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A method of finding residue integrals for systems of non-algebraic equations containing entire functions

is presented in the paper. Such integrals are connected with the power sums of roots of certain system of

equations. The proposed approach can be used for developing methods for the elimination of unknowns

from systems of non-algebraic equations. It is shown that obtained results can be used for investigation

some model of chemical kinetics.
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Introduction

A method for the elimination n unknowns from a system of n non-linear algebraic equations
(in the characteristic zero setting) based on multidimensional residue theory was proposed by
L.Aizenberg [1]. Further developments of the method can be found in [2–4].

In general, the set of roots of a system of n non-algebraic equations in n variables is infinite.
Moreover, multidimensional Newton series (with exponents in N

n) of the roots of such systems is
usually divergent. In the paper, we connect residue integrals with specific systems of n non-linear
equations and compute such residue integrals. Then we obtain from this computation (provided
that such series do converge) the values of the sums of multidimensional Newton series (with
exponents in (−N

∗)n) formed with the roots of such non-linear systems which do not belong to
the union of coordinate planes.

A class of systems of equations containing entire or meromorphic functions was considered
in [5].

The purpose of this paper is to generalize results given in [5] to a wider class of systems of
non-algebraic equations; to obtain formulas for calculation of residue integrals and to reveal the
connection between residue integrals and multidimensional power sums of roots.

1. Preliminaries

A.Kytmanov and Z.Potapova [5] considered the following system of functions:

f1(z), f2(z), . . . , fn(z),

where z = (z1, z2, . . . , zn). Each function fj(z) is analytic in the neighborhood of 0 ∈ C
n and

has the form

fj(z) = zβj

+Qj(z), j = 1, 2, . . . , n,
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where βj = (βj
1, β

j
2, . . . , β

j
n) is a vector of integer nonnegative indices, zβj

= z
β

j
1

1 · zβ
j
2

2 · · · zβj
n

n , and

‖βj‖ = βj
1 + βj

2 + . . . + βj
n = kj , j = 1, 2, . . . , n. Functions Qj are expanded in a neighborhood

of zero into an absolutely and uniformly converging Taylor series of the form

Qj(z) =
∑

‖α‖>kj

aj
αz

α,

where α = (α1, α2, . . . , αn), αj > 0, αj ∈ Z, and zα = zα1
1 · zα2

2 · · · zαn
n .

The formulas for calculation of residue integrals

Jβ =
1

(2πi)n

∫

γ(r)

1

zβ+U
· df
f

in terms of coefficients of Qj(z) were obtained.
Our goal is to obtain similar results in a more general case.

2. Calculation of residue integrals

We consider a system of functions f1(z), f2(z), . . . , fn(z). They are analytic in a neighbor-
hood of the point 0 ∈ C

n, z = (z1, z2, . . . , zn) and has the form

fj(z) = (zβj

+Qj(z))e
Pj(z), j = 1, 2, . . . , n, (1)

where βj = (βj
1, β

j
2, . . . , β

j
n) is a vector of integer nonnegative indices zβj

= z
β

j
1

1 · zβ
j
2

2 · · · zβj
n

n and

‖βj‖ = βj
1 +βj

2 + . . .+βj
n = kj , j = 1, 2, . . . , n. Functions Qj , Pj are expanded in a neighborhood

of zero into an absolutely and uniformly converging Taylor series of the form

Qj(z) =
∑

‖α‖>kj

aj
αz

α, (2)

Pj(z) =
∑

‖γ‖>0

bjγz
γ , (3)

where α = (α1, α2, . . . , αn), αj > 0, αj ∈ Z, and zα = zα1
1 · zα2

2 · · · zαn
n ; γ = (γ1, γ2, . . . , γn),

γj > 0, γj ∈ Z, and zγ = zγ1

1 · zγ2

2 · · · zγn
n .

Firstly this system was considered in [6, 7].
So the degree of all monomials in Qj greater then kj , j = 1, . . . , n.
Consider the integration cycles γ(r) = γ(r1, r2, . . . , rn), that are skeletons of the polydisks:

γ(r) = {z ∈ C
n : |zs| = rs, s = 1, 2, . . . , n}, r1 > 0, . . . , rn > 0.

