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Introduction

According to A. Z. Petrov’s algebraic classification, Weyl tensor Cj
imn of conformal curvature

of the square-law differential form of 4 variables is subdivided into three types I, II, III and three

subtypes D, O, N (see [1,2]). In case of Einstein metrics its curvature tensor Rj
imn is subdivided

into the same 6 kinds, while Weyl tensor and Riemann tensor are always of the same kind.

Therefore in all cases it is possible to be limited to metric classification by the type of its Weyl

tensor. It is clear, that this classification conformally invariant.

The subtype O means, that Weyl tensor vanishes, i.e. the metric is conformally flat. All

conformally flat metrics automatically satisfy Yang-Mills equations. The equations for confor-

mally flat metrics are much easier than Yang-Mills equations. Therefore this kind of metrics

does not represent any interest from the point of view of searching solutions of Yang-Mills equa-

tions (though the most discussed in cosmology Robertson-Walker metric which is the solution of

Friedmann equations belongs to type O). Solutions of Yang-Mills equations for kinds I, D and

O already took place in our works. All central-symmetric metrics belong to kind D or O. The

full solution of Yang-Mills equations for central-symmetric metric has been found in [3]. In [4]

solutions of Yang-Mills equations for the metric

ψ = −dt2 + a2 (t) dx2 + b2(t)dy2 + c2(t)dz2

were searched. If a 6= b 6= c this metric is referred to the types I or O, if b = c — to the types D

or O. In particular, when a = tα1 , b = tα2 , c = tα3 the metric satisfies Yang-Mills equations, if

(α1)
2

+ (α2)
2

+ (α3)
2 − 1 =

1

2
(α1 + α2 + α3 − 1)

2
.
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When α1 6= α2 6= α3 we obtain a metric of type I, when α2 = α3 6= 0, we get metric of subtype

D, when α1 = 1, α2 = α3 = 0 — metric of subtype O.

Therefore the purpose of present paper is searching the solutions of Yang-Mills equations for

the remained three types II, N, III. In the modern literature such solutions have already been

met. In particular, the solutions of Yang-Mills equations are found in [5] for homogeneous (i.e.

allowing 3-parametrical invariancy group) Fefferman metric. The solution is

g = dx2 + dy2 +
2

3

(

y3du− dx
)

(

ydr +
1

9
y3du+

11

9
dx

)

.

Authors of that work do not notice that the metric is of the type N, since their paper has another

purpose.

In this article we adhere to same tactics: Yang-Mills equations are made and solved only

for the metrics allowing not less, than 2-parametrical invariancy group. Only in this case there

is a hope to receive "solvable" Yang-Mills equations. It has appeared, that for metrics of type

N the Yang-Mills equation most often are solvable, and with the big arbitrariness. For metrics

of type III classes of metrics with solvable Yang-Mills equations are also rather easily found.

The greatest difficulties for authors have caused searches of metrics of type II with solvable

Yang-Mills equations since more often for such metrics the Yang-Mills equation do not allow

to solve themselves though the solution may exist with arbitrariness in several functions. But

if in addition to impose a stationary curvatures equality condition (A. Z. Petrov’s terminology

[1, Section 17]) the metric of a type II turns into the metrics of type N, or of type III, and the

equations are often can be solved.

Further for brevity we will apply the term "Yang-Mills metric" to the metrics, satisfying

Yang-Mills equations.

1. Solving Yang-Mills equations for metrics of type N

1. We will begin with a metric of the type II

ψ = 2dt (g (y) dx+ h (t) dy + f (t, y, z) dt) + dy2 + dz2, (1)

to illustrate, how the structure of Yang-Mills equations improves when type II turns into type N.

Put

ω1 =

(

1

2
− f

)

dt− gdx− hdy, ω3 = dy,

ω2 =

(

1

2
+ f

)

dt+ gdx+ hdy, ω4 = dz.

In this case ψ = ηijω
iωj , where ηij — Minkowski tensor with signature (− + ++) . We compute

components of conformal connection matrix

Ω =



















0 ω1 ω2 ω3 ω4 0

ω1 0 ω2
1 ω3

1 ω4
1 ω1

ω2 ω2
1 0 −ω3

2 −ω4
2 −ω2

ω3 ω3
1 ω3

2 0 −ω4
3 −ω3

ω4 ω4
1 ω4

2 ω4
3 0 −ω4

0 ω1 −ω2 −ω3 −ω4 0



















(2)
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according to the standard scheme [3, p. 351–352]. We will denote partial derivatives
∂f

∂t
= ft,

∂f

∂y
= fy etc. At first we find external differentials

dω1 = −dω2 = fz

(

ω1 + ω2
)

∧ ω4 +

[

fy − u

(

1

2
+ f

)

− ht

]

ω1 ∧ ω3+

+

[

fy + u

(

1

2
− f

)

− ht

]

ω2 ∧ ω3, dω3 = dω4 = 0, u
def
=

gy

g
.

(3)

Then we calculate Pfaffian forms of Christoffel for the metrics (1)

ω2
1 =

1

2
uω3, ω3

1 = (−fy + uf + ht)
(

ω1 + ω2
)

+
1

2
uω1, ω4

3 = 0,

ω3
2 = (−fy + uf + ht)

(

ω1 + ω2
)

− 1

2
uω2, ω4

1 = ω4
2 = −fz

(

ω1 + ω2
)

.

Further we find external forms of Riemann curvature

R2
1 = −1

4
u2ω1 ∧ ω2, R4

3 = 0,

R3
1 =

(

fyz −
1

2
ufz

)

(

ω1 + ω2
)

∧ ω4 + (fy − uf)
y

(

ω1 + ω2
)

∧ ω3 −
(

1

2
uy +

1

4
u2

)

ω1 ∧ ω3,

R3
2 =

(

fyz −
1

2
ufz

)

(

ω1 + ω2
)

∧ ω4 + (fy − uf)
y

(

ω1 + ω2
)

∧ ω3 +

(

1

2
uy +

1

4
u2

)

ω2 ∧ ω3,

R4
1 = R4

2 = fzz

(

ω1 + ω2
)

∧ ω4 +

(

fyz −
1

2
ufz

)

(

ω1 + ω2
)

∧ ω3.

