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1. Introduction and preliminaries

Let u(x) ∈ C2(D) be a twice smooth function in the domain D ⊂ Rn. Then the matrix(
∂2u

∂xj∂ xk

)
is symmetric,

∂2u

∂xj∂ xk
=

∂2u

∂xk∂ xj
. Therefore, after a suitable orthonormal transfor-

mation, it can be transformed into a diagonal form

(
∂2u

∂xj∂ xk

)
→


λ1 0 . . . 0

0 λ2 . . . 0

. . . . . . . . . . . .

0 0 . . . λn

 ,

where λj = λj(x) ∈ R are the eigenvalues of the matrix
(

∂2u

∂xj∂ xk

)
. Let

Hk(u) = Hk (λ) =
∑

16j1<···<jk6n

λj 1 . . . λjk
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be the Hessian of dimension k of the vector λ = (λ1, λ2, . . . , λn).

Definition 1.1. A twice smooth function u(x) ∈ C2(D) is called m-convex in D ⊂ Rn, u ∈
m− cv(D), if its eigenvalue vector λ = λ(x) = (λ1(x), λ2(x), . . . , λn(x)) satisfies the conditions

m− cv ∩ C2(D) =
{
Hk(u) = Hk (λ(x)) > 0, ∀x ∈ D, k = 1, . . . , n−m + 1

}
.

When m = n the class n − cv coincides with the class of subharmonic functions sh =

{λ1 + λ2 + · · · + λn > 0}, when m = 1 it coincides with the class of convex functions cv =

{λ1 > 0, λ2 > 0, . . . , λn > 0}, moreover cv = 1 − cv ⊂ 2 − cv ⊂ · · · ⊂ n − cv = sh. The theory
of subharmonic functions is a developed and important part of theory functions and mathe-
matical physics. The theory of convex functions is well studied and reflected in the works of
A.Aleksandrov, I. Bakelman, A. Pozdnyak and others (see [2–5]). When m > 1 this class was
studied in the series of works by N. Ivochkina, N. Trudinger, X. Wang et al. [11, 19–21] (see
also [8]).

If we want to construct a good theory of m− cv functions, then the class of functions C2(D)

is not enough. For example, if we want to solve the equation

Hn−m+1 (u) = f (u, x) ,

u|∂D = φ

or want to work with extreme m− cv functions, such as maximal m− cv functions, we need to
extend the definition of m − cv functions to a wider class of upper semi-continuous functions.
In the work of N.Trudinger, X.Wang [21] m − cv functions are introduced in the class of upper
semi-continuous functions u(x) in the domain D ⊂ Rn, using the so-called "viscous" definition,
that is Hk(q) > 0, k = 1, 2, . . . , n − m + 1, for any quadratic polynomial q(x), such that the
difference u(x) − q(x) has only a finite number of local maximum in the domain D. In addition,
in this work Hn−m+1(u) (maximum degree operator) is defined as a Borel measure and with the
help of this operator the capacity of condenser C(E,D) was introduced, a number of potential
properties of this capacity was proved.

To expand the domain of definition of m− cv functions from C2(D) to a wider class of semi-
continuous functions, we have proposed a completely new approach, the connection of m−cv func-
tions with m-subharmonic (shm) functions in complex space Cn. The theory of shm-functions is
well developed and is currently subject of study by many mathematicians (Z. B locki [6], S. Dinew
and S.Kolodziej [9,10], S.Y. Li [13], H. C .Lu [14,15] and etc). Quite a complete overview of this
theory is available in the survey article by A. Sadullaev and B. Abdullaev [1] in proceedings of
Mathematical Institute of the RAS.

Let us recall that the theory of the shm-functions is based on differential forms and currents
(ddcu)

k∧βn−k > 0, k = 1, 2, . . . , n−m+1, where β = ddc ∥z∥2 is a standard volume form in Cn.

A twice smooth function u (z) ∈ C2(D), D ⊂ Cn is called strongly m-subharmonic u ∈ shm(D),

if at each point of the domain D

shm(D) =
{
u ∈ C2 : (ddcu)

k ∧ βn−k > 0, k = 1, 2, . . . , n−m + 1
}

=

=
{
u ∈ C2 : ddcu ∧ βn−1 > 0, (ddcu)

2 ∧ βn−2 > 0, . . . , (ddcu)
n−m+1 ∧ βm−1 > 0

}
,

(1)

where β = ddc ∥z∥2 is a standard volume form in Cn.

Operators (ddcu)
k ∧ βn−k are closely related to the Hessians. For a twice smooth function

u ∈ C2(D), the second-order differential ddcu =
i

2

∑
j,k

∂2u

∂zj∂ z̄k
dzj∧d z̄k (at a fixed point o ∈ D) is
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a Hermitian quadratic form. After a suitable unitary coordinate transformation, it is reduced to

a diagonal form ddcu =
i

2
[λ1dz1 ∧ d z̄1 + · · · + λndzn ∧ d z̄n], where λ1 , . . . , λn are eigenvalues

of the Hermitian matrix
(

∂2u

∂zj∂ z̄k

)
, which are real: λ = (λ1 , . . . , λn ) ∈ Rn. Note that the

unitary transformation does not change the differential form β = ddc ∥z∥2 . It is easy to see that

(ddcu)
k ∧ βn−k = k!(n− k)!Hk(u)βn, (2)

where Hk(u) =
∑

16j1<···<jk6n

λj1 . . . λjk is the Hessian of dimension k of the vector λ = λ(u) ∈ Rn.

