
Journal of Siberian Federal University. Mathematics & Physics 2025, 18(3), 320–330

EDN: KOZBCF
УДК 539.378

Modelling of a Sandwich Plate Cross-section with Different
Moduli of the Material under Cylindrical Loads

Igor E. Petrakov∗

Institute of Computational Modelling SB RAS
Krasnoyarsk, Russian Federation

Received 10.08.2024, received in revised form 15.09.2024, accepted 24.11.2024

Abstract. A model of three-layer sandwich plate consisting of two layers of composite material con-
nected by an elastic isotropic layer is considered in the paper. Composite layers with different tensile
and compression moduli of elasticity are described as an orthotropic material reinforced with parallel
carbon fibres. Constitutive equations of the model are based on the generalized rheological method. The
energy functional is constructed with the use of the Lagrange variational method which is minimized
using the initial stress method and the finite element method. The results of a series of computational
experiments are presented wherein the stress-strain state of a vertical section of a plate under the action
of cylindrical load is calculated.
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Composite materials are materials consisting of two or more distinct components and they
have properties different from the properties of the original materials. In addition, the compo-
sition and distribution of individual components are known in advance, the proportion of each
component is not lower than a certain value, and there are clear boundaries separating the start-
ing materials [1,2]. Despite the heterogeneity of composites on micro-scale they can be considered
as homogeneous materials on macro-scale. The components of a composite material are divided
into a continuous phase, which is called the matrix, and a reinforcing phase. Moreover, the same
material can play the role of a matrix or be a reinforcing material in various composites [3].

Various industries such as automotive industry, mechanical engineering, aircraft manufac-
turing and space industry widely use composite materials. The use of composite materials is
growing in aerospace industry. The share of composites ranges from 15% to 30% of the total
weight in modern aircraft, and in rocket engines reaches 90% [4,5].

One of the composite materials is sandwich structures consisting of a filler and a shell. Poly-
mers reinforced with glass fibre, carbon fibre or biofilter [6] can be used as shell material. Sand-
wich structures are increasingly used in industry, building structures and transportation due to
their light weight and strength under heavy loads. A sandwich structure in which the shell is a
fibrous composite reinforced with long parallel fibres, and the filler is an elastic isotropic mate-
rial is considered in this paper. Since such shell material has different moduli of elasticity and
different strengths it is necessary to take this into account when calculating structures made of
such material [7].
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One of the approaches that allows one to construct model that takes into account different
moduli of elasticity of a composite under tension and compression is the generalized rheological
method [8]. The method provides thermodynamically correct governing equations for fibre com-
posites. The method is based on the construction of rheological schemes using basic elements
(elastic spring, viscous damper and plastic hinge) and a new element — hard contact that sim-
ulates the behaviour of ideal granular medium with absolutely solid particles. The rheological
method has proven itself well in modelling the dynamics and statics of granular and porous
materials with a threshold change in rigidity during the collapse of pores. A similar change in
stiffness occurs in fibre composite when the sign of deformation changes.

1. Generalized rheological method

Let us construct the scheme describing a three-layer structure that consists of two layers of
a multi-modulus composite and one layer of isotropic filler. Fig. 1 shows rheological scheme
consisting of five elastic elements and two rigid contact elements, where σ is the actual stress
tensor, ai is the tensor of elastic moduli in compression for i-th layer, bi is the tensor of additional
moduli under tension for the i-th layer.

Fig. 1. Scheme of three-layer sandwich plate

Derivation of the rigid contact equations used to describe heteromodularity is presented
in [9, 10]. Two equivalent variational inequalities for the reverse rigid contact are

σ(ε− ε̃) > 0, ε, ε̃ 6 0; (σ − σ̃)ε > 0, σ, σ̃ > 0. (1)

Let us consider layer of composite material separatly.
Layer of a material with different moduli is described by the diagram shown in Fig. 2, where ε

is the strain tensor, σ is the actual stress tensor, σ′ is the additional stress tensor, a is the tensor
of elastic moduli in compression, b is the tensor of additional moduli in tension. The governing
equations of the stress-strain state of elastic composites for finite linear or non-linear relations
between stress tensors σ and strain tensors ε admit the potential representation

σ =
∂Φ(ε)

∂ε
, ε =

∂Ψ(σ)

∂σ
. (2)
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Fig. 2. Scheme of layer of composite material

Here Φ and Ψ are elastic potentials of stress and strain related to each other through the Young
transformation:

