удк 517.55 On Some Systems of Non-algebraic Equations in \mathbb{C}^n

Olga V. Khodos^{*}

Institute of Mathematics and Computer Science Siberian Federal University Svobodny, 79, Krasnoyarsk, 660041 Russia

Received 06.05.2014, received in revised form 09.06.2014, accepted 11.08.2014

A method of finding residue integrals for systems of non-algebraic equations containing entire functions is presented in the paper. Such integrals are connected with the power sums of roots of certain system of equations. The proposed approach can be used for developing methods for the elimination of unknowns from systems of non-algebraic equations. It is shown that obtained results can be used for investigation some model of chemical kinetics.

Keywords: non-algebraic systems of equations, residue integral, power sums.

Introduction

A method for the elimination n unknowns from a system of n non-linear algebraic equations (in the characteristic zero setting) based on multidimensional residue theory was proposed by L.Aizenberg [1]. Further developments of the method can be found in [2–4].

In general, the set of roots of a system of n non-algebraic equations in n variables is infinite. Moreover, multidimensional Newton series (with exponents in \mathbb{N}^n) of the roots of such systems is usually divergent. In the paper, we connect residue integrals with specific systems of n non-linear equations and compute such residue integrals. Then we obtain from this computation (provided that such series do converge) the values of the sums of multidimensional Newton series (with exponents in $(-\mathbb{N}^*)^n$) formed with the roots of such non-linear systems which do not belong to the union of coordinate planes.

A class of systems of equations containing entire or meromorphic functions was considered in [5].

The purpose of this paper is to generalize results given in [5] to a wider class of systems of non-algebraic equations; to obtain formulas for calculation of residue integrals and to reveal the connection between residue integrals and multidimensional power sums of roots.

1. Preliminaries

A.Kytmanov and Z.Potapova [5] considered the following system of functions:

$$f_1(z), f_2(z), \ldots, f_n(z),$$

where $z = (z_1, z_2, ..., z_n)$. Each function $f_j(z)$ is analytic in the neighborhood of $0 \in \mathbb{C}^n$ and has the form

$$f_j(z) = z^{\beta^j} + Q_j(z), \quad j = 1, 2, \dots, n,$$

^{*}OKhodos@sfu-kras.ru

[©] Siberian Federal University. All rights reserved

where $\beta^j = (\beta^j_1, \beta^j_2, \dots, \beta^j_n)$ is a vector of integer nonnegative indices, $z^{\beta^j} = z_1^{\beta^j_1} \cdot z_2^{\beta^j_2} \cdots z_n^{\beta^j_n}$, and $\|\beta^j\| = \beta_1^j + \beta_2^j + \ldots + \beta_n^j = k_j, \ j = 1, 2, \ldots, n.$ Functions Q_j are expanded in a neighborhood of zero into an absolutely and uniformly converging Taylor series of the form

$$Q_j(z) = \sum_{\|\alpha\| > k_j} a_{\alpha}^j z^{\alpha},$$

where $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n), \alpha_j \ge 0, \alpha_j \in \mathbb{Z}$, and $z^{\alpha} = z_1^{\alpha_1} \cdot z_2^{\alpha_2} \cdots z_n^{\alpha_n}$.

The formulas for calculation of residue integrals

$$J_{\beta} = \frac{1}{(2\pi i)^n} \int_{\gamma(r)} \frac{1}{z^{\beta+U}} \cdot \frac{df}{f}$$

in terms of coefficients of $Q_j(z)$ were obtained.

Our goal is to obtain similar results in a more general case.

2. Calculation of residue integrals

We consider a system of functions $f_1(z)$, $f_2(z)$,..., $f_n(z)$. They are analytic in a neighborhood of the point $0 \in \mathbb{C}^n$, $z = (z_1, z_2, \dots, z_n)$ and has the form

$$f_j(z) = (z^{\beta^j} + Q_j(z))e^{P_j(z)}, \quad j = 1, 2, \dots, n,$$
(1)

where $\beta^j = (\beta_1^j, \beta_2^j, \dots, \beta_n^j)$ is a vector of integer nonnegative indices $z^{\beta^j} = z_1^{\beta_1^j} \cdot z_2^{\beta_2^j} \cdots z_n^{\beta_n^j}$ and $\|\beta^j\| = \beta_1^j + \beta_2^j + \dots + \beta_n^j = k_j, j = 1, 2, \dots, n$. Functions Q_j, P_j are expanded in a neighborhood of zero into an absolutely and uniformly converging Taylor series of the form

$$Q_j(z) = \sum_{\|\alpha\| > k_j} a_{\alpha}^j z^{\alpha}, \tag{2}$$

$$P_j(z) = \sum_{\|\gamma\| \ge 0} b_{\gamma}^j z^{\gamma},\tag{3}$$

where $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n), \ \alpha_j \ge 0, \ \alpha_j \in \mathbb{Z}$, and $z^{\alpha} = z_1^{\alpha_1} \cdot z_2^{\alpha_2} \cdots z_n^{\alpha_n}; \ \gamma = (\gamma_1, \gamma_2, \dots, \gamma_n), \ \gamma_j \ge 0, \ \gamma_j \in \mathbb{Z}$, and $z^{\gamma} = z_1^{\gamma_1} \cdot z_2^{\gamma_2} \cdots z_n^{\gamma_n}$.