For sufficiently small rj , cycles γ(r) lie in the domain where functions fj are analytic. Therefore,
the series ∑

‖α‖>kj

|aj
α|rα1

1 · · · rαn
n

∑

‖γ‖>0

|bjγ |rγ1

1 · · · rγn
n

converge for j = 1, 2, . . . , n. Then, on the cycle γ(tr) = γ(tr1, tr2, . . . , trn), t > 0, we have

|z|βj

= tkj · rβ
j
1

1 · rβ
j
2

2 · · · rβj
n

n = tkj · rβj

– 456 –



Olga V.Khodos On Some Systems of Non-algebraic Equations in Cn

and

|Qj(z)| =

∣∣∣∣∣∣

∑

‖α‖>kj

aj
αz

α

∣∣∣∣∣∣
6

∑

‖α‖>kj

t‖α‖|aj
α|rα

6 tkj+1
∑

‖α‖>kj

|aj
α|rα,

0 6 t 6 1, j = 1, . . . , n.

Therefore, for sufficiently small positive t, the following inequalities hold on the cycle γ(tr):

|z|βj

> |Qj(z)|, j = 1, 2, . . . , n. (4)

Thus,
fj(z) 6= 0 on γ(tr), j = 1, 2, . . . , n.

In what follows we assume that t = 1.
Consider the system of equations





f1(z) = 0,

f2(z) = 0,

...............

fn(z) = 0.

(5)

In general, system (5) can have non-discrete set of roots.
It follows from (4) that for sufficiently small rj the following integrals exist:

∫

γ(r)

1

zβ+U
· df
f

=

∫

γ(r1,r2,...,rn)

1

zβ1+1
1 · zβ2+1

2 · · · zβn+1
n

· df1
f1

∧ df2
f2

∧ . . . ∧ dfn

fn

,

where β1 > 0, β2 > 0, . . . , βn > 0, βj ∈ Z, U = (1, 1, . . . , 1). We call such integrals the residue
integrals. These integrals are not the standard Grothendieck residues, since the cicle γ(r) does
not connect with fuctions f1, . . . , fn. The Logarithmic Residue Theorem is not applicable to
such integrals as well.

These integrals do not depend on (r1, . . . , rn) under condition (4) on γ(r).
Let us introduce the following notations

Jβ =
1

(2πi)n

∫

γ(r)

1

zβ+U
· df
f
.

and f̃j(z) = zβj

+Qj(z), j = 1, . . . , n.
Let us assume that Is is a vector of indices. The vector has n components and con-

sists of s ones and n − s zeros (s = 0, . . . , n). More exactly, each Is = I[i1, . . . , is] =

(0, . . . , 0,
i1
1 , 0, . . . , 0,

is

1 , 0, . . . , 0) ∈ ({0, 1})n where i1, . . . , is are the places of "one" in Is,
1 6 i1 < . . . < is 6 n. In what follows ∆Is stands for the Jacobian matrix of the system
of functions such that to each "one" on the j-th place in Is there corresponds j-th row of the

derivatives
(
∂f̃j/∂zi

)
, 1 6 i 6 n in ∆Is and to each "zero" on the k-th place in I there corre-

sponds k-th row of the derivatives (∂Pk/∂zi), 1 6 i 6 n in ∆Is .

Theorem 1 ( [6, 7]). Under the assumptions made for the functions fj defined by (1), (2), (3)
the following relations are valid:

Jβ =

n∑

s=0

∑

Is

∑

‖αs‖6‖β‖+min(s,ki1
+...+kis )

(−1)‖αs‖

(β + (αs
1 + 1)βis

1 + . . .+ (αs
s + 1)βis

s)!
×
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× ∂ls(∆Is ·Qαs

(Is))

∂zβ+(αs
1+1)βis

1+...+(αs
s+1)βis

s

∣∣∣∣
z=0

or

Jβ =
n∑

s=0

∑

Is

∑

‖αs‖6‖β‖+min(n,ki1
+...+kis )

(−1)‖αs‖
M

[
∆Is ·Qαs

(Is)

zβ+(αs
1+1)βis

1+...+(αs
s+1)βis

s

]
, (6)

where αs is a vector of indices with s components; isk is the index of the k-th 1 in Is; ls =

‖β + (αs
1 + 1)βis

1 + . . . + (αs
s + 1)βis

s‖; β! = β1! · β2! · · ·βn!; Qαs

(Is) = Q
αs

1
is
1

· Qαs
2

is
2
· · ·Qαs

s
is
s
;

∂‖γ‖ϕ

∂zγ
=

∂γ1+...γnϕ

∂zγ1

1 ∂zγ2

2 · · · ∂zγn
n

; and M is a linear functional that assigns constant term to a Laurent

polynomial.