Hence, the twice smooth function u(z) ∈ C2(D), D ⊂ Cn is strongly m-subharmonic if at
each point o ∈ D it satisfies the following inequalities

Hk(u) = Hk
o (u) > 0, k = 1, 2, . . . , n−m + 1. (3)

Note that, the concept of the strongly m-subharmonic functions in a generalized sense is also
defined for upper-semicontinuous functions.

Definition 1.2. The function u(z) defined in a domain D ⊂ Cn is called shm, if it is upper
semi-continuous and for any twice smooth shm functions v1, . . . , vn−m ∈ C2(D) ∩ shm(D) the
current ddcu ∧ ddcv1 ∧ · · · ∧ ddcvn−m ∧ βm−1 defined as[

ddcu ∧ ddcv1 ∧ · · · ∧ ddcvn−m ∧ βm−1
]

(ω) =

=

∫
u ddcv1 ∧ · · · ∧ ddcvn−m ∧ βm−1 ∧ ddcω, ω ∈ F 0,0 .

(4)

is positive,
∫

uddcv1 ∧ · · · ∧ ddcvn−m ∧ βm−1 ∧ ddcω > 0 ∀ω ∈ F 0,0, ω > 0. Here F 0,0(D) is

a family of infinitely smooth finite in D functions.

In the B locki’s work [6] it was proved that, this definition is correct, that for u ∈ C2(D)

functions this definition coincides with the initial definition of shm-functions.

2. Relation between m− cv and shm functions

To establish a connection between m − cv functions and shm functions, we embed a real
space Rn

x into a complex space Cn
z , Rn

x ⊂ Cn
z = Rn

x + iRn
y (z = x + iy) , as a real n-dimensional

subspace. Then, we extend the function u(x), given in the domain D ⊂ Rn
x into domain

Ω = D × iRn
y ⊂ Cn

z as uc(z) = uc (x + iy) = u(x), by assuming it is a constant on parallel planes
Πx0 =

{
z ∈ Cn : x = x0, y ∈ Rn

}
.

Theorem 2.1 (see [16, 18]). A twice smooth function u(x) ∈ C2(D), D ⊂ Rn
x , is m− cv in D,

if and only if a function uc(z) = uc(x + iy) = u(x), that does not depend on variables y ∈ Rn
y , is

shm in the domain Ω.

Theorem 2.1 allows us to define a m-convex function in the class of semi-continuous functions.

Definition 2.1. An upper semi-continuous function u(x) in a domain D ⊂ Rn
x is called m-convex

in D, if the function uc(z) is strongly m-subharmonic, i.e. uc(z) ∈ shm (Ω) .

This definition is convenient in the study of m-convex functions, by transferring well-known
properties of shm-functions to the class m− cv. We present some non-trivial ones:
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– (Approximation). We take a standard kernel Kδ(x) =
1

δn
K
(x
δ

)
, δ > 0, where

– K(x) = K(|x|);
– K(x) ∈ C∞(Rn);

– suppK = B(0, 1);

–
∫
Rn

K(x)dx =
∫

B(0,1)

K(x)dx = 1.

Then the convolution

uδ(y) =

∫
D

u(x)Kδ(x− y)dx =

∫
Rn

u(x + y)Kδ(x)dx (5)

has the property, that uδ(x) ∈ m − cv(Dδ), where Dδ = {x ∈ D : dist(x, ∂D) > δ} , uδ(x)

decreases as δ ↓ 0 and converges point wise to the function u(x) ∈ m− cv(D).

– the limit of a uniformly convergent or decreasing sequence of m− cv functions is m− cv;
– the maximum of a finite number of m− cv functions is an m− cv function;
– for an arbitrary locally uniformly bounded family, {uθ} ⊂ m− cv the regularization u∗(x)

of the supremum u(x) =

{
sup
θ

uθ(x)

}
will also be an m− cv function. Since m− cv ⊂ sh, then

the set {u(x) < u∗(x)} is polar in Cn ≈ R2n. In particular, it has Lebesgue measure zero.
Similarly, for a locally uniformly bounded sequence, {uj} ⊂ m− cv the regularization u∗ (x)

of the limit u (x) = lim
j→∞

uj (x) will also be an m − cv function, and the set {u (x) < u∗ (x)} is

polar;
– if u(x) ∈ m− cv(D), then for any hyperplane Π ⊂ Rn the restriction u|Π ∈ m− cv (D ∩ Π) .

From this property it easily follows that if u(x) ∈ m − cv(D), then for any plane Π ⊂
Rn, dim Π = m, the restriction u|Π ∈ sh(D ∩ Π).

For m = 1 it is not difficult to prove that a convex function u(x) ∈ 1 − cv(D) belongs
to Lipschitz class, i.e. u(x) ∈ Lip(D). In the work [20] N.Trudinger and X.Wang proved a
generalization of this remarkable result, that any m-convex function u(x) ∈ m− cv at m <

n

2
+1

is Hölder with exponent α = 2 − n

n−m + 1
, u(x) ∈ Lipα (D) .

Example 2.1. (fundamental m− cv function).