Firstly this system was considered in [6,7].

So the degree of all monomials in Q_j greater then k_j , j = 1, ..., n.

Consider the integration cycles $\gamma(r) = \gamma(r_1, r_2, \dots, r_n)$, that are skeletons of the polydisks:

$$\gamma(r) = \{ z \in \mathbb{C}^n : |z_s| = r_s, s = 1, 2, \dots, n \}, \quad r_1 > 0, \dots, r_n > 0.$$

For sufficiently small r_j , cycles $\gamma(r)$ lie in the domain where functions f_j are analytic. Therefore, the series

$$\sum_{\|\alpha\|>k_j} |a_{\alpha}^j| r_1^{\alpha_1} \cdots r_n^{\alpha_n}$$
$$\sum_{\|\gamma\|\ge 0} |b_{\gamma}^j| r_1^{\gamma_1} \cdots r_n^{\gamma_n}$$

converge for $j = 1, 2, \ldots, n$. Then, on the cycle $\gamma(tr) = \gamma(tr_1, tr_2, \ldots, tr_n), t > 0$, we have

$$|z|^{\beta^{j}} = t^{k_{j}} \cdot r_{1}^{\beta_{1}^{j}} \cdot r_{2}^{\beta_{2}^{j}} \cdots r_{n}^{\beta_{n}^{j}} = t^{k_{j}} \cdot r^{\beta_{n}^{j}}$$

- 456 -

T

and

$$|Q_j(z)| = \left| \sum_{\|\alpha\| > k_j} a_{\alpha}^j z^{\alpha} \right| \leq \sum_{\|\alpha\| > k_j} t^{\|\alpha\|} |a_{\alpha}^j| r^{\alpha} \leq t^{k_j + 1} \sum_{\|\alpha\| > k_j} |a_{\alpha}^j| r^{\alpha},$$
$$0 \leq t \leq 1, \quad j = 1, \dots, n.$$

Therefore, for sufficiently small positive t, the following inequalities hold on the cycle $\gamma(tr)$:

$$|z|^{\beta^{j}} > |Q_{j}(z)|, \quad j = 1, 2, \dots, n.$$
 (4)

Thus,

$$f_j(z) \neq 0$$
 on $\gamma(tr)$, $j = 1, 2, \dots, n$.

In what follows we assume that t = 1.

Consider the system of equations

$$\begin{cases} f_1(z) = 0, \\ f_2(z) = 0, \\ \dots \\ f_n(z) = 0. \end{cases}$$
(5)

In general, system (5) can have non-discrete set of roots.

It follows from (4) that for sufficiently small r_j the following integrals exist:

$$\int_{\gamma(r)} \frac{1}{z^{\beta+U}} \cdot \frac{df}{f} = \int_{\gamma(r_1, r_2, \dots, r_n)} \frac{1}{z_1^{\beta_1+1} \cdot z_2^{\beta_2+1} \cdots z_n^{\beta_n+1}} \cdot \frac{df_1}{f_1} \wedge \frac{df_2}{f_2} \wedge \dots \wedge \frac{df_n}{f_n}$$

where $\beta_1 \ge 0, \ \beta_2 \ge 0, \dots, \beta_n \ge 0, \ \beta_i \in \mathbb{Z}, \ U = (1, 1, \dots, 1)$. We call such integrals the *residue* integrals. These integrals are not the standard Grothendieck residues, since the cicle $\gamma(r)$ does not connect with fuctions f_1, \ldots, f_n . The Logarithmic Residue Theorem is not applicable to such integrals as well.

These integrals do not depend on (r_1, \ldots, r_n) under condition (4) on $\gamma(r)$.

Let us introduce the following notations

$$J_{\beta} = \frac{1}{(2\pi i)^n} \int_{\gamma(r)} \frac{1}{z^{\beta+U}} \cdot \frac{df}{f}.$$

and $\tilde{f}_j(z) = z^{\beta^j} + Q_j(z), \ j = 1, \dots, n$. Let us assume that I^s is a vector of indices. The vector has n components and consists of s ones and n-s zeros (s = 0, ..., n). More exactly, each $I^s = I[i_1, ..., i_s] =$ $(0,\ldots,0,\overset{i_1}{1},0,\ldots,0,\overset{i_s}{1},0,\ldots,0) \in (\{0,1\})^n$ where i_1,\ldots,i_s are the places of "one" in I^s , $1 \leq i_1 < \ldots < i_s \leq n$. In what follows Δ_{I^s} stands for the Jacobian matrix of the system of functions such that to each "one" on the *j*-th place in I^s there corresponds *j*-th row of the derivatives $\left(\partial \tilde{f}_j/\partial z_i\right)$, $1 \leq i \leq n$ in Δ_{I^s} and to each "zero" on the k-th place in I there corresponds k-th row of the derivatives $(\partial P_k/\partial z_i), 1 \leq i \leq n$ in Δ_{I^s} .