We compute components of Ricci tensor Rij = Rk
ijk and its trace R = ηijRij

R12 = ∆f − (uf)y , R11 = R12 −
1

2

(

uy + u2
)

, R44 = 0,

R22 = R12 +
1

2

(

uy + u2
)

, R33 = uy +
1

2
u2, R = 2uy +

3

2
u2.

(4)

Here ∆ is Laplacian on variables y and z. Hence, using formula bij =
1

2
Rij −

1

12
Rηij , we find

(nonzero) components of Pfaffian forms ωi = bijω
j

b12 =
1

2

(

∆f − (uf)y

)

, b11 = b12 −K,

b22 = b12 +K, b33 =
1

3
uy +

1

8
u2,

b44 = −1

6
uy − 1

8
u2, K =

1

12
uy +

1

8
u2.

As a result

ω1 = b12
(

ω1 + ω2
)

−Kω1, ω2 = b12
(

ω1 + ω2
)

+Kω2, ω3 = b33ω
3, ω4 = b44ω

4,

and the matrix of conformal connection is completely defined. Now we compute components of

a matrix of conformal curvature

Φ =



















0 Φ1 Φ2 Φ3 Φ4 0

0 0 Φ2
1 Φ3

1 Φ4
1 Φ1

0 Φ2
1 0 −Φ3

2 −Φ4
2 −Φ2

0 Φ3
1 Φ3

2 0 −Φ4
3 −Φ3

0 Φ4
1 Φ4

2 Φ4
3 0 −Φ4

0 0 0 0 0 0



















(5)

– 474 –



Leonid N.Krivonosov, Vyacheslav A. Lukyanov Solving Yang-Mills Equations for 4-metrics of Petrov...

in correspondence with formulas Φj
i = R

j
i + ωj ∧ ωi + ηjkωk ∧ ηisω

s and Φi = dωi + ωk ∧ ωk
i

Φ2
1 = R2

1 + ω2 ∧ ω1 − ω2 ∧ ω1 = 2Sω1 ∧ ω2, Φ4
3 = −2Sω3 ∧ ω4,

Φ3
1 = T

(

ω1 + ω2
)

∧ ω3 − Sω1 ∧ ω3 + P
(

ω1 + ω2
)

∧ ω4,

Φ4
1 = P

(

ω1 + ω2
)

∧ ω3 − T
(

ω1 + ω2
)

∧ ω4 − Sω1 ∧ ω4,

Φ3
2 = T

(

ω1 + ω2
)

∧ ω3 + Sω2 ∧ ω3 + P
(

ω1 + ω2
)

∧ ω4,

Φ4
2 = P

(

ω1 + ω2
)

∧ ω3 − T
(

ω1 + ω2
)

∧ ω4 + Sω2 ∧ ω4,

where we denote S
def
=

1

12
uy, T

def
=

1

2
(fyy − fzz) −

1

2
(uf)y , P

def
= fyz − 1

2
ufz. It means, that

components of Weyl tensor Cj
imn = Φj

imn are equal to Φ2
112 = 2S, Φ3

113 = T − S, Φ3
123 = T etc.

Φ1 = X
(

ω1 + ω2
)

∧ ω3 + Zω1 ∧ ω3 + Y
(

ω1 + ω2
)

∧ ω4, Φ3 = 0,

Φ2 = X
(

ω1 + ω2
)

∧ ω3 − Zω2 ∧ ω3 + Y
(

ω1 + ω2
)

∧ ω4, Φ4 = (b44)y ω
3 ∧ ω4,

where for brevity we denote X
def
= − (b12)y +

1

2
b12u +

1

4
uy (fy − uf) , Y

def
= − (b12)z −

1

4
fz

(

uy + u2
)

, Z
def
=

1

12
uyy +

1

8
uyu. Petrov matrix Q (λ) [1, formula (18.14)], made with the

help of the components of Weyl tensor, looks like

Q (λ) =





−2S + λ 0 0

0 −T + S + iP + λ −P − iT

0 −P − iT T + S − iP + λ



 .

It is a matrix of type II with 1-fold eigenvalue λ1 = 2S and double eigenvalue λ2 = −S. But if

S = 0 it is of type N.

To compose Yang-Mills equations we will write components of a dual matrix ∗Φ (∗ is Hodge

star operator) [3, p. 352, item 6]

∗Φ2
1 = 2Sω3 ∧ ω4, ∗ Φ4

3 = 2Sω1 ∧ ω2, ∗ Φ4 = − (b44)y ω
1 ∧ ω2,

∗Φ3
1 = P

(

ω1 + ω2
)

∧ ω3 − T
(

ω1 + ω2
)

∧ ω4 + Sω2 ∧ ω4,

∗Φ4
1 = −T

(

ω1 + ω2
)

∧ ω3 − Sω2 ∧ ω3 − P
(

ω1 + ω2
)

∧ ω4,

∗Φ3
2 = −T

(

ω1 + ω2
)

∧ ω4 − Sω1 ∧ ω4 + P
(

ω1 + ω2
)

∧ ω3,

∗Φ4
2 = −P

(

ω1 + ω2
)

∧ ω4 − T
(

ω1 + ω2
)

∧ ω3 + Sω1 ∧ ω3,

∗Φ1 = −X
(

ω1 + ω2
)

∧ ω4 − Zω2 ∧ ω4 + Y
(

ω1 + ω2
)

∧ ω3,

∗Φ2 = −X
(

ω1 + ω2
)

∧ ω4 + Zω1 ∧ ω4 + Y
(

ω1 + ω2
)

∧ ω3, ∗ Φ3 = 0.

Yang-Mills equations d ∗ Φ + Ω ∧ ∗Φ − ∗Φ ∧ Ω = 0 for external forms ∗Φ3 and ∗Φ4 are

d ∗ Φ3 + ωk ∧ ∗Φk
3 − ∗Φk ∧ ωk

3 = 0, d ∗ Φ4 + ωk ∧ ∗Φk
4 − ∗Φk ∧ ωk

4 = 0. (6)

In components they give two equations

2S (b44 −K) + Zu = 0, 2S (K − b33) − (b44)y u− (b44)yy = 0.