χm(x, 0) =


|x|2−

n
n−m+1 if m <

n

2
+ 1

ln |x| if m =
n

2
+ 1

− |x|2−
n

n−m+1 if m >
n

2
+ 1

(6)

Thus, for m <
n

2
+ 1 the fundamental function is bounded and Lipschitz, and for m > n

2
+ 1

it is equal to −∞ at the point x = 0. Note that for m = n, i.e. for the subharmonic case it

coincides with the fundamental solution − 1

|x|n−2 of the Laplace operator ∆.

3. m− cv polar sets and m− cv measure

Definition 3.1. By analogy with polar sets in classical potential theory, a set E ⊂ D ⊂ Rn is
called m − cv polar in D, if there exists a function u(x) ∈ m − cv(D), u(x) ̸≡ −∞, such that
u |E = −∞.
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From the embedding m − cv(D) ⊂ sh(D) it follows that every m − cv polar set is polar
in the sense of classical potential theory. In particular, for a m − cv polar set E it is true
H2n−2+ε(E) = 0, ∀ε > 0: and, therefore, the Lebesgue measure of a m− cv polar set E is equal
to zero.

m − cv polar sets have another unexpected phenomenon, that when m <
n

2
+ 1 they are

empty, i.e. if the set E ⊂ D is m − cv polar, m <
n

2
+ 1, then E = ∅. This follows from the

fact that for m <
n

2
+ 1 any m− cv function is Hölder continuous (see section 2). However, for

m > n

2
+ 1 there are non-empty m− cv polar sets. Therefore, the properties of m− cv polar sets

proved below are meaningful only for the cases m > n

2
+ 1.

Theorem 3.1. The countable union of m − cv polar sets is m − cv polar, i.e. if Ej ⊂ D is

m− cv polar, then E =
∞∪
j=1

Ej is also m− cv polar.

The proof is identical to a similar proof for polar sets and we omit it.
Potential theory is usually constructed in regular domains with respect to one or another

class of functions.

Definition 3.2. A domain D ⊂ Rn is called m−cv regular if there exists ρ(x) ∈ m−cv(D) such
that ρ(x) < 0, lim

x→∂D
ρ (x) = 0. It is called strictly m − cv regular if there exists a twice smooth

strictly m− cv function in some neighborhood of the closure D+ ⊃ D̄ such that D = {ρ(x) < 0} .
Strictly m-convexity of the function ρ(x) in D+ means that for some δ > 0 the difference
ρ(x) − δ ∥x∥2 is an m− cv function in D+.

In the theory of m-convex functions, m − cv measure plays the same role as the harmonic
measure in classical potential theory. To exclude trivial cases, m − cv regular or even strictly
m− cv regular domains are usually taken as a fixed domain D ⊂ Rn.

Let E ⊂ D be some subset of a strictly m− cv regular domain D ⊂ Rn.

Definition 3.3. Consider the class of functions

U(E,D) = {u(x) ∈ m− cv(D) : u|D 6 0, u|E 6 −1} (7)

and put ω(x,E,D) = sup {u(x) : u ∈ U(E,D)}. Then the regularization ω∗(x,E,D) is called
m− cv measure of the set E with respect to the domain D.

From the property of the upper envelope of m − cv functions it follows that ω∗(x,E,D) ∈
m − cv(D). By Choquet’s lemma (see [12, 17]) there is a countable subfamily U ′ ⊂ U(E,D)

such that {sup {u(x)} : u(x) ∈ U ′(E,D)}∗ ≡ ω∗(x,E,D). It follows that an m − cv measure
ω∗(x,E,D) can be represented as a limit of a monotonically increasing sequence {uj(x)} ⊂

U(E,D) :

[
lim
j→∞

uj(x)

]∗
≡ ω∗(x,E,D).

In the particular case when E ⊂⊂ D is compact, the functions uj(x) ∈ U(E,D) can be
chosen to be continuous in D, which can be easily verified by continuing uj(x) ∈ U(E,D)

into some fixed neighborhood D+ ⊃ D̄ and then approximating them with smooth functions
ujk = uj ◦Kk(x− y) ∈ m− cv (D+) ∩C∞ (D+) , j, k = 1, 2, . . . , we can fined a sequense ujkj

∈

m−cv (D+)∩C∞ (D+) monotonically increasing and
{
ujkj (x)

}
⊂ U(E,D) :

[
lim
j→∞

ujkj (x)

]∗
≡

ω∗(x,E,D).
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Properties of m− cv measures:
1) (monotonicity) if E1 ⊂ E2, then ω∗(x,E1, D) > ω∗(x,E2, D); if E ⊂ D1 ⊂ D2, then

ω∗(x,E,D1) > ω∗(x,E,D2).
2) ω∗(x,U,D) ∈ U(U,D) for open sets U ⊂ D and, therefore ω∗(x,U,D) ≡ ω(x,U,D);
This property follows from the fact that for concentric balls B(x0, r) ⊂ B(x0, R) ⊂⊂ U,

0 < r < R, an m− cv measure

ω∗(x,B(x0, r), B(x0, R)) = max

{
−1,

χm

(
x, x0

)
− χm

(
R, x0

)
χm (R, x0) − χm (r, x0)

}

and therefore in both cases m <
n

2
+1 or m > n

2
+1 we have ω∗(x0, U,D) = −1. Here χm

(
x, x0

)
is a fundamental m− cv function (see (6)).