Theorem 1 ([6,7]). Under the assumptions made for the functions f_j defined by (1), (2), (3) the following relations are valid:

$$J_{\beta} = \sum_{s=0}^{n} \sum_{I^{s}} \sum_{\|\alpha^{s}\| \leq \|\beta\| + \min(s, k_{i_{1}} + \dots + k_{i_{s}})} \frac{(-1)^{\|\alpha^{s}\|}}{(\beta + (\alpha_{1}^{s} + 1)\beta^{i_{1}^{s}} + \dots + (\alpha_{s}^{s} + 1)\beta^{i_{s}^{s}})!} \times$$

$$\times \frac{\partial^{l_s} (\Delta_{I^s} \cdot Q^{\alpha^s}(I^s))}{\partial z^{\beta + (\alpha_1^s + 1)\beta^{i_1^s} + \dots + (\alpha_s^s + 1)\beta^{i_s^s}}}\Big|_{z=0}$$

or

$$J_{\beta} = \sum_{s=0}^{n} \sum_{I^{s}} \sum_{\|\alpha^{s}\| \leq \|\beta\| + \min(n, k_{i_{1}} + \dots + k_{i_{s}})} (-1)^{\|\alpha^{s}\|} \mathfrak{M} \left[\frac{\Delta_{I^{s}} \cdot Q^{\alpha^{s}}(I^{s})}{z^{\beta + (\alpha^{s}_{1} + 1)\beta^{i_{1}^{s}} + \dots + (\alpha^{s}_{s} + 1)\beta^{i_{s}^{s}}} \right], \qquad (6)$$

where α^s is a vector of indices with s components; i_k^s is the index of the k-th 1 in I^s ; $l_s = \|\beta + (\alpha_1^s + 1)\beta^{i_1^s} + \ldots + (\alpha_s^s + 1)\beta^{i_s^s}\|$; $\beta! = \beta_1! \cdot \beta_2! \cdots \beta_n!$; $Q^{\alpha^s}(I^s) = Q_{i_1^s}^{\alpha_1^s} \cdot Q_{i_2^s}^{\alpha_2^s} \cdots Q_{i_s^s}^{\alpha_s^s}$; $\frac{\partial^{\|\gamma\|}\varphi}{\partial z^{\gamma}} = \frac{\partial^{\gamma_1 + \ldots + \gamma_n}\varphi}{\partial z_1^{\gamma_1} \partial z_2^{\gamma_2} \cdots \partial z_n^{\gamma_n}}$; and \mathfrak{M} is a linear functional that assigns constant term to a Laurent polynomial.

Remark 1. According to the proof the relation given in the statement of Theorem 1 contains only a finite number of coefficients of the functions $Q_j(z)$ and $P_j(z)$.

Corollary 1 ([7]). If all $\beta^j = (0, 0, \dots, 0)$, $j = 1, \dots, n$, then the integral J_β is

$$J_{\beta} = \sum_{s=0}^{n} \sum_{I^{s}} \sum_{\|\alpha^{s}\| \leqslant \|\beta\|} (-1)^{\|\alpha\|} \mathfrak{M} \left[\frac{\Delta_{I^{s}} Q(I^{s})^{\alpha^{s}}}{z^{\beta}} \right] =$$
$$= \sum_{s=0}^{n} \sum_{I^{s}} \sum_{\|\alpha^{s}\| \leqslant \|\beta\|} \frac{(-1)^{\|\alpha^{s}\|}}{\beta!} \frac{\partial^{\|\beta\|}}{\partial z^{\beta}} \left(\Delta_{I} Q(I)^{\alpha^{s}} \right) \bigg|_{z=0}.$$

In the case of $\beta^j = (0, 0, ..., 0)$, it is also possible to obtain relation for J_β with the use of the Cauchy integral formula for several complex variables, since $f_j(0) \neq 0$ for all j = 1, ..., n.

3. Power sums

Our next goal is to connect considered above integrals with power sums of roots of system (5). We must reduce the class of functions f_j . At first we take Q_j (j = 1, 2, ..., n) as polynomials of the form

$$Q_j(z) = \sum_{\alpha \in M_j} a^j_{\alpha} z^{\alpha}, \tag{7}$$

where M_j is finite set of multi-indexes such that for $\alpha \in M_j$ coordinates $\alpha_k \leq \beta_k^j$, k = 1, 2, ..., n, $k \neq j$, but $\|\alpha\| > k_j$ for all $\alpha \in M_j$ as before. Functions P_j (j = 1, 2, ..., n) are polynomials of the form

$$P_j(z) = \sum_{0 \le \|\gamma\| \le p_j} b_{\gamma}^j z^{\gamma}.$$
(8)

