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Abstract. Analysis of the orientational thermoelasticity effect using a two-dimensional simplified dy-
namic model of liquid crystal in the acoustic approximation is presented in the paper. It is assumed
that effect occurs when one of the boundaries of a rectangular liquid crystal layer is heated. To solve the
system of model equations, the method of two-cycle splitting with respect to spatial variables is used in
combination with the finite-difference Godunov scheme for the acoustic equations and the Ivanov scheme
with controlled energy dissipation for the heat conduction equation. This combination of finite-difference
methods allows one to calculate related thermomechanical processes using the same time and space steps
that satisfy the Courant-Friedrichs-Levy criterion. The numerical algorithm was implemented as a par-
allel program written in C++. Parallelization of computations was performed with NVIDIA graphic
accelerators using CUDA technology. Simulations demonstrate that it is impossible to observe the effect
of reorientation of liquid crystal molecules under the influence of temperature for the presented simplified
model in the acoustic approximation. It was concluded that when surface tension forces are taken into
account this effect will be observed for the model used in this work.

Keywords: liquid crystal, thermal conductivity, dynamics, CUDA technology.

Citation: I1.V.Smolekho, Investigation of the Orientational Thermoelasticity Effect Using  [w]¥m5[=]
a Simplified Model of Nematic Liquid Crystal in the Acoustic Approximation, J. Sib. Fed. ;
Univ. Math. Phys., 2025, 18(3), 337-346. EDN: FDPGQX. [=]

Introduction

Liquid crystals are substances combining the optical anisotropy of crystals and the molecular
mobility of liquids in some temperature range. This is the most important property of such
systems [1,2]. Liquid crystal molecules have a specific shape but they also have the property of
fluidity. Depending on the initial orientation, liquid crystals are divided into nematic, smectic
and cholesteric. The most common type of liquid crystals, namely, nematic crystal is considered
in present which best reflects the dual nature of these substances. This type has a wide range
of applications, ranging from information display technologies to optical devices and sensors. It
helps to regulate the brightness of the screen in LCDs by changing the strength of the electric
field acting on the crystal. In addition, orientation of liquid crystals is sensitive to temperature
change. If liquid crystals are heated they take a more ordered state which can be used, for
example, for data storage. If such liquid crystals are cooled they return to their original state.
It means that data can be erased and rewritten. Liquid crystal sensors are used for temperature
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measurement and biochemical analysis, they continue to be of interest due to their controllable
optical and electro-optical properties. Studies in this field are progressing, and new applications
are being developed so liquid crystals play an important role in modern constantly evolving
technologies. By now, dynamic model of Ericksen and Leslie [3,4]| has been developed on the
basis of conservation laws. It takes into account all types of movements as well as the flow of liquid
crystals. However, it turned out to be too complex to solve using numerical methods because it
includes a large number of equations and parameters that must be determined experimentally
which is not always possible. Then, there was a need to develop simpler models allowing for a
detailed description of the processes occurring in liquid crystals that would significantly facilitate
their study.

This paper presents analysis of the orientational thermoelasticity effect using a simplified two-
dimensional model in the acoustic approximation. It takes into account mechanical, temperature
and electrical effects in liquid crystals [5]. The effect occurs when the boundary of a horizontal
liquid crystal layer is heated. The effect of temperature on the orientation of liquid crystal
molecules was studied experimentally [6]. It was concluded that susceptibility to heat flows
is similar to the interaction with electromagnetic fields. However, a plate with significantly
different coefficient of volumetric expansion was used in experiments. It is likely that the effect
of molecular reorientation is associated with the thermal expansion of the plate but not with the
effect of the heat flow.

1. Mathematical model of liquid crystal in acoustic approxi-
mation

The equations of the model that describe behaviour of liquid crystals under thermomechanical
and electrical perturbations are derived from the integral conservation laws of energy, momentum,
and angular momentum on the basis of the Cosserat continuum theory [7] using the Clausius—
Duhem inequality. In the planar case, the model includes the following equations

) ) v 19) 0 Ov 0 0]
translational motion pa—ﬁ1 = — 8751 - % + fi, p87t2 = 579;11 - 87;; + f2, (1)
rotational motion J aa—o; =2q+ % + % +m, (2)
couple stresses % =y %, % =7 86%’ (3)
angle of rotation 90 =w, (4)
ot
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where v; and ve are the components of the velocity vector, w is the angular velocity, 8 is the
rotation angle of molecules, p is the pressure, ¢ is the tangential stress, p; and ps are the
couple stresses, T is the temperature, p is the density, J is the moment of inertia, « is the bulk
compression modulus, « is the modulus of elastic resistance to rotation, 3 is the coefficient of
thermal expansion, v is the modulus of elastic resistance to curvature change, n is the viscosity
coefficient, H is the intensity of heat sources, c is the specific heat capacity, & and e, are
the thermal conductivity coefficients of a liquid crystal in the direction of molecular orientation
and in the transverse direction, f1, fo and m are the bulk forces and couple force caused by the
electric field. Here, they are not taken into account when studying the thermodynamic effect
since they do not affect the temperature change. The algorithm of the electric effect is presented,
for example, in [§].