These equations are expressed only through the function u =
gy

g
:

uyyu− 1

2
(uy)

2
+ u2uy = 0, (7)

uyyy +
5

2
uyyu+

5

4
(uy)

2
+

3

2
u2uy = 0.
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If to denote L and Q the left parts of these equations, the formula Q =
1

u
Lu +

3

2
L shows that

the second of these equations is a differential consequence of the first.

Yang-Mills equation for the external form ∗Φ1 produces

Xy + Z (fy − uf − ht) + Yz + 2b12S + (b33 − b44)T − 1

2
uX = 0,

Xy + Zy + Z

(

fy +

(

1

2
− f

)

u− ht

)

+ Yz + 2b12S+

+2SK − (b33 + b44)S + (b33 − b44)T − 1

2
uX = 0.

Their difference on account of (7) vanishes, therefore it is possible to leave only the first equation.

In detail it looks like

∆∆f

−2
+ u∆fy +

(

uy

3
− u2

2

)

∆f + 2uyfyy +
11

6
(uyy − uyu) fy+

+

(

uyyy

2
− 5 (uy)

2

6
− 5uyyu

6

)

f − ht

(uyy

12
+
uyu

8

)

= 0.
(8)

The Yang-Mills equation for the external form ∗Φ2 does not result new equations. Thus, the

whole system of Yang-Mills equations is reduced to (7) and (8). The equation (8) serves to find

function f . Though it is linear it’s difficult to specify its solution without additional restrictions.

However if the type of the metric (1) turns from II into N, i.e. at S = 0, that is equivalent to

uy = 0, u = α, g = βeαy, where α, β = const, then equation (7) is satisfied identically, and

equation (8) becomes good enough

∆∆f − 2α∆fy + α2∆f = 0. (9)

In particular, at α = 0 it turn into the well known equation ∆∆f = 0. It is easy to specify its

solutions in the polynomial form.

Another special case, if f does not depend on y. Then equation (9) leads to
∂4f

∂z4
+α2 ∂

2f

∂z2
= 0.

Its general solution is f = λ cosαz+ µ sinαz+ δz+ ε, where λ, µ, δ, ε are arbitrary functions of

t.

In the case, when f does not depend on z, equation (9) is reduced to
∂4f

∂y4
−2α

∂3f

∂y3
+α2 ∂

2f

∂y2
=

0, i.e. f = (λy + µ) eαy + δy + ε, where λ, µ, δ, ε are arbitrary functions of t.

Solutions of equations (7) and (8), not leading to type N, will be examined in the following

section.

Notice, that metric (1) will be Einstein metric, i.e. Rij = κηij , iff g = const 6= 0, ∆f = 0. It

follows from (4).

Further we will omit detailed computations and will write only matrixes of conformal con-

nection Ω and curvature Φ and final equations.

2. Let’s investigate metric

ψ = 2dt (dx+B (t, y) dt) + (A (t, y) dy)
2

+ dz2. (10)

We denote with dot differentiation with respect to t, and the stroke ′ denotes a derivative with
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respect to y. The matrix of conformal connection (2) is

ω1 =

(

1

2
−B

)

dt− dx, ω2 =

(

1

2
+B

)

dt+ dx, ω3 = Ady, ω4 = dz,

ω2
1 = ω4

1 = ω4
2 = ω4

3 = 0, ω3
1 = ω3

2 = −B
′

A

(

ω1 + ω2
)

+

.

A

A
ω3,

ω1 = ω2 =
1

2
K
(

ω1 + ω2
)

, ω3 = ω4 = 0,

where K
def
=

1

A

(

B′

A

)′

+

..

A

A
. The matrix of conformal curvature (5) has components

Φ2
1 = Φ4

3 = 0, Φ3
1 = Φ3

2 =
1

2
K
(

ω1 + ω2
)

∧ ω3, Φ3 = Φ4 = 0,

Φ4
1 = Φ4

2 = −1

2
K
(

ω1 + ω2
)

∧ ω4, Φ1 = Φ2 = −K
′

2A

(

ω1 + ω2
)

∧ ω3.

Petrov matrix looks like

Q (λ) =











λ 0 0

0 −

1

2
K + λ −

i

2
K

0 −

i

2
K

1

2
K + λ











.

It is a matrix of type N.

Yang-Mills equation (6) for forms ∗Φ3 and ∗Φ4 are satisfied identically, and equations for

forms ∗Φ1 and ∗Φ2 result in the same equation

(

K′

A

)′

= 0, or in the unwrapped shape
[

1

A

(

1

A

(

B′

A

)′

+

..

A

A

)′]′

= 0. We have derived one equation on two functions A and B of two

variables. An arbitrariness of solutions is great: one of functions A or B can be unrestricted.

It is easy to specify many particular solutions in an explicit form. For example, if A does not

depend on y, then B = αy3 + βy2 + γy + δ, where α, β, γ, δ are arbitrary functions of t.

3. For metric

ψ = 2dt (dx− εzdy) + (a (t) dy + b (t) dz)
2

+ (c (t) dz)
2
, (11)

where ε = const, the matrix of conformal connection (2) has components

ω1 =
1

2
dt− dx+ εzdy, ω2 =

1

2
dt+ dx− εzdy, ω3 = ady + bdz, ω4 = cdz,

ω2
1 = 0, ω3

1 = ω3
2 =

.
a

a
ω3 +

1

2

(

P − ε

ac

)

ω4, ω4
3 =

1

2

(

P +
ε

ac

)

(

ω1 + ω2
)

,

ω4
1 = ω4

2 =
1

2

(

P +
ε

ac

)

ω3 +

.
c

c
ω4, ω1 = ω2 = K

(

ω1 + ω2
)

, ω3 = ω4 = 0,

where P
def
=

.

b

c
−

.
ab

ac
, K

def
=

1

2

( ..
a

a
+

..
c

c
+

1

2
P 2 − 1

2

ε

a2c2

)

.

Components of conformal curvature matrix (5) are

Φ2
1 = Φ4

3 = Φ1 = Φ2 = Φ3 = Φ4 = 0,

Φ3
1 = Φ3

2 = S
(

ω1 + ω2
)

∧ ω3 + T
(

ω1 + ω2
)

∧ ω4,

Φ4
1 = Φ4

2 = T
(

ω1 + ω2
)

∧ ω3 − S
(

ω1 + ω2
)

∧ ω4,
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where S
def
=

1

2

( ..
a

a
−

..
c

c
− P 2 − P

ε

ac

)

, T
def
=

1

2

.