Let us introduce the substitution $z_j = \frac{1}{w_j}$, j = 1, 2, ..., n. Therefore, we obtain

$$f_j\left(\frac{1}{w_1}, \frac{1}{w_2}, \dots, \frac{1}{w_n}\right) = \left[\frac{1}{w^{\beta^j}} + Q_j\left(\frac{1}{w_1}, \frac{1}{w_2}, \dots, \frac{1}{w_n}\right)\right] e^{P_j\left(\frac{1}{w_1}, \frac{1}{w_2}, \dots, \frac{1}{w_n}\right)} = \\ = \frac{1}{w^{\beta^j + s_j e^j}} \left(w_j^{s_j} + \tilde{Q}_j(w_1, w_2, \dots, w_n)\right) e^{P_j\left(\frac{1}{w_1}, \frac{1}{w_2}, \dots, \frac{1}{w_n}\right)},$$

where s_j is the degree of w_j , $e^1 = (1, 0, ..., 0)$, $e^2 = (0, 1, ..., 0)$, ..., $e^n = (0, 0, ..., 1)$, and degree of polynomials

$$\widetilde{Q}_j(w_1, w_2, \dots, w_n) = \widetilde{Q}_j(w) = w^{\beta^j + s_j e^j} \cdot Q_j\left(\frac{1}{w_1}, \frac{1}{w_2}, \dots, \frac{1}{w_n}\right)$$

is less than s_i .

According to the Bezout theorem the system of nonlinear algebraic equations

$$\widetilde{f}_{j}(w) = w_{j}^{s_{j}} + \widetilde{Q}_{j}(w) = 0, \quad j = 1, 2, \dots, n,$$
(9)

has a finite number of roots that equals to $s_1 \cdot s_2 \cdots s_n$ and it has no roots on the infinite hyperplane $\mathbb{CP}^n \setminus \mathbb{C}^n$.

Let us denote roots of system (5) not lying on coordinate planes as $w_{(k)} = (w_{1(k)}, w_{2(k)}, \ldots, w_{n(k)}), \ k = 1, 2, \ldots, M, \ M \leq s_1 \cdot s_2 \cdots s_n$. Then points $z_{(k)} = \left(\frac{1}{w_{1(k)}}, \frac{1}{w_{2(k)}}, \ldots, \frac{1}{w_{n(k)}}\right)$ are the roots of system (5), not lying on coordinate planes. So we have the following assertion

Lemma 1. System (5) with polynomials Q_j of the form (7) and P_j of the form (8) has a finite number of roots $z_{(1)}, z_{(2)}, \ldots, z_{(M)}$ not lying on coordinate planes $\{z_s = 0\}, s = 1, 2, \ldots, n$.

Let us introduce notation

$$\sigma_{\beta+I} = \sigma_{(\beta_1+1,\beta_2+1,\dots,\beta_n+1)} = \sum_{k=1}^{M} \frac{1}{z_{1(k)}^{\beta_1+1} \cdot z_{2(k)}^{\beta_2+1} \cdots z_{n(k)}^{\beta_n+1}}.$$

This expression is the sum of roots of system (5) to negative powers. The roots are not lying on coordinate planes.

Theorem 2. For system (5) with polynomials Q_j of the form (7) and P_j of the form (8), for which

$$l^1 + \ldots + l^n \leqslant \beta,\tag{10}$$

where $l^j = (l_1^j, \ldots, l_n^j)$ and l_i^j is the degree of polynomial P_i with respect to variable z_j ; $i, j = 1, \ldots, n$, the relation

$$J_{\beta} = (-1)^n \sigma_{\beta+I},$$

holds (multi-index $\alpha \leq \beta$, if this inequality is true for all coordinates).

Proof. We perform the substitution of variables $z_j = \frac{1}{w_j}$, j = 1, 2, ..., n in integral J_β . With this substitution the cycle $\gamma(r)$ is transformed to the cycle

$$(-1)^n \gamma\left(\frac{1}{r_1}, \frac{1}{r_2}, \dots, \frac{1}{r_n}\right) = (-1)^n \gamma(R_1, R_2, \dots, R_n).$$

Let us denote multi-index $\beta^j + s_j e^j$ as γ^j , j = 1, 2, ..., n. Then

$$\frac{df_j\left(\frac{1}{w_1}, \frac{1}{w_2}, \dots, \frac{1}{w_n}\right)}{f_j\left(\frac{1}{w_1}, \frac{1}{w_2}, \dots, \frac{1}{w_n}\right)} = \frac{d\widetilde{f}_j(w)}{\widetilde{f}_j(w)} - \sum_{k=1}^n \gamma_k^j \cdot \frac{dw_k}{w_k} - \sum_{k=1}^n \frac{1}{w_k^2} \cdot (P_j)'_{(z_k)} dw_k.$$