2. Computational algorithm

A rectangular region of liquid crystal is considered with dimensions [z and lzs in the direc-
tions x1 and xo, respectively. The finite-difference grid is

Rt

i1 de {(ti,xlil,mgh) : tiz iAt, 5611.1: ilAl‘l, ZEQ,iQ: izAJCQ,

i:O,...,Nt, i1:07...,N131, i2:0,...,NSC2},

where Az and Azo are space steps in the directions x1 and x5 such that zy,, € 0,14,), Tg,, €
(0,15,), At is the time step, Nt is the number of time steps, Nx; and Nz, are the arbitrary
numbers of cells of the finite difference grid in the directions x; and z5. At the initial moment of
time, zero values are set in this region for all quantities except 6 = 6y and T' = Ty. The boundary
conditions are presented in terms of pressure, velocity, stress and temperature. The load on the
boundary can act continuously or for a given number of time steps.

System of equations (1)—(6) is hyperbolic in the sense of Friedrichs so the formulation of the
Cauchy problem is correct. The system is solved using the method of two-cycle splitting by
spatial variables, and it is assumed that five consecutive stages occur at each time step. At the
1st and 5th stages, one-dimensional equations that depend on x; are solved at different half-steps
in time:

G 9v2 _ 9q. g _om
Por T on P ot T o ot Or -
op_ _ov | g v ) O 0w
ot~ " om ot~ on ot oz
8T_8h1 81]1 - oT oT
pcﬁ - 8131 T 81717 hl - (9561 +®1 81‘2. (8)

To solve equations (7), the finite-difference Godunov scheme [9] of the "predictor-corrector"
type is used. At the "predictor" step, the following equations on characteristics obtained from
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(7) are used
dey = T/k/pdt . dIf =0, If =p+vi\/rp

dey = +\/afpdt: dIFf =0, If =q+uvs/ap (9)

dry = +/v/Jdt . dIy =0, IF = +wy/vJ.
These equations allow one to determine the values with fractional indices on the lateral faces of
the cells of the finite difference grid in the plane x; and ¢:

+ - + - + —
I R e L
U121y = Wa P12 ™ - 5 V2, i = W’
(10)
+ N + — + _
- L+ 1o, B I — I3 B If + 15,
e RV~ B i
where integer indices refer to the internal nodes of the grid i, = 2,..., Nz;. At the boundary

nodes, these values are found from the boundary conditions. Then heat conduction equation (7)
is solved with the help of the Ivanov finite-difference scheme [10] that is used to solve problems
of the dynamics of solids, plates and shells. The idea of the method is to implement the law of
conservation of energy at discrete level. Let us consider the extended system in the x; direction

or _oh o, T
pc ot ory’ =11 ory 9,

where the unknown functions are T' # T and h # h. For this system, the energy balance equation

_a—xl(T— +871‘1(h_ )+ 921 9671' (11)
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is satisfied. It is transformed into a dissipative inequality

_ 2 __ _
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The closing equations of the extended system take the form

o
[T—T] __D 830} D= [Du Du] 7
h—nh oT Da1 Do
dxy

where D is a positive definite matrix. The discrete analogue of the extended system is the

“corrector” step of the finite difference scheme:

T — T; _ hiﬁr% B hil*% B — o Ti1+% B Til*%
Atj2 Az P T a N

pc + i, - (12)

For a more brief notation, there are no indices of the second direction, the upper indices

correspond to the current time step, the lower indices correspond to the previous one, Axq,
h; and @17 are the spatial step, fluxes with mixed derivatives and the thermal conductivity
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coefficient in the x; direction. The quantities g; are calculated explicitly using the values from
the previous time step, and they include mixed derivatives with the coefficient &15. The solution
is constructed with the time step At/2 as required for the splitting stages. The discrete analogue
of equation (11) is

(Til)2 B (Ti1)2 NP Ti1+% - 7-;1*% 2 _ hi1+% B hil*% Til +T21 o Ti1+% +T;17% +
At "’ Axy Axy 2 2