Remark 1. According to the proof the relation given in the statement of Theorem 1 contains
only a finite number of coefficients of the functions Qj(z) and Pj(z).

Corollary 1 ( [7]). If all βj = (0, 0, . . . , 0), j = 1, . . . , n, then the integral Jβ is

Jβ =
n∑

s=0

∑

Is

∑

‖αs‖6‖β‖

(−1)‖α‖
M

[
∆Is Q(Is)αs

zβ

]
=

=

n∑

s=0

∑

Is

∑

‖αs‖6‖β‖

(−1)‖αs‖

β!

∂‖β‖

∂zβ

(
∆I Q(I)αs

)
∣∣∣∣∣∣
z=0

.

In the case of βj = (0, 0, . . . , 0), it is also possible to obtain relation for Jβ with the use of
the Cauchy integral formula for several complex variables, since fj(0) 6= 0 for all j = 1, . . . , n.

3. Power sums

Our next goal is to connect considered above integrals with power sums of roots of system (5).
We must reduce the class of functions fj . At first we take Qj (j = 1, 2, . . . , n) as polynomials of
the form

Qj(z) =
∑

α∈Mj

aj
αz

α, (7)

where Mj is finite set of multi-indexes such that for α ∈ Mj coordinates αk 6 βj
k, k =

1, 2, . . . , n, k 6= j, but ‖α‖ > kj for all α ∈ Mj as before. Functions Pj (j = 1, 2, . . . , n)
are polynomials of the form

Pj(z) =
∑

06‖γ‖6pj

bjγz
γ . (8)

Let us introduce the substitution zj =
1

wj

, j = 1, 2, . . . , n. Therefore, we obtain

fj

(
1

w1
,

1

w2
, . . . ,

1

wn

)
=

[
1

wβj +Qj

(
1

w1
,

1

w2
, . . . ,

1

wn

)]
e
Pj

(
1

w1
, 1

w2
,..., 1

wn

)

=

=
1

wβj+sjej

(
w

sj

j + Q̃j(w1, w2, . . . , wn)
)
e
Pj

(
1

w1
, 1

w2
,..., 1

wn

)

,

where sj is the degree of wj , e
1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . ., en = (0, 0, . . . , 1), and

degree of polynomials

Q̃j(w1, w2, . . . , wn) = Q̃j(w) = wβj+sjej ·Qj

(
1

w1
,

1

w2
, . . . ,

1

wn

)
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is less than sj .
According to the Bezout theorem the system of nonlinear algebraic equations

f̃j(w) = w
sj

j + Q̃j(w) = 0, j = 1, 2, . . . , n, (9)

has a finite number of roots that equals to s1 · s2 · · · sn and it has no roots on the infinite
hyperplane CP

n \ C
n.

Let us denote roots of system (5) not lying on coordinate planes as w(k) = (w1(k),

w2(k), . . . , wn(k)), k = 1, 2, . . . ,M , M 6 s1 · s2 · · · sn. Then points z(k) =

(
1

w1(k)
,

1

w2(k)
,

. . . ,
1

wn(k)

)
are the roots of system (5), not lying on coordinate planes. So we have the fol-

lowing assertion

Lemma 1. System (5) with polynomials Qj of the form (7) and Pj of the form (8) has a finite
number of roots z(1), z(2), . . . , z(M) not lying on coordinate planes {zs = 0}, s = 1, 2, . . . , n.

Let us introduce notation

σβ+I = σ(β1+1,β2+1,...,βn+1) =

M∑

k=1

1

zβ1+1
1(k) · zβ2+1

2(k) · · · zβn+1
n(k)

.

This expression is the sum of roots of system (5) to negative powers. The roots are not lying on
coordinate planes.

Theorem 2. For system (5) with polynomials Qj of the form (7) and Pj of the form (8), for
which

l1 + . . .+ ln 6 β, (10)

where lj = (lj1, . . . , l
j
n) and lji is the degree of polynomial Pi with respect to variable zj; i, j =

1, . . . , n, the relation

Jβ = (−1)nσβ+I ,

holds (multi-index α 6 β, if this inequality is true for all coordinates).

Proof. We perform the substitution of variables zj =
1

wj

, j = 1, 2, . . . , n in integral Jβ . With

this substitution the cycle γ(r) is transformed to the cycle

(−1)nγ

(
1

r1
,

1

r2
, . . . ,

1

rn

)
= (−1)nγ(R1, R2, . . . , Rn).