3) If U ⊂ D is an open set, U =
∞∪
j=1

Kj , where Kj ⊂
◦
K
j+1

, then ω∗(x,Kj , D) ↓ ω(x,U,D)

(easily follows from property 2).
4) If E ⊂ D an arbitrary set, then there is a decreasing sequence of open sets Uj ⊃ E,

Uj ⊃ Uj+1 (j = 1, 2, . . . ), such that ω∗(x,E,D) =

[
lim
j→∞

ω(x,Uj , D)

]∗
.

In fact, if {uj(x)} ⊂ U(E,D) is monotonically increasing such that
[

lim
j→∞

uj(x)

]∗
≡

ω∗(x,E,D), then an open set Uj =

{
uj < −1 +

1

j

}
has the property as Uj ⊃ E, Uj ⊃ Uj+1

(j = 1, 2, . . . ) and

ω∗(x,E,D) 6 ω(x,Uj , D) 6 uj(x) +
1

j
.

Hence ω∗(x,E,D) =

[
lim
j→∞

ω(x,Uj , D)

]∗
.

5) a m− cv measure ω∗(x,E,D) is either nowhere equal to zero or identically equal to zero.
ω∗(x,E,D) ≡ 0 if and only if E is m− cv polar in D.

Remark 3.1. Property 5 is meaningful only if m > n

2
+ 1. At m <

n

2
+ 1 non-empty m − cv

polar set does not exist, so the trivial m− cv measure ω∗(x,E,D) ≡ 0 does not exist.

Example 3.1. Consider m = 1, a ball B = B(0, 1) and a set in it E = {0}, consisting of one
point. Consider a 1 − cv measure ν = ω∗(x,E,B), x ∈ Rn, ν ∈ R as a function in Rn+1

(x,ν). Then
it is easy to see that the convex function ν = ω∗(x,E,B), x ∈ Rn, ν ∈ R will be a cone, with a
vertex at point (0,−1) and a base at {x ∈ ∂B, ν = 0}. Thus, 1 − cv measure ω∗(x,E,B) ̸≡ 0.

Definition 3.4. A point x0 ∈ K is called m− cv regular of a compact set K (relatively to D), if
ω∗(x0,K,D) = −1. A compact set K ⊂ D is called m− cv regular compact if each of its points
x0 ∈ K is m− cv regular.

Since m−cv(D) ⊂ sh(D), then m−cv measure of a pair (K,D) is always no greater than the
harmonic measure of this pair. Consequently, regular compacts in the sense of classical potential
theory are always m − cv regular. Therefore, the closure of the domain G ⊂⊂ D, with a twice
smooth boundary ∂G is a m− cv regular compact. It follows that for any compact K ⊂ U ⊂ D,
where U is an open set, there is always a m − cv regular compact F : K ⊂ F ⊂⊂ U ⊂ D. All
this shows that the family m− cv regular compact is quite rich.
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6) If the set E lies compactly in a strictly m− cv regular domain D = {ρ(x) < 0} , E ⊂⊂ D,

then m−cv measure ω∗(x,E,D) continues as m−cv function to a neighborhood ρ(x) < δ, δ > 0,
of the closure D̄.

Actually, since E ⊂⊂ D is a compact set, then there is a constant C > 0 such that Cρ(x) <

−1, ∀x ∈ E. It follows that Cρ(x) ∈ U(E,D) and Cρ(x) 6 ω∗(x,E,D). Therefore, the function

w(x) =

{
max {Cρ (x) , ω∗ (x,E,D)} if x ∈ D

Cρ (x) if x /∈ D

is m− cv in some neighborhood D+ ⊃ D̄, w (x) = ω∗ (x,E,D) , ∀x ∈ D.
The following theorem plays an important role in the introducing condenser capacity and

further studying the potential properties of m-convex functions.

Theorem 3.2. If a compact set E ⊂ D is m− cv regular, then a m− cv measure ω∗ (x,E,D) ≡
ω (x,E,D) and is a continuous function in D, ω∗ (x,E,D) ∈ C(D).

Proof. According to property 6) a m − cv measure ω∗(x,E,D) continues to the neighborhood
ρ(x) < δ, δ > 0, of the closure D̄ and approximating ω∗(x,E,D) in some neighborhood D+ ⊃ D̄

we fined uj(x) ∈ C∞ (D+) ∩m− cv (D+) : uj(x) ↓ ω∗ (x,E,D) .

We fix a number ε > 0 and two neighborhoods U = {ω∗(x,E,D) < −1 + ε} ⊃ E, D̆ =

{ω∗(x,E,D) < ε} ⊃ D̄. Applying Hartogs’ lemma twice to the sequence uj(x) ↓ ω∗ (x,E,D) and
U ⊃ E, D̆ ⊃ D̄ find the number j0 ∈ N : uj(x) < −1+2ε, ∀x ∈ K, uj(x) < 2ε, ∀x ∈ D̄, j > j0.

Then uj(x) − 2ε < −1, ∀x ∈ E, uj(x) − 2ε < 0, ∀x ∈ D, j > j0, i.e. uj (x) − 2ε ∈ U(E,D).