Tiﬁ-% - Til—% (h hil—i-% + hil—l) n (Th)il—i-% - (Th)il—% Ti1+% -1, -

Sz i(p -

AIl 2 Aﬂj‘l B gil Al‘l

pc

1
2

+

The closing equations take the form

1] 2D [Py TRy

2hi1_hi1+%_h‘ 1

11—35

T 4Ty~ Ty — T,

[N

T Az
Ty Ty
For simplicity, matrix D with one non-zero element with free parameter d is used: Di; =
=d—At/c Az > 0 since the scheme approximates the heat conduction equation only with small
elements of this matrix. The closing equations take the form
Ti1+% + Til*% hi1+% - hil*% Ti1+% - Til*% hi1+% + hi1*%

S Ty

The equations for heat fluxes are obtained by adding and subtracting the closing equations:

Tiﬂr% _Tilfé Ti1+% +Ti1*%

A.’I,‘]_ 2

dhy y1 = deer +T;, +dgi,.

The step "predictor" for temperature is calculated using three-point sweep method in each
direction:

deirg, 1 d(ae11,4, + 811,6,-1) derni, -1 1
Y (it 25 W Ty 1 ; ; T B (ot 2705 Sk By T
< A.Tl 2> Zl+% + < + A!El Zl_% ALL‘l 2 Zl_%

=T +Ti—1+d(gi, — gir—1)-

The final step of the splitting stage is the "corrector" step of the Godunov scheme. Taking
into account that temperature in the right part is already found, the unknown quantities are
determined as follows

U1 = U1 _ Py —Pi-1 V2V % —Gn-1 PP :_K_/vlil — UL, " BT—T
At NN WNr, | Al N At
q—q _ avzil — V2,1 J(D —w _ 'ulil _/1“11@71 M1 — 1 _ Wi, T Wi
At N1y At M, At 2An

The values with a bar denote the values at the current time step, without a bar - at the
previous time step. The indices for the second direction i5 — 1/2 are omitted for brevity. In the
finite differences in time, the indices iy — 1/2, i3 — 1/2 are also omitted. At the 2nd and 4th
stages, system of acoustic equations (13) and heat conduction equation (14) for the direction zo
are solved in a similar way:
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At the 3rd stage the equations
dw 0 dq q or _ 247
—_— = 2 —_— = —_— = — 2 — _— = —
T =20 5= o O‘<w+ n)’ P ~

are solved in accordance with the Crank—Nicholson scheme:

o 7 -0 - ptw § T-T (3+q)
JO-w _ydta _wtw dma (Pt data) @+a°
At 2 2n

At 2p

At 2 At 2

The indices i1 — 1/2, io — 1/2 for the values at the previous time step ¢, w, 6 and T as well as
at the current time step g, @, # and T are omitted for brevity. Calculations are performed using
the following formulas

__Jn—Ata(Atn+J) 2AtaJn "

1= TnsataAtn+ 01T Tn+ Ata(Btn+ )

At = At - At
v=w+ —(q =0+ —(w T=T q+q)°.
w=w+ J(q+q), 0=0+ 2(w+w), +2pcn(q+q)

3. Results of computations

The described algorithm was implemented using the CUDA parallel programming technology
[11]. Numerical calculations were performed for the 5CB liquid crystal. Parameters of the liquid
crystal are [12,13] p = 1022 kg/m?, j = 0.03 - 1072 kg/m, x = 11.1 GPa, a = 360 Pa,
B=03-10"K', y=6-10"'2 N, = 0.036 Pa-c, c =100 J/(kg - K), & = 0.226 W/(m - K),
&) =0.135 W/(m - K).

A rectangular LC layer with dimensions of 200 x 80 pum was considered. The finite difference
grid contains 640 x 256 cells. At the initial moment of time Ty = 297 K and 6 = 7/2. At the
upper border the temperature is set as follows T = Ty + T’e’4(“’i1*xc)2/zi, where T’ is some
constant, x. is the centre of load application, x,. is the radius of the load.

Fig. 1 shows the results of the action of four heat sources with the radius of 20 pym on the
lower boundary. In this case, z. = (i — 0.5)lx1/n, where n = 4 is the number of heat sources,
1 =1,2,3,4. Fig. 2 demonstrates the propagation and reflection of pressure waves initiated in
the heating region. Fig. 3 shows the vector field of velocities. Fig. 4 shows the results of the
action of one heat source in the middle of the right boundary. The other parameters are similar
to the previous case. Fig. 5 and Fig. 6 show the propagation of pressure waves and the vector
field of velocities, respectively. In both cases, velocities change in accordance with the change in
pressure. Tangential stress, angular velocity and moment stresses in this case are equal to zero.
The rotation angle remains unchanged due to the absence of tangential stresses. Thus, within
the framework of the described model it is impossible to change the orientation of nematic liquid
crystal molecules by varying only temperature field.
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Conclusion