Therefore

$$J_{\beta} = \frac{(-1)^{n}}{(2\pi i)^{n}} \int_{\gamma(R)} w^{\beta+I} \left(\frac{d\tilde{f}_{1}(w)}{\tilde{f}_{1}(w)} - \sum_{k=1}^{n} \gamma_{k}^{1} \cdot \frac{dw_{k}}{w_{k}} - \sum_{k=1}^{n} \frac{1}{w_{k}^{2}} \cdot (P_{1})'_{(z_{k})} dw_{k} \right) \wedge \dots$$

$$\ldots \wedge \left(\frac{d\widetilde{f}_{n}(w)}{\widetilde{f}_{n}(w)} - \sum_{k=1}^{n} \gamma_{k}^{n} \cdot \frac{dw_{k}}{w_{k}} - \sum_{k=1}^{n} \frac{1}{w_{k}^{2}} \cdot (P_{n})'_{(z_{k})} dw_{k}\right).$$

We can easily show that all integrals of the form

$$\int_{\gamma(R)} w^{\beta+I} \frac{d\tilde{f}_1(w)}{\tilde{f}_1(w)} \wedge \ldots \wedge \frac{d\tilde{f}_l(w)}{\tilde{f}_l(w)} \wedge \frac{dw_{j_1}}{w_{j_1}} \wedge \ldots \wedge \frac{dw_{j_{n-l}}}{w_{j_{n-l}}}$$
(11)

not containing

$$\sum_{k=1}^{n} \frac{1}{w_{k}^{2}} \cdot (P_{l})_{(z_{k})}^{'} dw_{k}$$

vanish if $0 \leq l < n$ and R_j are sufficiently large.

In a similar way we can prove that if integrand expression contains the differentials dP_j and $\frac{dw_k}{dt}$ then these integrals also vanish.

 w_k Then we show that all integrals of the form

$$\int_{\gamma(R)} w^{\beta+I} \frac{d\widetilde{f}_1(w)}{\widetilde{f}_1(w)} \wedge \ldots \wedge \frac{d\widetilde{f}_l(w)}{\widetilde{f}_l(w)} \wedge dP_{l+1}\left(\frac{1}{w_1}, \frac{1}{w_2}, \ldots, \frac{1}{w_n}\right) \wedge \ldots \wedge dP_n\left(\frac{1}{w_1}, \frac{1}{w_2}, \ldots, \frac{1}{w_n}\right)$$
(12)

with condition (10) vanish if $0 \leq l < n$ and R_i are sufficiently large.

Thus, we have

$$J_{\beta} = \frac{(-1)^n}{(2\pi i)^n} \int_{\gamma(R)} w^{\beta+I} \frac{d\widetilde{f}_1(w)}{\widetilde{f}_1(w)} \wedge \ldots \wedge \frac{d\widetilde{f}_n(w)}{\widetilde{f}_n(w)}.$$

According to the Yuzhakov Theorem on Logarithmic Residue the last integral is equal the sum of values of holomorphic function $w^{\beta+I}$ at all roots of system (9). However, the value of function $w^{\beta+I}$ at the root of system (9), lying on coordinate plane, is equal to zero.

Therefore, we obtain

$$= (-1)^n \sigma_{\beta+I}.$$

Let us extend our consideration. Let us assume that functions f_j have the form

 J_{β}

$$f_j(z) = \frac{f_j^{(1)}(z)}{f_j^{(2)}(z)}, \quad j = 1, 2, \dots, n,$$
(13)

where $f_j^{(1)}(z)$ and $f_j^{(2)}(z)$ are entire functions in \mathbb{C}^n of finite order of growth. They are represented by infinite product (uniformly converging in \mathbb{C}^n)

$$f_j^{(1)}(z) = \prod_{s=1}^{\infty} f_{j_s}^{(1)}(z), \quad f_j^{(2)}(z) = \prod_{s=1}^{\infty} f_{j_s}^{(2)}(z).$$

Moreover, each factor has the form $(z^{\beta^{j_s}} + Q_{j_s}(z))e^{P_{j_s}(z)}$. Polynomials $Q_{j_s}(z)$ and $P_{j_s}(z)$ are of the form (7), (8) and degrees of all polynomials deg $P_{j_s} \leq \rho$, j = 1, 2, ..., n, $s = 1, 2, ..., \infty$. Thus $f_j^{(1)}(z) \neq f_j^{(2)}(z)$ are entire functions with finite order of growth not greater than ρ .

Thus $j_j^{(i)}(z)$ if $j_j^{(i)}(z)$ are entire functions with finite order of growth not greater than ρ . For all set of indexes j_1, \ldots, j_n , where $j_1, \ldots, j_n \in \mathbb{N}$, and each set of numbers i_1, \ldots, i_n , where i_1, \ldots, i_n are equal to 1 or 2, systems of non-linear algebraic equations

$$f_{1j_1}^{(i_1)}(z) = 0, \quad f_{2j_2}^{(i_2)}(z) = 0, \ \dots, \ f_{nj_n}^{(i_n)}(z) = 0,$$
 (14)

have (according to Lemma 1) finite number of roots not lying on coordinate planes.