From here, ω∗ (x,E,D) − 2ε 6 uj (x) − 2ε 6 ω∗ (x,E,D) . This means that the sequence of
smooth functions uj (x) ↓ ω∗ (x,E,D) converges uniformly and ω∗ (x,E,D) ∈ C(D). 2

4. Capacity value of a pair (E,D)

We fix a set E ⊂ D, considering, as above, the domain D ⊂ Rn to be strongly m-convex. Let
ω∗(x,E,D) be a m− cv measure of E ⊂ D. Then the integral

Pmcv(E,D) = −
∫
D

ω∗(x,E,D)dV

is called m− cv capacity of the set E with relation to D.
m − cv capacity expresses the capacity value of a pair (E,D). It has the following obvious

properties: Pmcv(E,D) > 0 and Pmcv(E,D) = 0 if and only if E is a polar set in D.

Theorem 4.1. The value Pmcv(E,D) is an increasing and countably subadditive function of the
set: Pmcv(E1, D) 6 Pmcv (E2, D) for E1 ⊂ E2 and

Pmcv

( ∞∪
j=1

Ej , D

)
6

∞∑
j=1

Pmcv (Ej , D) . (8)

Moreover, Pmcv(E,D) is continuous on the right, i.e. for any set E ⊂ D and for any ε > 0
there is an open set U ⊃ E such that Pmcv(U,D) − Pmcv(E,D) < ε.

Proof. Monotonicity of Pmcv(E,D) obviously follows from the monotonicity of the m − cv

measure. Proof of (8) follows from a similar inequality −ω

(
x,

∞∪
j=1

Ej , D

)
6 −

∞∑
j=1

ω (x,Ej , D)
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for m − cv measures: for any sets Ej ⊂ D and uj(x) ∈ U (Ej , D) the sum
∞∑
j=1

uj(x) is m − cv

function in the broad sense (i.e., it can also equal −∞). Besides
∞∑
j=1

uj(x) ∈ U
( ∞∪

j=1

Ej , D

)
and

therefore,
∞∑
j=1

uj(x) 6 ω

(
x,

∞∪
j=1

Ej , D

)
. On the other side,

sup

{ ∞∑
j=1

uj(x) : uj(x) ∈ U (Ej , D)

}
=

=
∞∑
j=1

sup {uj(x) : uj(x) ∈ U (Ej , D)} =
∞∑
j=1

ω (x,Ej , D) ,

i.e.
∞∑
j=1

ω (x,Ej , D) 6 ω

(
x,

∞∪
j=1

Ej , D

)
.

Integrating this inequality and using Levy’s theorem, we get

−
∫

ω

(
x,

∞∪
j=1

Ej , D

)
dV 6 −

∞∑
j=1

∫
ω (x,Ej , D) dV,

so that (8) is true.
It remains to show the right continuity of the set function Pmcv(E,D). We fix a set E ⊂ D

and according to the m − cv measure property, construct a sequence of open sets Uj ⊃ E,

Uj ⊃ Uj+1:
[

lim
j→∞

ω (x,Uj , D)

]∗
≡ ω∗ (x,E,D). So, as ω (x,Uj , D) increasing, then again by

Levy’s theorem

lim
j→∞

Pmcv (Uj , D) = − lim
j→∞

∫
ω (x,Uj , D) dV = −

∫
lim
j→∞

ω (x,Uj , D) =

= −
∫ [

lim
j→∞

ω (x,Uj , D)

]∗
dV = Pmcv (E,D) .

Hence, for any ε > 0, there is a number j0 such that for j > j0 the inequality Pmcv (Uj , D)−
Pmcv (E,D) < ε is true. The theorem is proved. 2

Corollary 4.1. For any decreasing sequence of compacts K1 ⊃ K2 ⊃ . . . the following right
continuity holds

Pmcv

( ∞∩
j=1

Kj , D

)
= lim

j→∞
Pmcv (Kj , D) .

For arbitrary given sets G1 ⊂ G2 ⊂ . . . , G =
∞∪
j=1

Gj , the left continuity holds

Pmcv

( ∞∪
j=1

Gj , D

)
= lim

j→∞
Pmcv (Gj , D) .

From Corollary 4.1 it follows that the introduced capacity satisfies the Choquet axioms on
the measurability of a capacity quantity Pmcv(E,D) (see [12,17]).
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Theorem 4.2 (Choquet). If a set function C(E) satisfies the following Choquet conditions
a) 0 6 C(E) < ∞, ∀E ⊂⊂ D;
b) if E1 ⊂ E2, then C(E1) 6 C(E2);
c) for any set E ⊂ D and number ε > 0 there exists an open set U ⊃ E such that C(U) −

C(E) < ε;
d) for any increasing sequence Ej ⊂ Ej+1 holds

C

( ∞∪
j=1

Ej

)
= lim

j→∞
C (Ej) ,

then any Borel set E ∈ B is measurable, i.e. if E ∈ B, then

C(E) = C∗(E) = sup {C(K) : K ⊂ E − compact} .

Thus, we have obtained that the capacity value Pmcv(E,D) we introduced above is a mea-
surable function of the sets E ⊂ D, Pmcv(E,D) = sup {Pmcv(K,D) : K ⊂ E − compact} .

5. Hessians Hk and condenser capacity

Although the Pmcv(E,D)-capacity of sets is simpler to define, measurable and has many
properties of capacities, the concept of a condenser capacity is more natural, which is defined
using the Hessians Hk as total mass of the measure.