P +

..
a

a
P +

ε
.
a

2a2c
− ε

.
c

ac2
.

Yang-Mills equations for the metric (11) are satisfied identically. The metric has a type N.

It is Einsteinian, if K = 0.

Many known metrics for which Einstein equations were solved, are of type N and are reduced

to metrics (1), (10) or (11). We will bring several examples.

4. Peres metric

ψ = −dt2 + dx2 + dy2 + dz2 + f (t− x, y, z) (dt− dx)
2

after the substitution of variables t− x = −u, t+ x = 2v, F (u, y, z) =
1

2
f (t− x, y, z) turns into

ψ = 2du (dv + F (u, y, z) du) + dy2 + dz2,

which is a special case of metric (1) with g (y) = 1 and h (u) = 0. Therefore for Peres metric

Yang-Mills equation consist of one equation (9) ∆∆F = 0, where ∆ is Laplacian with respect to

variables y and z.

5. Takeno metric

ψ = − (P + S) dt2 + 2Sdtdx+ (P − S) dx2 +Ady2 + 2Bdydz + Cdz2,

where A,B,C, P, S are functions of t−x, after the substitution of variables u = t−x, v = t+x

turns into

ψ = −P (u) dudv − S (u) du2 +A (u) dy2 + 2B (u) dydz + C (u) dz2.

Now, instead of v, we introduce a new variable w = −1

2

(

v +

∫

S (u)

P (u)
du

)

, then we introduce a

new parameter τ =

∫

P (u) du. As a result,

ψ = 2dτdw +A (u (τ)) dy2 + 2B (u (τ)) dydz + C (u (τ)) dz2,

i.e. special case of the metric (11). Yang-Mills equations and Petrov type of the metric are

invariant with respect to performed operations, that’s why the Takeno metric is of type N and

identically satisfies Yang-Mills equations.

6. Rosen metric

ψ = − exp (2µ)
(

dt2 − dx2
)

+ u2 exp (2ν) dy2 + exp (−2ν) dz2,

where µ and ν are functions of u = t− x, is a special case of the metric

ψ1 = D (u)
(

dt2 − dx2
)

+A (u) dy2 + 2B (u) dydz + C (u) dz2,

and the latter is conformally equivalent to the metric (11) at ε = 0. Therefore, Yang-Mills

equations for the Rosen metric are satisfied identically.

7. Bondi-Piranha-Robinson metric

ψ = dt2 − dx2 + αdy2 + 2βdydz + γdz2,

where α, β and γ are functions of t + x, is obviously isomorphic to the metric (11) at ε = 0.

Therefore, Yang-Mills equations for this metric are satisfied identically.
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2. Solving Yang-Mills equations for metrics of type II

1. Let’s construct and solve Yang-Mills equations for the metric

ψ = 2dt (dx+A (t, z) dt) +
(

eαtC (z) dy
)2

+ dz2, α = const. (12)

As we shall see, this metric can be of all types, except type I, and for types II, III, N Yang-

Mills equations admit explicit nontrivial solutions. Derivative with respect to z is denoted by a

stroke ′.

Then we compute the components of the conformal connection matrix (2)

ω1 =

(

1

2
−A

)

dt− dx, ω2 =

(

1

2
+A

)

dt+ dx, ω3 = Ceαtdy, ω4 = dz,

ω2
1 = 0, ω4

3 = −C
′

C
ω3, ω3

1 = ω3
2 = αω3, ω4

1 = ω4
2 = −A′

(

ω1 + ω2
)

.

The components of the Ricci tensor and its trace are

R11 = R22 = R12 = A′′ +
C ′

C
A′ + α2,

R14 = R24 = α
C ′

C
, R33 = R44 =

C ′′

C
, R = 2

C ′′

C

(13)

The remaining 4 Pfaffian forms of the conformal connection matrix Ω are

ω1 = b12
(

ω1 + ω2
)

+
C ′′

6C
ω1 +

1

2
α
C ′

C
ω4, ω3 =

C ′′

3C
ω3,

ω2 = b12
(

ω1 + ω2
)

− C ′′

6C
ω2 +

1

2
α
C ′

C
ω4,

ω4 = α
C ′

2C

(

ω1 + ω2
)

+
C ′′

3C
ω4, b12 =

1

2

(

A′′ +A′
C ′

C
+ α2

)

.

Now we write down the components of the conformal curvature matrix (5), where for brevity

P
def
=

(

A′′ −A′
C ′

C
− α2

)

Φ2
1 = −C

′′

3C
ω1 ∧ ω2 + α

C ′

2C

(

ω1 + ω2
)

∧ ω4,

Φ3
1 =

(

C ′′

6C
− P

)

ω1 ∧ ω3 − Pω2 ∧ ω3 − α
C ′

2C
ω3 ∧ ω4,

Φ3
2 = −Pω1 ∧ ω3 −

(

C ′′

6C
+ P

)

ω2 ∧ ω3 − α
C ′

2C
ω3 ∧ ω4,

Φ4
1 = Pω2 ∧ ω4 +

(

C ′′

6C
+ P

)

ω1 ∧ ω4 + α
C ′

2C
ω1 ∧ ω2,

Φ4
2 =

(

P − C ′′

6C

)

ω2 ∧ ω4 + Pω1 ∧ ω4 + α
C ′

2C
ω1 ∧ ω2,

Φ4
3 =

C ′′

3C
ω3 ∧ ω4 − α

C ′

2C

(

ω1 + ω2
)

∧ ω3,

Φ1 = −
(

C ′′

6C

)

′

ω1 ∧ ω4 +

(

−b′12 +
A′C ′′

2C

)

(

ω1 + ω2
)

∧ ω4,
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Φ2 =

(

C ′′

6C

)

′

ω2 ∧ ω4 +

(

−b′12 +
A′C ′′

2C

)

(

ω1 + ω2
)

∧ ω4,

Φ3 = −
(

C ′′

3C

)

′

ω3 ∧ ω4 +
α

2

(

C ′

C

)

′
(

ω1 + ω2
)

∧ ω3,

Φ4 = −α
2

(

C ′

C

)

′
(

ω1 + ω2
)

∧ ω4.