Number of roots of such system is not more than countable set. Let us denote the roots as $z_{(1)}, z_{(2)}, \ldots, z_{(l)}, \ldots$

Let us introduce the following expression

$$\sigma_{\beta+I} = \sum_{l=1}^{\infty} \frac{\varepsilon_l}{z_{1(l)}^{\beta_1+1} \cdot z_{2(l)}^{\beta_2+1} \cdots z_{n(l)}^{\beta_n+1}}.$$

Here β_1, \ldots, β_n are nonnegative integer numbers and the sign of ε_l is equal to +1 if the system of the form (14), which root is $z_{(l)}$, contains even number of functions $f_{j_s}^{(2)}$; and the sign of ε_l is equal to -1, if the system of the form (14), which root is $z_{(l)}$, contains odd number of functions $f_{j_s}^{(2)}$.

For system (5), which consists of functions of the form (13), the points $z_{(l)}$ are roots or singular points (poles). All functions f_j are analytic in some neighborhood of 0.

Let us introduce multi-undex $l^j = (l_1^j, \ldots, l_n^j)$, where l_i^j is the maximum degree of polynomial P_i with respect to variable z_j ; $i, j = 1, \ldots, n$ contained in decomposition of f_i (multi-index $\alpha \leq \beta$ if this inequality valid fore all coordinates).

Theorem 3. Let us assume that the degrees of all polynomials P_j used in decomposition of functions of the form (13) in system (5) are bounded by number ρ and inequality

$$l^1 + \ldots + l^n \leqslant \beta,$$

holds. Then the following relations

$$J_{\beta} = (-1)^n \sigma_{\beta+I}$$

are valid.

The proof of this theorem immediately follows from Theorem 2.

4. Model of Zel'dovich–Semenov

We show that the considered methods of complex analysis can be useful in the study of the equations of chemical kinetics.

Consider the model of Zel'dovich-Semenov ideal mixing reactor (see. [9, Ch. 2, Eq. (2.2.1)]. It has the form

$$\begin{cases} (1-x)e^{\frac{y}{(1+\beta y)}} - \frac{x}{Da} = \frac{dx}{d\tau},\\ (1-x)e^{\frac{y}{(1+\beta y)}} - \frac{y}{Se} = \gamma \frac{dy}{d\tau}. \end{cases}$$

where β , D, a, S, e are positive parameters.

Denote Da = a, Se = b. Stationary states of the system satisfy the equations

$$\begin{cases} (1-x)e^{\frac{y}{(1+\beta y)}} - \frac{x}{a} = 0, \\ (1-x)e^{\frac{y}{(1+\beta y)}} - \frac{y}{b} = 0. \end{cases}$$
(15)

In $[9, r\pi.2]$ qualitative study of the system conducted (15). We consider here a quantitative study.

From the Equations (15), we obtain that $x = \frac{a}{b}y$. Substituting this expression into the first equation, we have

$$e^{\frac{y}{1+\beta y}} = \frac{y}{b-ay}$$

- 461 -

We make the substitution

$$\frac{y}{b-ay} = \frac{z}{b},\tag{16}$$

then $y = \frac{zb}{b+az}$. Hence we have

$$e^{\frac{z}{1+z(\beta+a/b)}} = \frac{z}{b}.$$
(17)

We introduce the notation

$$\frac{1}{b} = \gamma, \quad \beta + \frac{a}{b} = \alpha,$$

i.e. $b = \frac{1}{\gamma}$, $a = (\alpha - \beta)b$. Then from (17) we obtain the equation

$$e^{\frac{z}{1+\alpha z}} = \gamma z. \tag{18}$$

First examine the function

$$\varphi(z) = \frac{1}{z} \cdot e^{\frac{z}{1+\alpha z}}$$

for positive z. Find the derivative

$$\varphi'(z) = e^{\frac{z}{1+\alpha z}} \cdot \frac{-\alpha^2 z^2 - z(2\alpha - 1) - 1}{z^2(1+\alpha z)^2}.$$

Investigate quadratic trinomial in the numerator of the fraction on the mark. Obtain that its discriminant $D = 1 - 4\alpha$, then at $0 < \alpha < 1/4$ derivative $\varphi'(z)$ has two roots $z_1 < z_2$, and at $\alpha > 1/4$ is one root. Exploring the position of the vertex of the parabola, we obtain that for $\alpha < 1/2$ it is positive, and for $\alpha > 1/2$ it is negative.

Therefore, if the derivative has two roots, they are both positive. In this case, the smaller root z_1 is a minimum point, and the larger root z_2 is a maximum point.

Asymptotes of the functions $\varphi(z)$ are: z = 0 is vertical asymptote ($\varphi(z) \to +\infty$ as $z \to +0$), and the axis OZ is the horizontal asymptote ($\varphi(z) \to +0$ as $z \to +\infty$).

Consider the equation

$$\varphi(z) = \gamma, \tag{19}$$

equivalent to Equation (17).