Let us first recall the definition of Hessians Hk for a bounded semi-continuous function
u(x) ∈ m − cv(D) ∩ L∞(D) as positive Borel measures (see [16]). We embed Rn

x in Cn
z , Rn

x ⊂
Cn

z = Rn
x + iRn

y (z = x + iy) , as a real n−dimensional subspace of the complex space Cn
z . Then

an upper semi-continuous function u(x) in the domain D ⊂ Rn
x will be m-convex in D, if the

function uc(z) = uc(x + iy) = u(x) which does not depend on the variables y ∈ Rn
y , is strongly

m-subharmonic, uc(z) ∈ shm

(
D × iRn

y

)
in the domain D × iRn

y (Theorem 2.1).
If an m-convex function u(x) ∈ m − cv(D) is locally bounded in the domain D ⊂ Rn

x , then
uc(z) will also be a locally bounded, strongly m-subharmonic function in the domain D× iRn

y ⊂
Cn

z . As it is known, the operators

(ddcuc)
k ∧ βn−k, k = 1, 2, . . . , n−m + 1

are defined for any bounded function u ∈ shm

(
D × iRn

y

)
as Borel measures in the domain

D × iRn
y ⊂ Cn

z , µk = (ddcuc)
k ∧ βn−k, k = 1, 2, . . . , n−m + 1.

Since for a twice smooth function (ddcuc)
k∧βn−k = k! (n− k)!Hk (uc)βn, then for a bounded,

strongly m-subharmonic function uc(z) in the domain D × iRn
y ⊂ Cn

z , it is natural to determine
its Hessians, equating to the measure

Hk (uc) =
µk

k! (n− k)!
=

1

k! (n− k)!
(ddcuc)

k ∧ βn−k. (9)

Since uc(z) ∈ shm

(
D × iRn

y

)
does not depend on y ∈ Rn

y , then for any Borel sets

Ex ⊂ D, Ey ⊂ Rn
y the measures

1

mesEy
µk (Ex × Ey) do not depend on the set Ey ⊂ Rn

y ,

i.e.
1

mesEy
µk (Ex × Ey) = νk (Ex). Borel measures νk : νk (Ex) =

1

mesEy
µk (Ex × Ey),

k = 1, 2, . . . , n−m+1, we call hessians Hk, k = 1, 2, . . . , n−m+1 for bounded, m-convex function
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u(x) ∈ m−cv(D) in the domain D ⊂ Rn
x . For a twice smooth function, u(x) ∈ m−cv(D)∩C2(D)

the Hessians are ordinary functions; however, for a non-twice smooth but bounded semi-
continuous function, u(x) ∈ m − cv(D) ∩ L∞(D) the Hessians Hk, k = 1, 2, . . . , n − m + 1,
are positive Borel measures.

Now we can define the concept of condenser capacity

Definition 5.1. Let K be a compact in the domain D ⊂ Rn. Then the value

Cm(K) = Cm(K,D) =

= inf

{
Hn−m+1

u (D) : u ∈ m− cv (D)
∩
C (D) , u|K 6 −1, lim

x→∂D
u (x) > 0

}
(10)

is called the condenser capacity (m-capacity of condenser) of (K,D). For easiness of writing
below, we omit the index ”m” in the notation Cm(K).

Let us prove the following properties of capacity C(K) = Cm(K) = Cm(K,D)

1) The capacity is monotonic, i.e. C(E) > C(K) ∀E ⊃ K (obviously).
2) For any m− cv regular compact K ⊂ D holds C(K) = Hn−m+1

ω∗ (K).

Actually, since compact K ⊂ D is m − cv regular, then ω∗ (x,K,D) ≡ ω (x,K,D) ∈ C(D)

and ω∗ (x,K,D) = −1 ∀x ∈ K. Consequently,

C(K) = inf

{
Hn−m+1

u (D) : u ∈ m−cv(D)∩C(D), u|K 6 −1 , lim
x→∂D

u(x) > 0

}
6 Hn−m+1

ω∗ (K).

Conversely, for any fixed ε, 0 < ε < 1 and for any u ∈ m − cv(D) ∩ C(D), u|K 6 −1,
lim

x→∂D
u(x) > 0, an open set F =

{
x ∈ D : u (x) +

ε

2
< (1 − ε)ω∗ (x,K,D)

}
⊂⊂ D. Therefore,

according to the comparison principle,

Hn−m+1
u (F ) > (1 − ε)

n−m+1
Hn−m+1

ω∗ (F ).

In addition, K ⊂ F and Hn−m+1
ω∗ (D\K) = 0 in D\K. So that

(1 − ε)n−m+1Hn−m+1
ω∗ (D) = (1 − ε)

n−m+1
Hn−m+1

ω∗ (K) = (1 − ε)
n−m+1

Hn−m+1
ω∗ (F ) 6

6 Hn−m+1
u (F ) 6 Hn−m+1

u (D) .

Due to the arbitrariness ε, from here we get

Hn−m+1
ω∗ (D) 6 Hn−m+1

u (D),

i.e. inf on the right side of (10) reaches at m− cv measure ω∗(x,K,D).
3) For any compact K ⊂ D

C(K) = inf {C (E) : E ⊃ K, E m− cv regular} . (11)

In fact, from the monotonicity of capacity (property 1), the left side of (11) does not exceed
the right side, i.e.