Petrov matrix Q(λ) is















C′′

3C
+ λ

iαC′

2C
−

αC′

2C
iαC′

2C
−

C′′

6C
+ P + λ iP

−

αC′

2C
iP −

C′′

6C
− P + λ















.

It has type II when C ′′ 6= 0,
PC ′′

C
+

1

2

(

αC ′

C

)2

6= 0; type D if C ′′ 6= 0,
PC ′′

C
+

1

2

(

αC ′

C

)2

= 0;

type III if C ′′ = 0, αC ′ 6= 0; type N if C ′′ = 0, αC ′ = 0, P 6= 0; type O when C ′′ = 0, αC ′ = 0,

P = 0.

Yang-Mills equation for the external form ∗Φ3 gives

(

C ′′

C

)

′′

− 1

2

(

C ′′

C

)2

= 0. (14)

Yang-Mills equation for the external form ∗Φ4 results

(

C ′′

C

)

′

C ′

C
− 1

2

(

C ′′

C

)2

= 0, (15)

α

(

(

C ′′

C

)

′

− 2

3

(

C ′′C ′

C2

)

)

= 0. (16)

The remaining two equations for forms ∗Φ1 and ∗Φ2 with the help of the equalities (14)–(16)

lead to

−1

2
A(4) − C ′

C
A′′′ +

(

1

2

(

C ′

C

)2

− 2C ′′

3C

)

A′′+

+

(

−C
′′′

6C
+
C ′′C ′

C2
− 1

2

(

C ′

C

)3
)

A′ + α2

(

(

C ′

C

)2

− 2C ′′

3C

)

= 0.

(17)

Thus, the system of Yang-Mills equations is reduced to (14)–(17). To solve it, we first note

that the equation (14) is a differential consequence of (15). Equation (15) allows reduction of

order. It is equivalent to

C ′ =
(

βC2 + γ
)

2

3 , (18)

where β and γ are constants.

Put α 6= 0. Then, eliminating the third derivative from (15) and (16), we obtain

C ′′

C

(

C ′′

C
− 4

3

(

C ′

C

)2
)

= 0. (19)
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In equation (19) we initially set to zero the second factor. The resulting equation can be easily

integrated

C =
1

(λz + µ)
3 , λ, µ = const. (20)

This corresponds to (18) at γ = 0. Substituting (20) to (17), we obtain the differential equation

of Euler type

−1

2
A(4) +

3λ

λz + µ
A′′′ − 7λ2

2 (λz + µ)
2A

′′ − 25λ3

2 (λz + µ)
3A

′ +
α2λ2

(λz + µ)
2 = 0.

Its general solution

A = ε1 + ε2 ln
∣

∣

∣
z +

µ

λ

∣

∣

∣
+
(

ε3 + ε4 ln
∣

∣

∣
z +

µ

λ

∣

∣

∣

) (

z +
µ

λ

)6

+
α2

32

(

z +
µ

λ

)2

, (21)

where ε1, ε2, ε3, ε4 are arbitrary functions of t. By making the change of variable z +
µ

λ
→ z, we

obtain the final solution

A = ε1 + ε2 ln |z| + (ε3 + ε4 ln |z|) z6 +
α2

32
z2, C =

1

(λz)
3 , (22)

depending on four arbitrary functions of the variable t. Since C ′′ 6= 0 and P
C ′′

C
+

1

2
α

(

C ′

C

)2

6= 0,

this solution gives the metric of type II.

Although the solution (22) is obtained for α 6= 0, it is also a solution in the case α = 0, but

it is not a general solution, because equation (18) besides the solution (20) at γ = 0, has other

non-elementary solutions at γ 6= 0. But in the latter case we cannot find explicit solutions of the

equation (17). Solution (22) in the case of α = 0 gives the metric of type II.

Now we consider the second possibility of the equality (19), C ′′ = 0, which is equivalent to

C = λz+ µ, where λ, µ = const. Substituting this in (17), we again obtain the equation of Euler

type

−1

2
A(4) − λ

λz + µ
A′′′ +

λ2

2 (λz + µ)
2A

′′ − λ3

2 (λz + µ)
3A

′ +
α2λ2

(λz + µ)
2 = 0.

In its general solution, we replace z + µ
λ

with z and get

A = ε1 + ε2 ln |z| +
(

ε3 + ε4 ln |z| + α2

4
ln2 |z|

)

z2, C = λz. (23)

At α 6= 0 this solution gives the metric of type III, and at α = 0 the metric of type N, different

from the metric of type N in section 1.

If C = const equation (17) has a general solution A = ε1 (t) + ε2 (t) z + ε3 (t) z2 + ε4 (t) z3.

This solution gives the metric of type N, but it is conformally equivalent to the special case of

the metric (10).

From (13), it follows that (12) is Einstein metric in cases

1) α 6= 0, C = const, A = −1

2
α2z2 + ε1 (t) z + ε2 (t) ;

2) α = 0, C = λz + µ, A = ε1 (t) ln
∣

∣

∣
z +

µ

λ

∣

∣

∣
+ ε2 (t) .

In both cases, the metric has a type N.
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2. Let’s return to the metric (1) and Yang-Mills equations (7) and (8). We will show that

under the additional condition: f (t, y, z) doesn’t depend on z, equation (8) already has explicit

solutions. In this case it turns into

−1

2
fyyyy + ufyyy +

(

7uy

3
− u2

2

)

fyy +
11

6
(uyy − uyu) fy+

+

(

uyyy

2
− 5 (uy)

2

6
− 5uyyu

6

)

f − ht

(uyy

12
+
uyu

8

)

= 0.
(24)

Equation (7) allows reduction of order uy = − 2
3u

2 + λ
√
u, where λ = const. If λ = 0 we obtain

the solution in terms of elementary functions

u =
3

2y + µ
, µ = const. (25)

From (3) we obtain

g = γ (2y + µ)
3

2 , γ, µ = const. (26)

Substituting (25) to (24), we obtain the equation of Euler type

fyyyy − 6

2y + µ
fyyy +

37

(2y + µ)
2 fyy − 154

(2y + µ)
3 fy +

324

(2y + µ)
4 f =

ht

2 (2y + µ)
3 .