Let us denote multi-index βj + sje
j as γj , j = 1, 2, . . . , n. Then

dfj

(
1

w1
, 1

w2
, . . . , 1

wn

)

fj

(
1

w1
, 1

w2
, . . . , 1

wn

) =
df̃j(w)

f̃j(w)
−

n∑

k=1

γj
k · dwk

wk

−
n∑

k=1

1

w2
k

· (Pj)
′

(zk)dwk.

Therefore

Jβ =
(−1)n

(2πi)n

∫

γ(R)

wβ+I

(
df̃1(w)

f̃1(w)
−

n∑

k=1

γ1
k · dwk

wk

−
n∑

k=1

1

w2
k

· (P1)
′

(zk)dwk

)
∧ . . .
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. . . ∧
(
df̃n(w)

f̃n(w)
−

n∑

k=1

γn
k · dwk

wk

−
n∑

k=1

1

w2
k

· (Pn)
′

(zk)dwk

)
.

We can easily show that all integrals of the form

∫

γ(R)

wβ+I df̃1(w)

f̃1(w)
∧ . . . ∧ df̃l(w)

f̃l(w)
∧ dwj1

wj1

∧ . . . ∧ dwjn−l

wjn−l

(11)

not containing
n∑

k=1

1

w2
k

· (Pl)
′

(zk)dwk

vanish if 0 6 l < n and Rj are sufficiently large.
In a similar way we can prove that if integrand expression contains the differentials dPj and

dwk

wk

then these integrals also vanish.

Then we show that all integrals of the form

∫

γ(R)

wβ+I df̃1(w)

f̃1(w)
∧ . . .∧ df̃l(w)

f̃l(w)
∧dPl+1

(
1

w1
,

1

w2
, . . . ,

1

wn

)
∧ . . .∧dPn

(
1

w1
,

1

w2
, . . . ,

1

wn

)
(12)

with condition (10) vanish if 0 6 l < n and Rj are sufficiently large.
Thus, we have

Jβ =
(−1)n

(2πi)n

∫

γ(R)

wβ+I df̃1(w)

f̃1(w)
∧ . . . ∧ df̃n(w)

f̃n(w)
.

According to the Yuzhakov Theorem on Logarithmic Residue the last integral is equal the
sum of values of holomorphic function wβ+I at all roots of system (9). However, the value of
function wβ+I at the root of system (9), lying on coordinate plane, is equal to zero.

Therefore, we obtain
Jβ = (−1)nσβ+I .

2

Let us extend our consideration. Let us assume that functions fj have the form

fj(z) =
f

(1)
j (z)

f
(2)
j (z)

, j = 1, 2, . . . , n, (13)

where f
(1)
j (z) and f

(2)
j (z) are entire functions in C

n of finite order of growth. They are represented
by infinite product (uniformly converging in C

n)

f
(1)
j (z) =

∞∏

s=1

f
(1)
js

(z), f
(2)
j (z) =

∞∏

s=1

f
(2)
js

(z).

Moreover, each factor has the form (zβjs
+Qjs

(z))ePjs (z). Polynomials Qjs
(z) and Pjs

(z) are of
the form (7), (8) and degrees of all polynomials degPjs

6 ρ, j = 1, 2, . . . , n, s = 1, 2, . . . ,∞.

Thus f
(1)
j (z) и f

(2)
j (z) are entire functions with finite order of growth not greater than ρ.

For all set of indexes j1, . . . , jn, where j1, . . . , jn ∈ N, and each set of numbers i1, . . . , in,
where i1, . . . , in are equal to 1 or 2, systems of non-linear algebraic equations

f
(i1)
1j1

(z) = 0, f
(i2)
2j2

(z) = 0, . . . , f
(in)
njn

(z) = 0, (14)
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have (according to Lemma 1) finite number of roots not lying on coordinate planes.
Number of roots of such system is not more than countable set. Let us denote the roots as

z(1), z(2), . . . , z(l), . . . .
Let us introduce the following expression

σβ+I =
∞∑

l=1

εl

zβ1+1
1(l) · zβ2+1

2(l) · · · zβn+1
n(l)

.

Here β1, . . . , βn are nonnegative integer numbers and the sign of εl is equal to +1 if the system of

the form (14), which root is z(l), contains even number of functions f
(2)
js

; and the sign of εl is equal

to −1, if the system of the form (14), which root is z(l), contains odd number of functions f
(2)
js

.
For system (5), which consists of functions of the form (13), the points z(l) are roots or

singular points (poles). All functions fj are analytic in some neighborhood of 0.