C(K) 6 inf {C(E) : E ⊃ K, E m− cv regular} . (12)

Now, for any ε, 0 < ε < 1 there exists u ∈ m − cv(D) ∩ C(D) such that u|K 6 −1,
lim

x→∂D
u(x) > 0 and

Hn−m+1
u (D) − C(K) < ε. (13)
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Let U = {x ∈ D : u(x) < −1 + ε} a neighborhood of a compact K and E is a m − cv regular
compact set, such that K ⊂ E ⊂⊂ U . Consider the open set

F =
{
x ∈ D : u(x) +

ε

2
< (1 − ε)ω∗(x,E,D)

}
⊂⊂ D.

Since E is m− cv regular compact, then E ⊂ F ⊂⊂ D. Therefore, according to the comparison
principle and (13), we obtain

C(E) = Hn−m+1
ω∗ (E) = Hn−m+1

ω∗ (F ) 6 1

(1 − ε)
n−m+1H

n−m+1
u (F ) 6

6 1

(1 − ε)
n−m+1H

n−m+1
u (D) 6 1

(1 − ε)
n−m+1 (C (K) + ε) .

Hence, the right side of (11) does not exceed
1

(1 − ε)
n−m+1 (C(K) + ε). Since ε it is arbitrary,

it does not exceed C(K), i.e.

C(K) > inf {C(E) : E ⊃ K, E m− cv regular} .

This inequality, together with (12), gives us the required statement.
4) If a compact K ⊂ D is m− cv regular, then

C(K) = sup
{
Hn−m+1

u (K) : u ∈ m− cv(D) ∩ C(D), −1 6 u < 0
}
. (14)

Proof. Since C(K) = Hn−m+1
ω (K), then

C(K) 6 sup
{
Hn−m+1

u (K) : u ∈ m− cv(D) ∩ C(D), −1 6 u < 0
}
. (15)

On the other hand, for any function u ∈ m − cv(D) ∩ C(D), we set v(x) =

= max {(1 + ε)ω(x,K,D), u(x)}, 0 < ε < 1. Then v ∈ m − cv(D) ∩ C(D), −1 6 v < 0

and lim
x→∂D

v(x) = 0. Therefore, according to the comparison principle

(1 + ε)n−m+1Hn−m+1
ω (D) > Hn−m+1

v (D) > Hn−m+1
v (K) .

Since Hn−m+1
ω (D\K) = 0, then

Hn−m+1
v (K) = Hn−m+1

u (K).

From here,
(1 + ε)n−m+1Hn−m+1

ω (D) > Hn−m+1
v (K) > Hn−m+1

u (K)

and tending ε → 0 we will receive

C(K) = Hn−m+1
ω (K) > Hn−m+1

u (K).

Due to the arbitrariness of the function u

C(K) > sup
{
Hn−m+1

u (K) : u ∈ m− cv(D) ∩ C(D), −1 6 u < 0
}
,

which together with (15) gives us (14).
We define the external capacity in a standard way by assuming

C∗(E) = inf {C(U) : U ⊃ E − open} ,
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where the capacity of an open set is

C (U) = sup {C (K) : K ⊂ U} = sup {C (K) : K ⊂ U, K m− cv regular} .

Let us note the following properties of the external capacity
5) For any compact, K ⊂ D its external capacity C∗ (K) = C (K).

This follows from property 3).
The following property of capacity is very important in practice.

Theorem 5.1. If a set U ⊂ D is open, then

C(U) = sup
{
Hn−m+1

u (U) : u ∈ m− cv(D) ∩ C(D), −1 6 u < 0
}

=

= sup
{
Hn−m+1

u (U) : u ∈ m− cv(D) ∩ C∞(D), −1 6 u < 0
}
. (16)

Proof. For any m− cv regular compact set K ⊂ U we have

C(K) = sup
{
Hn−m+1

u (K) : u ∈ m− cv(D) ∩ C(D), −1 6 u < 0
}
.

Therefore, C(U) > C (K) > Hn−m+1
u (K) for any fixed u ∈ m − cv(D) ∩ C(D), −1 6 u < 0.

Since K ⊂ U is an arbitrary m− cv regular compact, then C(U) > Hn−m+1
u (U). From here,

C(U) > sup
{
Hn−m+1

u (U) : u ∈ m− cv(D) ∩ C(D), −1 6 u < 0
}
>

> sup
{
Hn−m+1

u (U) : u ∈ m− cv(D) ∩ C∞(D), −1 6 u < 0
}
. (17)

On the other hand, we fix an arbitrary m − cv regular compact set K ⊂ U . According
to property 7) of the m − cv measure, the Pmcv(E,D)-measure ω(x,K,D) m − cv continues
into a certain neighborhood G ⊃ D. It follows, that ω(x,K,D) can be approximated in some
neighborhood of D̄ by infinitely smooth m − cv convex functions uj(x) ↓ ω(x,K,D). Since the
compact K ⊂ U is m−cv regular, then ω(x,K,D) is continuous in D. From this the convergence
uj(x) ↓ ω(x,K,D) will be uniform and the sequence of Borel measures Hn−m+1

uj
weakly converges

to the measure Hn−m+1
ω , Hn−m+1

uj
7→ Hn−m+1

ω .
From the properties of convergent Borel measures we have

C(K) = Hn−m+1
ω (K) = Hn−m+1

ω (U) 6 lim
j→∞

Hn−m+1
uj

(U) . (18)

Let’s us now fix a ε > 0 and put it down vj =
uj − ε

1 + ε
. Then −1 6 vj < 0, for large j > j0 and

therefore,
Hn−m+1

uj
(U) = (1 + ε)

n−m+1
Hn−m+1

vj (U) 6

6 (1 + ε)
n−m+1

sup
{
Hn−m+1

w (U) : w ∈ m− cv(D) ∩ C∞(D), −1 6 w < 0
}
.