Its general solution

f =
2y + µ

32
ht + (ε1 + ε2 ln |2y + µ|) (2y + µ)

3
+ (ε3 + ε4 ln |2y + µ|) (2y + µ)

3

2 , (27)

εi are arbitrary functions of t. Formulas (26) and (27) give an explicit solution (but not general)

of Yang-Mills equations for the metric (1), h (t) is an arbitrary function. This solution gives the

metric of type II.

3. For the following metric

ψ = 2dt (dx+A (x, z) dt) +
(

C(z)e−αtdy
)2

+ dz2, α = const (28)

Yang-Mills equations are very complicated, but all the same they are solved.

Components of the conformal connection matrix Ω are

ω1 =

(

1

2
−A

)

dt− dx, ω2 =

(

1

2
+A

)

dt+ dx, ω3 = Ce−αtdy, ω4 = dz,

ω2
1 = −Ax

(

ω1 + ω2
)

, ω4
3 = −Cz

C
ω3, ω3

1 = ω3
2 = −αω3, ω4

1 = ω4
2 = −Az

(

ω1 + ω2
)

.

The components of the Ricci tensor and its trace are

R12 = Azz + α2 − αAx +
Cz

C
Az, R11 = R12 +Axx, R22 = R12 −Axx,

R33 = R44 =
Czz

C
, R14 = R24 = −Axz − α

Cz

C
, R = −2Axx + 2

Czz

C
.

The coefficients of Pfaffian forms ωi:

b12 =
1

2

(

Azz + α2 − αAx +
Cz

C
Az

)

, b14 = b24 = −1

2

(

Axz + α
Cz

C

)

.
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b11 =
1

3
Axx +

Czz

6C
+ b12, b22 = −1

3
Axx − Czz

6C
+ b12, b33 = b44 =

Czz

3C
+

1

6
Axx,

Pfaffian forms ωi:

ω1 =

(

1

3
Axx +

Czz

6C

)

ω1 +
1

2

(

Azz + α2 − αAx +Az

Cz

C

)

(

ω1 + ω2
)

− 1

2

(

Axz +
αCz

C

)

ω4,

ω2 = −
(

1

3
Axx +

Czz

6C

)

ω2 +
1

2

(

Azz + α2 − αAx +Az

Cz

C

)

(

ω1 + ω2
)

− 1

2

(

Axz +
αCz

C

)

ω4,

ω3 =

(

Czz

3C
+

1

6
Axx

)

ω3, ω4 = −1

2

(

Axz +
αCz

C

)

(

ω1 + ω2
)

+

(

Czz

3C
+

1

6
Axx

)

ω4.

Then we compute the components of the conformal curvature matrix Φ. For brevity we

denote S
def
= Axx − Czz

C
, T

def
= Axz − α

Cz

C
, L

def
= Azz − α2 + αAx −Az

Cz

C
.

Φ2
1 =

1

3
Sω1 ∧ ω2 +

1

2
T
(

ω1 + ω2
)

∧ ω4,

Φ3
1 = −1

2
L
(

ω1 + ω2
)

∧ ω3 − 1

6
Sω1 ∧ ω3 − 1

2
Tω3 ∧ ω4,

Φ4
1 =

1

2
Tω1 ∧ ω2 − 1

6
Sω1 ∧ ω4 +

1

2
L
(

ω1 + ω2
)

∧ ω4,

Φ4
2 =

1

2
L
(

ω1 + ω2
)

∧ ω4 +
1

6
Sω2 ∧ ω4 +

1

2
Tω1 ∧ ω2,

Φ4
3 = −1

3
Sω3 ∧ ω4 − 1

2
T
(

ω1 + ω2
)

∧ ω3,

Φ3
2 = −1

2
Tω3 ∧ ω4 +

1

6
Sω2 ∧ ω3 − 1

2
L
(

ω1 + ω2
)

∧ ω3,

Φ1 =

(

1

3
Axxx

(

A− 1

2

)

− (b12)x

)

ω1 ∧ ω2 +

(

P − 1

4
Axxz

)

(

ω1 + ω2
)

∧ ω4 +
1

6
Szω

1 ∧ ω4,

Φ2 =

(

1

3
Axxx

(

A+
1

2

)

− (b12)x

)

ω1 ∧ ω2 +

(

P +
1

4
Axxz

)

(

ω1 + ω2
)

∧ ω4 − 1

6
Szω

1 ∧ ω3,

Φ3 = K
(

ω1 + ω2
)

∧ ω3 − 1

6
Axxxω

1 ∧ ω3 − (b33)z ω
3 ∧ ω4,

Φ4 =
1

2
Axxzω

1 ∧ ω2 +M
(

ω1 + ω2
)

∧ ω4 − 1

6
Axxxω

1 ∧ ω4.

In the last four formulas we denoted

P
def
=

1

2
Az

(

Axx +
Czz

C

)

− (b12)z +
1

2
AxxzA+Axb14,

K
def
= −1

6
AxxxA+

1

2
Axz

Cz

C
+
α

2

(

C2
z

C2
− Czz

C
−Axx

)

+
1

12
Axxx,

M
def
=

1

2

(

Axzz +
αCzz

C
− αC2

z

C2
− 1

3
AxxxA

)

+
1

12
Axxx.

Petrov matrix Q(λ) is














−

1

3
S + λ

i

2
T −

1

2
T

i

2
T

1

6
S +

1

2
L + λ

i

2
L

−

1

2
T

i

2
L

1

6
S −

1

2
L + λ















.
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It has type II when S 6= 0, type III when S = 0, T 6= 0, subtype N when S = T = 0, L 6= 0,

subtype O when S = T = L = 0.

Proceeding from the specifics of the conformal curvature matrix, it’s best to start compiling

Yang-Mills equations for the difference between ∗Φ1 and ∗Φ2, i.e. with the equation

d (∗Φ1 − ∗Φ2) + ωk ∧
(

∗Φk
1 − ∗Φk

2

)

− ∗Φk ∧
(

ωk
1 − ωk

2

)

= 0.