Let us introduce multi-undex lj = (lj1, . . . , l
j
n), where lji is the maximum degree of polynomial

Pi with respect to variable zj ; i, j = 1, . . . , n contained in decomposition of fi (multi-index α 6 β
if this inequality valid forе all coordinates).

Theorem 3. Let us assume that the degrees of all polynomials Pj used in decomposition of
functions of the form (13) in system (5) are bounded by number ρ and inequality

l1 + . . .+ ln 6 β,

holds. Then the following relations
Jβ = (−1)nσβ+I

are valid.

The proof of this theorem immediately follows from Theorem 2.

4. Model of Zel’dovich–Semenov

We show that the considered methods of complex analysis can be useful in the study of the
equations of chemical kinetics.

Consider the model of Zel’dovich-Semenov ideal mixing reactor (see. [9, Ch. 2, Eq. (2.2.1)].
It has the form 




(1 − x)e
y

(1+βy) − x

Da
=
dx

dτ
,

(1 − x)e
y

(1+βy) − y

Se
= γ

dy

dτ
,

where β, D, a, S, e are positive parameters.
Denote Da = a, Se = b. Stationary states of the system satisfy the equations





(1 − x)e
y

(1+βy) − x

a
= 0,

(1 − x)e
y

(1+βy) − y

b
= 0.

(15)

In [9, гл.2] qualitative study of the system conducted(15). We consider here a quantitative
study.

From the Equations (15), we obtain that x =
a

b
y. Substituting this expression into the first

equation, we have

e
y

1+βy =
y

b− ay
.
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We make the substitution
y

b− ay
=
z

b
, (16)

then y =
zb

b+ az
. Hence we have

e
z

1+z(β+a/b) =
z

b
. (17)

We introduce the notation
1

b
= γ, β +

a

b
= α,

i.e. b =
1

γ
, a = (α− β)b. Then from (17) we obtain the equation

e
z

1+αz = γz. (18)

First examine the function

ϕ(z) =
1

z
· e z

1+αz

for positive z. Find the derivative

ϕ′(z) = e
z

1+αz · −α
2z2 − z(2α− 1) − 1

z2(1 + αz)2
.

Investigate quadratic trinomial in the numerator of the fraction on the mark. Obtain that
its discriminant D = 1 − 4α, then at 0 < α < 1/4 derivative ϕ′(z) has two roots z1 < z2, and
at α > 1/4 is one root. Exploring the position of the vertex of the parabola, we obtain that for
α < 1/2 it is positive, and for α > 1/2 it is negative.

Therefore, if the derivative has two roots, they are both positive. In this case, the smaller
root z1 is a minimum point, and the larger root z2 is a maximum point.

Asymptotes of the functions ϕ(z) are: z = 0 is vertical asymptote (ϕ(z) → +∞ as z → +0),
and the axis OZ is the horizontal asymptote (ϕ(z) → +0 as z → +∞).

Consider the equation

ϕ(z) = γ, (19)

equivalent to Equation (17).

From the previous studies, we obtain that Equation (19) at 0 < α < 1/4 has three roots at
ϕ(z1) < γ < ϕ(z2). And if 0 < α < 1/4, Equation (19) has one root, when either z > ϕ(z2),
either z < ϕ(z1).

At α > 1/4 Equation (19) has one root for all γ, since the function ϕ is strictly decreasing.
Calculating z1 and z2 at α < 1/4, we obtain

z1 =
1 − 2α−

√
D

2α2
, z1 =

1 − 2α+
√
D

2α2
, D = 1 − 4α.

Then

ϕ(z1) = e
1−

√
D

2α2 · 2α2

1 − 2α−
√
D
,

and

ϕ(z2) = e
1+

√
D

2α2 · 2α2

1 − 2α+
√
D
.
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Proposition 1. Let D = 1 − 4α > 0. Equation (19) has three positive roots at

e
1−

√
D

2α2 · 2α2

1 − 2α−
√
D
< γ < e

1+
√

D

2α2 · 2α2

1 − 2α+
√
D
,

one root if either

γ > e
1+

√
D

2α2 · 2α2

1 − 2α+
√
D
,

either

γ < e
1−

√
D

2α2 · 2α2

1 − 2α−
√
D
.

If D = 1 − 4α < 0, Equation (19) has only one positive root.

