations (39) and (40) is obtained

g=¢1+ez+eze 7%,

h=¢e4+ese 7 +ege?? +ere 7% + ze P4

)
3

Y
2 2 2
E9€E 3 g €1¢€ « 3
+ 22326_72—1—2’ (2)2 2 — 2 + 1€2 + (2) )
¥ 2y

» oY 2y 29

Here ¢4, ...,e7, are arbitrary constants, but v # 0. Formulas (44), (43) (with + in the right
side), (41), (36) and (28) give Yang-Mills metric of type III.

Now consider the case with a minus in the right side of (43). Then the solution of (39) and
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(40) is
g =¢e1+e2eMV* 4 £3eM77 — aryz,
h=e 272 (66(308\/ —y2 + 7 siny/ 72)
(52)2 A A “5)
2X1v2 2X2yz vz
727 ()\1 3)6 ()\2—3)6 + &4 +ese T+
1
+E—§ (zy — aX; — 1) eM)* + 6% (az'y —ady —e1) e 4 (aEl - azz) z.
v gl yoo2

2
(44), (43) (with minus in the right side), (41), (36) and (28) give Yang-Mills metric of type II.

Consider now instead of (41) other constraints: C” = 0, S = 0. Then we obtain the following
solution

1 19 1 19
Here ¢4, ..., &7,y are arbitrary constants, but v # 0; A\ = —3 +4/ 12’ Ao = —-—4/f Iz Formulas

2
C=e12+ey, f=0, B =0, g =c¢3 Z+zz> +541n<z+§2>+55,
1 1

2 6
h=¢egln Z+€2 (€3) 2—1—8—2 —1—— —1—5—2 200 + &4 — 265 — 264 1n z+5—2 +
€1 ?2)6 €1 16 €1 €1

1
+eg + 3 <z + ?) <4€6 — 274 0% — (e4)* + (467 — 202 +2 (54)2) In <z + ?)) .
1 1

Here €1, ..., €9 are arbitrary constants, but 1 # 0. We have received Yang-Mills metric of type III.
Thus, the metric (28) has provided us with two series of Yang-Mills metric of types II and III.
Another remarkable feature of the metric (28) is that at suitable function A(z,z) and C(z)

it gives Einstein metric of type II, which is a rare phenomenon. We do not give the full solution,

but only one particular case:
L 2o -7z aer 1 4 z
A:—iyx +x(er—ayz)+estese P42 T—iaz , C =%,
This gives Einstein metric of type II, which is a particular case of solution (45) at eo = 3 =
Eg = &7 = 0.

3. Metric of type III, satisfying Yang-Mills equations
Let’s investigate the metric

¢ = 2dt (do + B (t, z) dy + A(t, z) dt) + (C (t) dy)® + d=?, (46)

which, as we shall see, may be of types III, N or O. The components of conformal connection
matrix ) are

1 1 )
wt = <2—A) dt — dx — Bdy, w? = <2—|—A> dt + dz 4+ Bdy, w® = Cdy, w* = dz,
B C B’ !
OJ% = WSZE(W1+W2)+5W +%W wl —O, u}%:u}g:—A/ (w1+w2)—%w3,
B/ B/l B//
wg = el (w1+w2), w1:w2:K(w1+w2)+Ew3, w3 = el (w —|—w) wys =0,
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where dot denotes the derivative with respect to ¢, stroke ' denotes derivative with respect to z,

def Ly € _L(BY
K_2<A+C 2(0 '

The components of the conformal curvature matrix ® are:

2 B" 4 2 3 4 _B" 2 4

o7 = E(w +w?) Aw?, (I>3:E(w +w?) Aw?,
B//

P = (I)%:Ewl/\WQ—i—S(wl—i—wZ)/\wB—T(wl—i—wQ)/\w4,
B//

ot = (I)é:Ew3/\w4—5(w1+w2)/\w4—T(w1—|—w2)/\wg,

.. I .

def 1 (C I def 1 (B BC
whereS:2<C—A>7T=2 E-ﬁ-ﬁ ;

1({/B"\ 2B'C
= ‘1’24<<c> +C2> (W +w?) nw’+

"

B"B' / 1 2 « B" 5
+<802—K>(w +w)/\w—40w Aw™,
B///
(I)g = 740 (w1+w2)/\w4, @4:0
Petrov matrix Q(\) is
A B// Z’B//
4C 4C
B S—iT+ A T—1S
—— —=S—iT+ —1
BTs: T—1iS S+iT + A
This is a matrix of type III if B” # 0; of type N if B” = 0 and of type O if B” =0, A" = g,

B'C = €(z), where € (2) is arbitrary function of z.
Yang-Mills equations for the external form x®, are satisfied identically, for the form *®g

4
they are reduced to a single equation 94 = 0. External forms x®; and *®5 also yield only one
9*A 3 (B"\® 3B"B
equation 94— 3 <C> 07 The system of these two equations has a solution
B = (02’ + 12° + Paz + B3,
1 19(6)° ¢ 9 3 ?
= = (468) 28+ i00ﬂ125+ < 6262 + (ﬁi) >z4 + a0z’ + a12” + a2z + as,

where 3y, 01, B2, B3, ao, a1, as, as, C are arbitrary functions of ¢.

C 1(BY
Mertic (46) is Einstein metric when B” =0, A” + G5 (C’) =0.
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Pemenne ypaBuenuit dura-Mmnica i 4-MeTPUK TUIOB
II, N, III IlerpoBa

Jleonunn H. KpuBoHnocos
BsyecnaB A. JIykbsiHOB

IIpusodamces no 4 cepuu 4-mempuk s Kaxcdozo us eudos II, N, III, ydosiemeoparouwux ypasHeHUAM
Hnea-Muanaca.

Karoueswie caosa: ypasuenus IGnwmetina, ypasHerus SAnea-Munaaca, mroz2006pasue kKoHBopmnol ceas-
HOCTU € KpYUeHuem u be3 Kpyenusa.
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