We obtain three equations

Axxxx = 0, Axxxz = 0, (29)

Axxx

3
(Ax+α)− Axxzz

3
− AxxzCz

3C
− (Axx)

2

6
− Czzzz

6C
+
CzzzCz

6C2
+

1

3

(

Czz

C

)2

−CzzC
2
z

6C3
= 0. (30)

Equalities (29) mean that

Axxx = β = const. (31)

Taking into account these equations, Yang-Mills equations for the external form ∗Φ1 provide two

new conditions

−1

2
Azzzz +AxxzzA− αβA+Axxz

(

A
Cz

C
+

5

3
Az

)

−AxzzAx + αAxzz −Azzz

Cz

C
+

+Axx

(

2

3
Azz +Az

2Cz

3C
+
α

3
Ax − 5

6
α2

)

−A2
xz −AxzAx

Cz

C
+ αAxz

Cz

C
− αAx

Czz

3C
+

+Azz

(

C2
z

2C2
− 2Czz

3C

)

+Az

(

CzzCz

C2
− Czzz

6C
− C3

z

2C3

)

+ α2

(

C2
z

C2
− 2Czz

3C

)

= 0,

(32)

1

3
AxxAxz +Axz

Czz

6C
− 2

3
βAz +

1

2
Axzzz −

α

2
Axxz−

−Axz

C2
z

2C2
+Axzz

Cz

2C
+ αAxx

Cz

3C
+ α

Czzz

2C
− α

5CzzCz

6C2
= 0.

(33)

Taking into account (31), Yang-Mills equations for the external form ∗Φ3 yield one new

equality

1

6
Axxzz −

β

3
Ax +Axxz

Cz

2C
− αβ

2
+

1

3

(

Czz

C

)

zz

− 1

6

(

Czz

C

)2

+
1

6
A2

xx = 0, (34)

and for the external form ∗Φ4 one new equation

−1

2
Axxzz −Axxz

Cz

6C
− 1

6
A2

xx +
β

3
Ax +

C2
zz

6C2
− Cz

3C

(

Czz

C

)

z

+
αβ

6
= 0. (35)

Equation (31) is equivalent to

A =
1

6
βx3 + f (z)x2 + g (z)x+ h (z) . (36)

Six equations (30), (32), (33), (34), (35) and (36) connect with differential relations five

functions A, f, g, h and C. But equations (33), (34) and (35) are linearly dependent: 2L1 +L2 =

L3, where L1, L2, L3 are left sides of the equations (33), (34) and (35). Therefore, equation (35)

may be discarded. The rest of the equations impose to functions f, g, h and C seven differential

relations, only four of which are independent (we denote with stroke ′ the derivative with respect

to z):

f ′′ − C ′

C
f ′ +

αβ

2
− 1

2

(

C ′′

C

)

′′

+
1

2

(

C ′′

C

)

′

C ′

C
= 0, (37)
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f ′′ +
1

3

C ′

C
f ′ +

2

3
f2 − βg

3
− αβ

6
− 1

6

(

C ′′

C

)2

+
1

3

(

C ′′

C

)

′

C ′

C
= 0, (38)

g′′′

2
− 2βh′

3
− αf ′+

C ′

2C
g′′+

2fg′

3
+

2αfC ′

3C
+g′

(

C ′′

6C
− 1

2

(

C ′

C

)2
)

+
αC ′′′

2C
− 5αC ′′C ′

6C2
= 0, (39)

−1

2
h(4) − C ′

C
h′′′ + h′′

(

4f

3
− 2C ′′

3C
+

1

2

(

C ′

C

)2
)

+

+h′

(

10f ′

3
+

4fC ′

3C
− C ′′′

6C
+
C ′′C ′

C2
− 1

2

(

C ′

C

)3
)

+ h

(

2f ′′ + 2f ′
C ′

C
− αβ

)

− g′′ (g − α)

−− g′2 − g′g
C ′

C
+
αg′C ′

C
+ g

(

2αf

3
− αC ′′

3C

)

− 5α2f

3
+ α2

(

−2C ′′

3C
+

(

C ′

C

)2
)

= 0.

(40)

Without additional constraints, the system of equations (37)–(40) can not be solved explicitly.

The first of these constraints is

C = eγz, γ = const 6= 0. (41)

In this case system (37)–(40) is solved in terms of elementary functions, but the results are

different if β 6= 0 and β = 0.

At β 6= 0 we obtain solution

f = ε1 +
αβ

2γ
z, g =

2f2

β
− γ4

2β
, h =

4

3β2
f3 − αγ3

2β
z + ε2.

Directly through x and z formula (36) can be written as

A =
β

6

(

x+
α

γ
z

)3

+ ε1

(

x+
α

γ
z

)2

+
2

β

(

(ε1)
2 − γ4

4

)(

x+
α

γ
z

)

+
4 (ε1)

3

β2
+ ε2, (42)

ε1, ε2, β, γ are arbitrary constants, but β 6= 0 and γ 6= 0. Formulas (42) and (41) together with

(28) give Yang-Mills metric of type II.

From (41) and β = 0 it follows, that (by virtue of equations (37) and (38)) there are only two

possibilities for the function f(z):

f = ±1

2
γ2. (43)

If the sign is + the following solution to the equations (39) and (40) is obtained

g = ε1 + ε2z + ε3e
−γz,

h = ε4 + ε5e
−γz + ε6e

γz + ε7e
−2γz +

(ε3)
2

3γ
ze−2γz+

+
ε2ε3

γ2
ze−γz + z

(

(ε2)
2

2γ2
z − αε2

γ2
+
ε1ε2

γ2
+
α2

2γ
+

(ε2)
2

2γ3

)

.

(44)

Here ε1, ..., ε7, γ are arbitrary constants, but γ 6= 0. Formulas (44), (43) (with + in the right

side), (41), (36) and (28) give Yang-Mills metric of type III.

Now consider the case with a minus in the right side of (43). Then the solution of (39) and
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(40) is

g = ε1 + ε2e
λ1γz + ε3e

λ2γz − αγz,

h = e−
1

2
γz

(

ε6 cos

√

5

12
γz + ε7 sin

√

5

12
γz

)

+

+
(ε2)

2

2γ2 (λ1 − 3)
e2λ1γz +

(ε3)
2

2γ2 (λ2 − 3)
e2λ2γz + ε4 + ε5e

−γz+

+
ε2

γ2
(αzγ − αλ1 − ε1) e

λ1γz +
ε3

γ2
(αzγ − αλ2 − ε1) e

λ2γz +

(

αε1

γ
− 1

2
α2z

)

z.