From here and according to (18) we have

C (K) 6 lim
j→∞

Hn−m+1
uj

(U) 6

6 (1 + ε) sup
{
Hn−m+1

w (U) : w ∈ m− cv(D) ∩ C∞(D), −1 6 w < 0
}
.

Due to the arbitrariness of the number ε > 0

C(K) 6 sup
{
Hn−m+1

w (U) : w ∈ m− cv(D) ∩ C∞(D), −1 6 w < 0
}
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and taking here the supremum over all m− cv regular compacts K ⊂ U we get

C(U) 6 sup

{∫
U

(ddcw)n : w ∈ m− cv(D) ∩ C∞(D), −1 6 w < 0

}
,

which together with (17) proves the theorem completely. 2

Remark 5.1. If U ⊂⊂ D and K ⊂ U is an arbitrary fixed compact, then m − cv measure
ω∗(x,K,D) m−cv continues into a fixed neighborhood D+ ⊃ D such that the extended function
does not exceed 1 in D+. According to properties 2) and 4) we have

C(K) 6 sup
{
Hn−m+1

u (K) : u ∈ m− cv(G) ∩ C(G), −1 6 u < 0 inD and |u| < 1 in D+
}
6

6 sup
{
Hn−m+1

u (U) : u ∈ m− cv(D) ∩ C(D), −1 6 u < 0
}

= C (K) .

So that

C(K) = sup
{
Hn−m+1

u (K) : u ∈ m− cv(G) ∩ C(G), −1 6 u < 0 in D and |u| < 1 in D+
}
.

Using C (U) = sup {C (K) : K ⊂ U, K m− cv regular}, for an open set U ⊂⊂ D we get

C(U) = sup
{
Hn−m+1

u (U) : u ∈ m− cv(D) ∩ C(D), −1 6 u < 0 in D and |u| < 1 in G
}
.

Moreover, approximating ω∗(x,K,D) in the neighborhood D̄ by infinitely smooth functions,
just as in the proof of Theorem 2.1, we obtain

Corollary 5.1. If U ⊂⊂ D− an open set lying compactly in D, then

C(U)= sup
{
Hn−m+1

u (U) : u ∈ m− cv(D)∩C∞(D), −1 6 u < 0 in D and |u| < 1 in G⊃⊃D
}
.

This relation is useful in practice because the Hessian Hn−m+1
u here is an ordinary function,

defined in the neighborhood of D̄.
6) The external capacity of condenser C∗(E) is monotonic, i.e. if E1 ⊂ E2, then C∗(E1) 6

C∗(E2); it is countably subadditive, i.e. C∗
(∪

j

Ej

)
6
∑
j

C∗(Ej).

In fact, monotonicity C∗ follows from monotonicity C(K) in the class of pluriregular com-
pacts. Let us show countably subadditivity: firstly let Ej ⊂ D are open sets and E =

∪
j

Ej .

According to Theorem 5.1

C(E) = sup
{
Hn−m+1

u (E) : u ∈ m− cv(D) ∩ C∞(D), −1 6 u < 0
}
6

6 sup

{∑
j

Hn−m+1
u (Ej) : u ∈ m− cv(D) ∩ C∞(D), −1 6 u < 0

}
6

6
∑
j

sup
{
Hn−m+1

u (Ej) : u ∈ m− cv(D) ∩ C∞(D), −1 6 u < 0
}
6
∑
j

C(Ej).

For arbitrary sets Ej ⊂ D, for a fixed ε > 0 we will construct open sets Uj ⊃ Ej such that
C(Uj) − C∗(Ej) <

ε

2j
. Then∑

j

C∗(Ej) >
∑
j

C(Uj) − ε > C

(∪
j

Uj

)
− ε > C∗(E) − ε

and from here, at ε → 0 we obtain the required statement.
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7) For any increasing sequence of open sets Uj ⊂ Uj+1, C
(∪

j

Uj

)
= lim

j→∞
C(Uj).

It obviously follows from the fact that any compact space K ⊂
∪
j

Uj belongs to Uj , starting

from some j > j0.
We prove that the introduced outer condenser capacity C∗(E) satisfies the Choquet axioms

on the measurability (see Theorem 4.2).

Theorem 5.2. Any Borel set E ∈ B is measurable, i.e. if E ∈ B, then

C∗(E) = C∗(E) = sup {C(K) : K ⊂ E − compact} .
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Аннотация. В данной работе изучаются самые начальные понятия теории потенциала: полярные
множества и m − cv меры в классе m-выпуклых функций в вещественном пространстве Rn. Мы
также изучаем емкость конденсатора C(E,D) в классе m-выпуклых функций и будем доказывать
некоторые ее потенциальные свойства.

Ключевые слова: m-субгармонические функции, выпуклые функции, m-выпуклые функции, m−
cv полярное множество, m− cv мера, борелевские меры, гессианы.
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