Ψ(σ) = sup
ε
(σ : ε− Φ(ε)), (3)

Φ(ε) = sup
σ
(σ : ε−Ψ(σ)), (4)

where the colon denotes double convolution of tensors.
According to [11,12] such scheme corresponds to the following governing equation

σ = a : ε+ b : (ε−Π(ε)), (5)

where Π(ε) is the projection of tensor ε onto the cone C according to the norm |ε| =
√
ε : b : ε

and stress and strain potentials

Φ(ε) =
1

2
ε : a : ε+

1

2
(ε−Π(ε))2, (6)

Ψ(σ) =
1

2
σ : a−1 : σ − 1

2
∥π(σ̄)∥2, (7)

where π(σ̄) is the projection of stress tensor σ̄ onto the cone that is conjugate to the cone C

according to the norm ∥σ∥2 = σ : (a−1 + b−1) : σ. The equivalent form of equation (9) are two
equations for the actual stress tensor σ, the additional stress tensor σ′ and the intrinsic strain
tensor of the rigid contact ε′:

σ − σ′ = a : ε, σ′ = b : (ε− ε′). (8)

Let us assume that governing equation at each point of composite layers of the plate has the
form

σ = a(x1, x2, x3) : ε+ b(x1, x2, x3) : (ε−Π(ε)), (9)

where a(x1, x2, x3) and b(x1, x2, x3) take constant values a1, b1 and a2, b2 for each layer, respec-
tively, cones Ci are half-spaces associated with direction of reinforcement. In the filler layer,
potentials and the governing equation take the form

Φ(ε) =
1

2
ε : am : ε, Ψ(σ) =

1

2
σ : a−1

m : σ, σ = am : ε. (10)
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2. Sandwich plate section

Let us consider the stress-strain state of the sandwich plate section. Let the x1 axis of the
Cartesian coordinate system Ox1x2 be located in the direction of fibre. Let us assume that
during compression the plate material is described by the Hooke law for transversally isotropic
body. Then the first equation of system (8) can be written in the following matrix formε11

ε22
ε12

 =

 1
E1

− ν2

E2
0

− ν1

E1

1
E2

0

0 0 1
2G


σ11 − σ′

11

σ22 − σ′
22

σ12 − σ′
12

 , (11)

where E1 and E2 are the Young moduli along the fibre and perpendicular to the fibre, respectively,
ν1 and ν2 are the corresponding Poisson’s ratios, and G is the shear modulus. When the strain
of fibres is positive additional stress is

σ′
11 = b11ε11,

which is introduced using tensor b. In the case under consideration it has only one non-zero
component b11. To ensure that introduced tensor is non-degenerate and positive definite small
positive components β and γ are introduced, and they subsequently tend to zero. Let us write
the second equation of system (8)ε11 − ε′11

ε22 − ε′22
ε12 − ε′12

 =


1
b11

0 0

0 1
β 0

0 0 1
2γ


σ′

11

σ′
22

σ′
12

 . (12)

Substituting the resulting expressions into (9), governing equations for the plane stress state are
obtained: 

σ11 =
E1(ε11 + ν2ε22)

1− ν1ν2
+ b11(ε11 −Π11),

σ22 =
E2(ε22 + ν1ε11)

1− ν1ν2
,

σ12 = 2Gε12.

(13)

Let us write out tensor a−1 + b−1 and represent it in matrix form
1
E1

+ 1
b11

− ν2

E2
0

− ν1

E1

1
E2

+ 1
β 0

0 0 1
2G + 1

2γ

 . (14)

Consider the minor of size 2× 2 of the matrix (a−1 + b−1)−1:

1

(b11 + E1)(β + E2)− ν1ν2bβ

(
b11(β + E2)E1 ν1bβE2

ν1b11βE2 β(b11 + E1)E2

)
. (15)

Taking the limit β, γ → 0, matrix with single non-zero element bE1/(b+E1) is obtained. Thus,
components of the conditional stress tensor σ̄ are

σ̄11 =
E1b11

b11 + E1

(
σ11

E1
− ν2

σ22

E2

)
, σ̄22 = σ̄12 = 0. (16)

– 323 –



Igor E. Petrakov Modelling of a Sandwich Plate Cross-section with Different . . .