(45)

Here ε1, ..., ε7, γ are arbitrary constants, but γ 6= 0; λ1 = −1

2
+

√

19

12
, λ2 = −1

2
−
√

19

12
. Formulas

(44), (43) (with minus in the right side), (41), (36) and (28) give Yang-Mills metric of type II.

Consider now instead of (41) other constraints: C ′′ = 0, S = 0. Then we obtain the following

solution

C = ε1z + ε2, f = 0, β = 0, g = ε3

(

z +
ε2

ε1

)2

+ ε4 ln

(

z +
ε2

ε1

)

+ ε5,

h = ε9 ln

(

z +
ε2

ε1

)

− (ε3)
2

36

(

z +
ε2

ε1

)6

+
ε3

16

(

z +
ε2

ε1

)4(

2α+ ε4 − 2ε5 − 2ε4 ln

(

z +
ε2

ε1

))

+

+ε8 +
1

8

(

z +
ε2

ε1

)2(

4ε6 − 2ε7 + α2 − (ε4)
2

+
(

4ε7 − 2α2 + 2 (ε4)
2
)

ln

(

z +
ε2

ε1

))

.

Here ε1, ..., ε9 are arbitrary constants, but ε1 6= 0. We have received Yang-Mills metric of type III.

Thus, the metric (28) has provided us with two series of Yang-Mills metric of types II and III.

Another remarkable feature of the metric (28) is that at suitable function A(x, z) and C(z)

it gives Einstein metric of type II, which is a rare phenomenon. We do not give the full solution,

but only one particular case:

A = −1

2
γ2x2 + x (ε1 − αγz) + ε4 + ε5e

−γz + z

(

αε1

γ
− 1

2
α2z

)

, C = eγz.

This gives Einstein metric of type II, which is a particular case of solution (45) at ε2 = ε3 =

ε6 = ε7 = 0.

3. Metric of type III, satisfying Yang-Mills equations

Let’s investigate the metric

ψ = 2dt (dx+B (t, z) dy +A (t, z) dt) + (C (t) dy)
2

+ dz2, (46)

which, as we shall see, may be of types III, N or O. The components of conformal connection

matrix Ω are

ω1 =

(

1

2
−A

)

dt− dx−Bdy, ω2 =

(

1

2
+A

)

dt+ dx+Bdy, ω3 = Cdy, ω4 = dz,

ω3
1 = ω3

2 =

.

B

C

(

ω1 + ω2
)

+

.

C

C
ω3 +

B′

2C
ω4, ω2

1 = 0, ω4
1 = ω4

2 = −A′
(

ω1 + ω2
)

− B′

2C
ω3,

ω4
3 = −B′

2C

(

ω1 + ω2
)

, ω1 = ω2 = K
(

ω1 + ω2
)

+
B′′

4C
ω3, ω3 =

B′′

4C

(

ω1 + ω2
)

, ω4 = 0,
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where dot denotes the derivative with respect to t, stroke ′ denotes derivative with respect to z,

K
def
=

1

2

(

A′′ +

..

C

C
− 1

2

(

B′

C

)2
)

.

The components of the conformal curvature matrix Φ are:

Φ2
1 =

B′′

4C

(

ω1 + ω2
)

∧ ω3, Φ4
3 =

B′′

4C

(

ω1 + ω2
)

∧ ω4,

Φ3
1 = Φ3

2 =
B′′

4C
ω1 ∧ ω2 + S

(

ω1 + ω2
)

∧ ω3 − T
(

ω1 + ω2
)

∧ ω4,

Φ4
1 = Φ4

2 =
B′′

4C
ω3 ∧ ω4 − S

(

ω1 + ω2
)

∧ ω4 − T
(

ω1 + ω2
)

∧ ω3,

where S
def
=

1

2

( ..

C

C
−A′′

)

, T
def
=

1

2

( .

B
′

C
+
B′

.

C

C2

)

,

Φ1 = Φ2 =
1

4

(

(

B′′

C

).

+
2B′′

.

C

C2

)

(

ω1 + ω2
)

∧ ω3 +

+

(

B′′B′

8C2
−K ′

)

(

ω1 + ω2
)

∧ ω4 − B′′′

4C
ω3 ∧ ω4,

Φ3 = −B
′′′

4C

(

ω1 + ω2
)

∧ ω4, Φ4 = 0.

Petrov matrix Q(λ) is














λ −B
′′

4C
− iB

′′

4C

−B
′′

4C
−S − iT + λ T − iS

− iB
′′

4C
T − iS S + iT + λ















.

This is a matrix of type III if B′′ 6= 0; of type N if B′′ = 0 and of type O if B′′ = 0, A′′ =

..

C

C
,

B′C = ε (z) , where ε (z) is arbitrary function of z.

Yang-Mills equations for the external form ∗Φ4 are satisfied identically, for the form ∗Φ3

they are reduced to a single equation
∂4B

∂z4
= 0. External forms ∗Φ1 and ∗Φ2 also yield only one

equation
∂4A

∂z4
=

3

2

(

B′′

C

)2

+
3B′′′B′

2C2
. The system of these two equations has a solution

B = β0z
3 + β1z

2 + β2z + β3,

A =
1

C2

[

9 (β0)
2

40
z6 +

9β0β1

20
z5 +

(

3β0β2

8
+

(β1)
2

4

)

z4

]

+ α0z
3 + α1z

2 + α2z + α3,

where β0, β1, β2, β3, α0, α1, α2, α3, C are arbitrary functions of t.

Mertic (46) is Einstein metric when B′′ = 0, A′′ +

..

C

C
− 1

2

(

B′

C

)2

= 0.
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Решение уравнений Янга-Миллса для 4-метрик типов
II, N, III Петрова

Леонид Н. Кривоносов

Вячеслав А. Лукьянов

Приводятся по 4 серии 4-метрик для каждого из видов II, N, III, удовлетворяющих уравнениям

Янга-Миллса.

Ключевые слова: уравнения Эйнштейна, уравнения Янга-Миллса, многообразие конформной связ-

ности с кручением и без кручения.
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