From the previous studies, we obtain that Equation (19) at $0 < \alpha < 1/4$ has three roots at $\varphi(z_1) < \gamma < \varphi(z_2)$. And if $0 < \alpha < 1/4$, Equation (19) has one root, when either $z > \varphi(z_2)$, either $z < \varphi(z_1)$.

At $\alpha > 1/4$ Equation (19) has one root for all γ , since the function φ is strictly decreasing. Calculating z_1 and z_2 at $\alpha < 1/4$, we obtain

$$z_1 = \frac{1 - 2\alpha - \sqrt{D}}{2\alpha^2}, \quad z_1 = \frac{1 - 2\alpha + \sqrt{D}}{2\alpha^2}, \quad D = 1 - 4\alpha.$$

Then

$$\varphi(z_1) = e^{\frac{1-\sqrt{D}}{2\alpha^2}} \cdot \frac{2\alpha^2}{1-2\alpha - \sqrt{D}}$$

and

$$\varphi(z_2) = e^{\frac{1+\sqrt{D}}{2\alpha^2}} \cdot \frac{2\alpha^2}{1-2\alpha + \sqrt{D}}$$

Proposition 1. Let $D = 1 - 4\alpha > 0$. Equation (19) has three positive roots at

$$e^{\frac{1-\sqrt{D}}{2\alpha^2}} \cdot \frac{2\alpha^2}{1-2\alpha-\sqrt{D}} < \gamma < e^{\frac{1+\sqrt{D}}{2\alpha^2}} \cdot \frac{2\alpha^2}{1-2\alpha+\sqrt{D}}$$

one root if either

$$\gamma > e^{\frac{1+\sqrt{D}}{2\alpha^2}} \cdot \frac{2\alpha^2}{1-2\alpha+\sqrt{D}},$$

either

$$\gamma < e^{\frac{1-\sqrt{D}}{2\alpha^2}} \cdot \frac{2\alpha^2}{1-2\alpha - \sqrt{D}}$$

If $D = 1 - 4\alpha < 0$, Equation (19) has only one positive root.

Returning to the variables a, b, β we obtain

Corollary 2. If $D' = \beta + \frac{a}{b} < 1/4$, then Equation (17) has three positive roots at

$$e^{\frac{-1+\sqrt{D'}}{2(\beta+a/b)^2}} \cdot \frac{1-2(\beta+a/b)-\sqrt{D'}}{2(\beta+a/b)^2} > b > e^{\frac{-1-\sqrt{D'}}{2(\beta+a/b)^2}} \cdot \frac{1-2(\beta+a/b)+\sqrt{D'}}{2(\beta+a/b)^2},$$

has one positive root, if either

$$e^{\frac{-1+\sqrt{D'}}{2(\beta+a/b)^2}}\cdot\frac{1-2(\beta+a/b)-\sqrt{D'}}{2(\beta+a/b)^2} < b,$$

either

$$b < e^{\frac{-1-\sqrt{D'}}{2(\beta+a/b)^2}} \cdot \frac{1-2(\beta+a/b) + \sqrt{D'}}{2(\beta+a/b)^2}.$$

At $\beta + \frac{a}{b} > 1/4$ Equation (17) has one positive root.

Thus, the system (15) has no more than three roots with positive coordinates. Let us consider how the system (15) has complex roots.

Solving it by making the change $t = \frac{y}{1+\beta y}$ (i.e. $y = \frac{t}{1-\beta t}$), we get

$$\begin{cases} \left(\frac{t}{b(1-\beta t)} - \frac{1}{a}\right)e^t + \frac{t}{ab(1-\beta t)} = 0\\ x = 1 - \frac{t}{b(1-\beta t)}e^{-t}. \end{cases}$$

Hence

 $(at - b(1 - \beta t))e^t + t = 0.$ (20)

Denote by

 $\psi(t) = (at - b(1 - \beta t))e^t + t.$

Recall Hadamard theorem for functions of finite order of growth (see, for example, [8]).

Definition 1. Expressions E(u, 0) = 1 - u,

$$E(u,p) = (1-u)e^{u + \frac{u^2}{2} + \dots + \frac{u^p}{p}};$$

 $p = 1, 2, \ldots$ are called primary factors.

– 463 –

If the function f(z) in the complex plane has a finite order of growth, then there is not depending on n an integer $p \leq \rho$ that the product

$$\prod_{n=1}^{\infty} E\left(\frac{z}{z_n}, p\right) \tag{21}$$

converges for all values of z, if the series converges

$$\sum \left(\frac{r}{r_n}\right)^{p+1} \tag{22}$$

where r_1, r_2, \ldots are modules zeros of function f(z), and this series converges for all values of r, if $p + 1 \ge \rho$.

Definition 2. Product (21) with the least of the integers p for which the series converges is called the canonical product, constructed from the zeros of f(z), and is the smallest p is called its genus.