Let us assume that each layer of the shell is reinforced with parallel fibres in the plane of the
plate at an angle Ri to the x axis. Let us write down the governing equations for this case. Since
the rotation occurs in the plane of the plate, components σ22 and σ12 remain unchanged:

σ11 =

(
(E1 cosRi + E2 sinRi)(ε11 + ν2ε22)

1− ν1ν2
+ b11 cosRi(ε11 −Π11)

)
,

σ22 =
E2(ε22 + ν1ε11)

1− ν1ν2
,

σ12 = 2Gε12.

(17)

Let us consider the following problem. Region Ω with boundary Γ coincide with the vertical
section of the sandwich plate. Boundary Γ consists of a part Γu on which there are no movements
and part Γσ that does not intersect with it, and distributed load is specified on part Γσ:{

u = 0 на Γu,

σn = q на Γσ.
(18)

It is required to determine the vector displacement field u and the tensor field σ that satisfy the
differential equations

∇ · σ = 0, 2ε(u) = ∇u+ (∇u)∗,

and boundary conditions (18), and for which the following variational equations are satisfied in
Ω

σi = ai : εi + bi : (εi −Πi(εi)), σm = am : εm. (19)

Components of the small strain tensor are related to displacements as follows

ε11 =
∂ux

∂x
, ε22 =

∂uy

∂y
, ε12 =

1

2

(
∂ux

∂y
+

∂uy

∂x

)
.

Let us formulate variational principles that are equivalent to the differential formulation of
the problem under consideration. The required displacement field minimizes the integral

J(u) =

∫
Ω

(Φ(ε(u))) dΩ−
∫
Γσ

qu dΓ (20)

on the linear space U of generalized functions u ∈ H1(Ω).
To obtain the equation of the stress-strain state, the Lagrange variational principle is used.

The actual distribution of plate displacements is minimized on a set of variations consistent with
the main boundary conditions by the elastic energy functional:

∑
i=1,2

(∫
Ωi

(
1

2
∇u : (ai + bi) : ∇u− bi : Πi(ε)σ : ∇u

)
dΩi −

∫
Γi

q⃗ · u dΓi

)
+

+

∫
Ωm

(
1

2
∇u : am : ∇u

)
dΩm −

∫
Γm

q⃗ · u dΓm = 0,

where index i denotes the layer number, u is the vector field of displacements in Ω, ∇ is the
Hamilton operator, q⃗ is the stress vector at the boundary of the plate Γσ, ai is the tensor of
elastic moduli under compression, bi is the tensor of additional moduli under tension, am is the
tensor of elastic moduli of the interlayer.
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Let us apply the obtained constitutive equations to the analysis of the plane stress state of
the section of a sandwich plate loaded along the edge with static self-balanced stress system,
using the initial stress method. To do this, defining equation of the fibre composite in form (19)
is replaced the with the following iterative formula

σk =
∑
i=1,2

(
(ai + bi) : ε

k −∆σk−1
i

)
+ am : εk, ∆σk−1

i = bi : Πi(ε
k−1).

At the first step, the problem for unstressed plate is solved when initial stress tensor ∆σ0 is
identically equal to zero. In this case, the elastic modulus tensor is a + b. For the next steps,
tensor ∆σk−1 is determined, using the projection of tensor εk−1. Taking into account the
iterative formula, the elastic energy functional takes the following form

∑
i=1,2

(∫
Ωi

(
1

2
∇u : (ai + bi) : ∇u−∆σk−1 : ∇u

)
dΩi −

∫
Γi

q⃗ · u dΓi

)
+

+

∫
Ωm

(
1

2
∇u : am : ∇u

)
dΩm −

∫
Γm

q⃗ · u dΓm = 0. (21)

To ensure the uniqueness of the solution any point on the plate is fixed, and rotation around
this point is excluded. By minimizing functional (21) at each step of the algorithm, the required
displacement vector u is obtained.

3. Numerical results

The finite element method is used for the numerical solution. The triangular Lagrange element
with three nodes is used, and displacements ux, uy are specified at the nodes. An irregular
triangular mesh is constructed in domain Ω. Vector of generalized coordinates U of dimension
2n is introduced, where n is the number of grid nodes. The functional is represented as a sum
of integrals over all triangles of the mesh

J(U) =

m∑
l=1

∫∫
Ωl

(
(Ul)

TSTK(x1, x2)SUl − bΠ(SUk−1
l )SUl − qlUl

)
dx1 dx2, (22)

where Ωl is the domain of the lth finite element, Ul is the local vector of generalized coordinates,
Sl is the local matrix of displacements and deformations, K is the matrix of elastic constants,
q is a global vector of generalized forces, the superscript T means transpose. When conducting
computational experiments, sandwich plates with different layer thicknesses were considered.
Loading schemes are presented in Fig. 3. The shell parameters corresponded to carbon fibre
plastic are E+