Returning to the variables a, b, β we obtain

Corollary 2. If D′ = β +
a

b
< 1/4, then Equation (17) has three positive roots at

e
−1+

√
D′

2(β+a/b)2 · 1 − 2(β + a/b) −
√
D′

2(β + a/b)2
> b > e

−1−
√

D′

2(β+a/b)2 · 1 − 2(β + a/b) +
√
D′

2(β + a/b)2
,

has one positive root, if either

e
−1+

√
D′

2(β+a/b)2 · 1 − 2(β + a/b) −
√
D′

2(β + a/b)2
< b,

either

b < e
−1−

√
D′

2(β+a/b)2 · 1 − 2(β + a/b) +
√
D′

2(β + a/b)2
.

At β +
a

b
> 1/4 Equation (17) has one positive root.

Thus, the system (15) has no more than three roots with positive coordinates.
Let us consider how the system (15) has complex roots.

Solving it by making the change t =
y

1 + βy
(i.e. y =

t

1 − βt
), we get





(
t

b(1 − βt)
− 1

a

)
et +

t

ab(1 − βt)
= 0,

x = 1 − t

b(1 − βt)
e−t.

Hence
(at− b(1 − βt))et + t = 0. (20)

Denote by
ψ(t) = (at− b(1 − βt))et + t.

Recall Hadamard theorem for functions of finite order of growth (see, for example, [8]).

Definition 1. Expressions E(u, 0) = 1 − u,

E(u, p) = (1 − u)eu+ u2

2 +...+ up

p ;

p = 1, 2, . . . are called primary factors.
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If the function f(z) in the complex plane has a finite order of growth, then there is not
depending on n an integer p 6 ρ that the product

∞∏

n=1

E

(
z

zn

, p

)
(21)

converges for all values of z, if the series converges

∑(
r

rn

)p+1

(22)

where r1, r2, . . . are modules zeros of function f(z), and this series converges for all values of r,
if p+ 1 > ρ.

Definition 2. Product (21) with the least of the integers p for which the series converges is
called the canonical product, constructed from the zeros of f(z), and is the smallest p is called
its genus.

Theorem 4 (Hadamard). If a function f(z) is entire of order ρ with zeros z1, z2, . . ., what is
more f(0) 6= 0, then

f(z) = eQ(z)P (z), (23)

where P (z) is canonical product constructed from the zeros of f(z), and Q(z) is polynomial of
degree not higher than ρ (see, for example, [8]).

Function ψ(t) is a entire function of the first order and exponential type 1. Let function ψ(t)
have a finite number of zeros in C. Then by Hadamard’s theorem it has the form

ψ(t) = et · Pn(t),

where a polynomial

Pn(t) =

(
1 − t

t1

)
· · ·
(

1 − t

tn

)
,

and t1, t2, . . . , tn are zeros of function ψ(t).
Then

(at− b(1 − βt))et + t = et · Pn(t).

Hence

et =
−t

at− b(1 − βt) − Pn(t)
,

which is impossible since the right is a rational function.
Thus the number of zeros of ψ(t) is infinite. These zeros have no limit points in C. If they

are denoted by t1, . . . , tn, . . ., their modules |tn| → ∞ as n→ ∞.

Denote by (xn, yn) (n = 1, . . .) are roots of the system (15). Since y =
t

1 − βt
, then yn → − 1

β
as n→ ∞. Since ψ(tn) = 0, then

etn = − tn
atn − b(1 − βtn)

,

hence etn → − 1

a+ bβ
.

Since x = 1 − t

b(1 − βt)
e−t, then xn → − a

bβ
.
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Proposition 2. System (15) has an infinite number of complex roots (xn, yn) ∈ C
2, n = 1, . . ..

there is a limit to this sequence of complex zeros when n→ ∞ and is equal to −
(
a

bβ
,
1

β

)
.

Let us consider the order of convergence of zeros yn. Since the function ψ(t) is a first order,

then (see, for example, [8])
∞∑

n=1

1
|tn|1+ε <∞ for all ε > 0.

Hence we obtain

Corollary 3. Series
∞∑

n=1

∣∣∣∣
1

yn

+ β

∣∣∣∣
1+ε

<∞ for all ε > 0.
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О некоторых системах неалгебраических уравнений в C
n

Ольга В. Ходос

Рассмотрен метод нахождения вычетных интегралов для систем неалгебраических уравнений,

состоящих из целых функций. Такие интегралы связаны со степенными суммами корней систе-

мы уравнений. Предложенный подход может быть использован для развития метода исключе-

ния неизвестных из систем неалгебраических уравнений. Показано, что полученные результаты

могут быть использованы для исследования одной модели химической кинетики.

Ключевые слова: неалгебраические системы уравнений, вычетный интеграл, степенные суммы.

– 465 –