The paper presents: a simplified model of thermomechanical and electrical effects in the
acoustic approximation; an algorithm for numerical solution of the model equations; implemen-
tation of the algorithm as a parallel program in the C++ language with the help of the CUDA
technology; a series of simulations that demonstrate that it is impossibile to observe the effect
of orientational thermoelasticity using the presented dynamic model. It is assumed that if the
surface tension forces will be taken into account then orientation of the molecules would change
when one of the boundaries of the liquid crystal layer is heated.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation in the framework of the establish-
ment and development of regional Centers for Mathematics Research and Education (Agreement
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WccnenoBanme apdekTa OpueHTAMTMOHHON T€PMOYITPYTOCTHI
C TIOMOMIBIO YIPOIIIEHHO MO/ieJ M HEMAaTUYEeCKOro K1JIKOTO
KpHUCTaJJla B aKyCTUIE€CKOM NPUOJINKEeHUN

Npuna B. Cmosiexo
NucruryT Boraucaurenbaoro mogenuposanus CO PAH
Kpacnosipck, Poccuiickass @eneparnys

AnHotauusa. B pabore npesicrasien anann3 3dpdeKTa OPpUEeHTAITMOHHON TEPMOYIIPYTOCTH C IIPUMEHe-
HHEM JBYMEDHOHN YIPOIIEHHON IMHAMUYIECKON MOJE/M KUIKOrO0 KPHUCTAJJIa B aKyCTHIECKOM TPUOJIH-
xkenun. Ilpeanonaraercs, 4To 3ddeKkT BOZHUKAET IPU HATPEBAHHUY OJHON M3 IPAHMUIL IPSIMOYTOJHLHOTO
2KHJIKOKPUCTAJINYIECKOTo cJiosi. IIpy periennn cucremMbl ypaBHEHUH MOJEIM HPUMEHSIETCST METOJ JIBY-
[UKJITIECKOr0 PACIIEIIEHUSI 110 IIPOCTPAHCTBEHHBIM IIEPEMEHHBIM B COYETAHUU C KOHEYHO-DPA3HOCTHOM
cxeMoli pacnajia pas3pbiBa [0fyHOBa JJIsi ypaBHEHUIl aKyCTUKMA U cxXeMbl VIBaHOBa € KOHTPOJIMPYEMOM
JECCUIIAIAEN SHEPIUuy JJIsl yPaBHEHUS TEIIONPOBOaHOCTH. Vcnonp30Banne Takoit KOMOMHAIIMN KOHEIHO-
PA3HOCTHBIX CXEM II03BOJISIET IPOBOAUTH PACYETHI CBA3aHHBIX TEPMOMEXaHUIECKUX IIPOIECCOB C OJUHA-
KOBBIMH IIIaraMU 10 BPEMEHU U 110 IPOCTPAHCTBY, yAOBJIeTBOpsomuMu ycjosuio Kypanra-@puapuxca-
JleBu. YwnciieHHBIN aJTOPUTM PeEasn30BaH B BUJIE NMAPAJIIEIbLHON MPOrPaAMMBbI, HAITUCAHHON Ha SI3bIKE
C+-+. PacnapasuresinBanve BBIYUCTIEHUN BBITTOJTHEHO /TSI KOMITBIOTEPOB C TPAMUIECCKUMA YCKOPUTEISIMU
NVIDIA 1o rexnosorun CUDA. IIpoBesens! pactueTsl, JeMOHCTPUPYIOIIAE HEBO3MOXKHOCTE HAOJIIOIEHUS
adderTa nepeoprueHTaIMH MOJIEKYJI YKUJIKOI'0 KPUCTAJLIA 0] IeHCTBUEM TeMIIePaTypPhl JJIsl IPEJICTaB-
JIEHHOIi YIIPOIIIEHHON MOJIEJIU B aKyCTHIECKOM npubsmkennu. OIHAKO BO3/IENHCTBUE TEMIIEPATyPhI CYIIe-
CTBEHHO BJIMSIET Ha JaBjieHne u ckopoctu. CHesaHo 3aKIOYEHNe, ITO MPU yIeTe CHJI TOBEPXHOCTHOTO
HaTSKEHUsT 3TOT 3O deKT Oy/1eT HabIIOAATHCS JIJTsT UCIOIB3yeMOi B paboTe MOJIENH.

KiroueBsle ciioBa: >KUJKUH KPUCTAJLI, TEIJIONPOBOIHOCTD, quHaMuka, TexHosoruss CUDA.
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