Theorem 4 (Hadamard). If a function f(z) is entire of order ρ with zeros z_1, z_2, \ldots , what is more $f(0) \neq 0$, then

$$f(z) = e^{Q(z)} P(z), \tag{23}$$

where P(z) is canonical product constructed from the zeros of f(z), and Q(z) is polynomial of degree not higher than ρ (see, for example, [8]).

Function $\psi(t)$ is a entire function of the first order and exponential type 1. Let function $\psi(t)$ have a finite number of zeros in \mathbb{C} . Then by Hadamard's theorem it has the form

$$\psi(t) = e^t \cdot P_n(t),$$

where a polynomial

$$P_n(t) = \left(1 - \frac{t}{t_1}\right) \cdots \left(1 - \frac{t}{t_n}\right),$$

and t_1, t_2, \ldots, t_n are zeros of function $\psi(t)$.

Then

$$(at - b(1 - \beta t))e^t + t = e^t \cdot P_n(t).$$

Hence

$$e^t = \frac{-t}{at - b(1 - \beta t) - P_n(t)}$$

which is impossible since the right is a rational function.

Thus the number of zeros of $\psi(t)$ is infinite. These zeros have no limit points in \mathbb{C} . If they are denoted by t_1, \ldots, t_n, \ldots , their modules $|t_n| \to \infty$ as $n \to \infty$.

Denote by (x_n, y_n) (n = 1, ...) are roots of the system (15). Since $y = \frac{t}{1 - \beta t}$, then $y_n \to -\frac{1}{\beta}$ as $n \to \infty$. Since $\psi(t_n) = 0$, then

$$e^{t_n} = -\frac{t_n}{at_n - b(1 - \beta t_n)},$$

hence $e^{t_n} \to -\frac{1}{a+b\beta}$. Since $x = 1 - \frac{t}{b(1-\beta t)}e^{-t}$, then $x_n \to -\frac{a}{b\beta}$. **Proposition 2.** System (15) has an infinite number of complex roots $(x_n, y_n) \in \mathbb{C}^2$, n = 1, ...there is a limit to this sequence of complex zeros when $n \to \infty$ and is equal to $-\left(\frac{a}{b\beta}, \frac{1}{\beta}\right)$.

Let us consider the order of convergence of zeros y_n . Since the function $\psi(t)$ is a first order, then (see, for example, [8]) $\sum_{n=1}^{\infty} \frac{1}{|t_n|^{1+\varepsilon}} < \infty$ for all $\varepsilon > 0$.

Hence we obtain

Corollary 3. Series

$$\sum_{n=1}^{\infty} \left| \frac{1}{y_n} + \beta \right|^{1+\varepsilon} < \infty \quad for \ all \quad \varepsilon > 0.$$

This work was supported by the Russian Foundation for Basic Research, Grants 12-01-00007.

References

- L.A.Aizenberg, On a formula of the gereralized multidimensional logarithmic residue and the solution of system of nonlinear equations, Sov. Math. Doc., 18(1977), 691–695.
- [2] L.A.Aizenberg, A.P.Yuzhakov, Integral representations and residues in multidimensional complex analysis, Trans. Amer. Math. Monographs, AMS, Providence, RI, 1983.
- [3] A.K.Tsikh, Multidimensional residues and their applications. Trans. Amer. Math. Monographs, AMS, Providence, RI, 1992.
- [4] V.Bykov, A.Kytmanov, M.Lazman, M.Passare, (ed), Elimination Methods in Polynomial Computer Algebra, Math. and Appl., Kluwer Acad. Publ., Dordreht, Boston, London, 1998.
- [5] A.M.Kytmanov, Z.E.Potapova, Formulas for determining power sums of roots of systems of meromorphic functions, *Izvestiya VUZ. Matematika*, 49(2005), no. 8, 36–45 (in Russian).
- [6] A.M.Kytmanov, E.K.Myshkina, Evaluation of power sums of roots for systems of nonalgebraic equations in Cⁿ, Russ. Math., 57(2013), no. 12, 31–43.
- [7] A.A.Kytmanov, A.M.Kytmanov, E.K.Myshkina, Finding residue integrals for systems of non-algebraic equations in Cⁿ, Journal of Symbolic Computation, 66(2015), 98–110.
- [8] E.C.Titchmarsh, The Theory of Functions, Oxford University Press, 1939.
- [9] V.I.Bykov, S.B.Tsybenova, Non-linear models of chemical kinetics, KRASAND, Moscow, 2011 (in Russian).

О некоторых системах неалгебраических уравнений в \mathbb{C}^n

Ольга В. Ходос

Ключевые слова: неалгебраические системы уравнений, вычетный интеграл, степенные суммы.

Рассмотрен метод нахождения вычетных интегралов для систем неалгебраических уравнений, состоящих из целых функций. Такие интегралы связаны со степенными суммами корней системы уравнений. Предложенный подход может быть использован для развития метода исключения неизвестных из систем неалгебраических уравнений. Показано, что полученные результаты могут быть использованы для исследования одной модели химической кинетики.