1 = 114, E−
1 = 57, E2 = 14, G = 3.5 GPa, ν1 = 0.19. The filler is isotropic

epoxy resin with parameters E = 4, G = 1.54GPa, ν = 0.3. In the first series of computational
experiments, tension-compression along fibres is considered. The figures show axial displacements
for the plate with shell layer thickness of 1 mm and filler of 3 mm. The force of 50 kN (tension,
Fig. 5) and −50 kN (compression, Fig. 6) is applied to the right side of the plate.

Similar calculations are carried out for the transverse direction. The deformation is calculated
under the action of distributed load applied to the upper boundary of the plate. Displacements
for tension and compression are shown in Fig. 7.

– 325 –



Igor E. Petrakov Modelling of a Sandwich Plate Cross-section with Different . . .

Fig. 3. Schemes of sandwich plate loading under tension-compression along and across fibres

As a result of calculations for the described material, the following values of effective elastic
moduli for the sandwich structure are obtained

E+
1 = 41ГПа, E−

1 = 23ГПа, E+
2 = 5.88ГПа, E−

2 = 5.93ГПа.

A series of computational experiments on bending of the sandwich plate under the action of
concentrated force (diagram is shown in Fig. 4) is carried out.

Fig. 4. Loading diagram for cylindrical bending
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Fig. 5. Displacement of sandwich plate under tension with force applied along the shell rein-
forcement

Displacements and strains ε11 during bending for sandwich plate with shell layer thickness of
4 mm and filler layer of 4 mm are shown in Fig. 8. One can observe the distribution of tension
and compression zones near edges and the centre of the plate.
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Fig. 6. Displacement of sandwich plate under compression with force applied along the shell
reinforcement
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Fig. 7. Displacement of sandwich plate under tensile (top pictures) and compressive (bottom
pictures) with force applied across the shell reinforcement

Tab. 1 shows values of deflections for various ratios of shell and filler thicknesses, where Ti is
the thickness of the interlayer, Ta is the thickness of the reinforcement, wd is the deflection when
difference in modularity is taken into account, w is the deflection when difference in modularity
is not taken into account. As thickness of the shell layers increases the influence of different
moduli on the value of deflection is also increased. When difference in moduli is not taken into
account different moduli the error of calculation of deflection can reach 10%.
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Table 1. Deflection of sandwich plate under the action of concentrated force

Ti, mm Ta, mm wd, mm w, mm δw, %
0.24 0.96 1.88 1.66 11%
0.48 0.72 1.99 1.78 10%
0.72 0.48 2.11 1.9 10%
0.96 0.24 2.24 2.08 7%
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Fig. 8. Strain and displacement of sandwich plate with equal thickness of layers under the action
of concentrated force

Conclusion

Model of sandwich plate that takes into account the different resistance of the material to
tension and compression was considered. Computational algorithm for solving the problem of
calculating the stress-strain state of sandwich plate section under the influence of cylindrical load
has been developed. The developed model allows one to determine tension-compression zones of
the sandwich plate section. Analysis of the results of numerical calculations showed the influence
of different moduli on the deformed state of sandwich plate under cylindrical bending.
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Моделирование сечения сэндвич-пластины
при цилиндрических нагрузках с учетом
разномодульности материала

Игорь Е. Петраков
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация

Аннотация. В работе рассматривается модель трехслойной сэндвич-пластины, состоящей из двух
слоев композитного материала, связанного упругой изотропной прослойкой. Слои композитного
материала моделируются с учетом различных модулей упругости при растяжении и сжатии и пред-
ставляют собой ортотропный материал, армированный параллельными углеродными волокнами.
Представлена модель на основе обобщенного реологического метода, с помощью которого полу-
чены определяющие уравнения. С помощью вариационного метода Лагранжа построен функцио-
нал энергии, минимизация которого проведена с использованием метода начальных напряжений и
метода конечных элементов. Представлены результаты серии вычислительных экспериментов по
расчету напряженно-деформированного состояния вертикального сечения пластины под действием
цилиндрической нагрузки.

Ключевые слова: композитный материал, разномодульная теория упругости, обобщенный рео-
логический метод, сэндвич-пластина, метод конечных элементов.
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