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Abstract. Governing equations for the motion of two immiscible fluids in a poroelastic skeleton are
obtained within the framework of the theory of interacting continua. The stability of the steady-state
solution of the system is investigated.

Keywords: poroelasticity, two-phase filtration, Darcy’s law, stability, viscoelasticity.

Citation: M.A.Tokareva, A.A. Papin, Filtration of Two Immiscible Liquids in a
Viscoelastic Porous Medium, J. Sib. Fed. Univ. Math. Phys., 2025, 18(2), 251–259.
EDN: UBPBHA.

Introduction

The problem of global warming is one of the most important modern scientific problems. The
emission of CO2 is one of the causes leading to global changes in the Earth’s climate.

Geological storage of carbon dioxide in deep geological formations is considered a key tran-
sition method for reducing greenhouse gas emissions into the atmosphere and, therefore, their
feedback on the climate. Such method has been used for several decades in applications related
to enhanced oil recovery. A number of industrial, demonstration and pilot projects are underway,
and the processes and techniques associated with geological carbon dioxide storage have been
theoretically and experimentally studied. Deep saline formations are geological units that are
estimated to have the highest storage potential due to their worldwide distribution. Methods
for modelling and monitoring CO2 storage in such formations are rapidly developing in many
parts of the world. The basic assumption underlying the modelling of such processes is that after
CO2 injection, the void space within the formation is occupied by two fluids: natural brine and
injected CO2 [1].

Two-phase models are also applied to describe CO2 sequestration in producing gas fields.
In [2], CO2 sequestration scenarios through three injection wells in a producing gas field located
in the river Po sedimentary basin (Italy) are modeled with the ultimate goal of understanding
the geomechanical consequences of CO2 injection. The process is analyzed from a geomechanical
point of view, with the following main issues being addressed: prediction of possible vertical
uplift of the earth and the corresponding impact on the surface infrastructure; assessment of the
stress state induced in the reservoir with possible formation of fractures and analysis of the risk
of activation of existing faults.
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In the paper [3] a poromechanical model is developed to determine how chemical carbonation
reactions can affect the mechanical behavior of well cement in the context of CO2 storage. A
multiphase model is also considered, in which the pore fluid consists of dissolved components
and a solvent (water).

Thus, the mathematical model of two-phase filtration in a poroelastic medium is quite relevant
and describes well the processes of CO2 storage. A large number of works are devoted to
mathematical modeling of the process of carbon dioxide burial under various conditions. Most
of the known models do not take into account the variable porosity of the solid skeleton. Usually
porosity is a given function or is assumed to be constant. However, taking into account variable
porosity seems important, since it can lead to the detection of cracks and the release of CO2 to the
surface during burial. The mathematical model we consider takes into account the compressibility
of the solid skeleton and its poroelastic properties, i.e. variable porosity.

Work using variable porosity has been conducted since the 1920s. A relationship was dis-
covered between the burial depth of sedimentary rocks and porosity. In particular, there is an
exponential dependence of porosity on depth [4]. One of the first tools for constructing mod-
els of poroelastic media was the Terzaghi effective stress concept, which takes into account the
mobility of the skeleton and its poroelastic properties [5]. Further, the theory of poroelasticity
was developed in the works of Bio [6], where porosity was also a function of effective pressure.
Porosity depended on pressure (but the deformation of the porous skeleton was not considered)
in [7]. A model of two-phase filtration in a deformable porous medium was proposed in [8], in
which the motion of a solid skeleton was described based on an analogue of Terzaghi’s principle
and a modified linear Hooke’s law. The justification issues were not considered in this work.
This was done in works [9,10], where particular solutions were constructed in models of zero and
first approximations. In the case of single-phase filtration in a deformable porous medium, the
mathematical theory of the process was constructed in works [11–13].

1. Governing equations

We consider a system of differential equations describing the motion of two immiscible fluids in
a deformable viscoelastic medium. The continuity equations for each phase, taking into account
variable porosity in the absence of phase transitions, are as follows [15]:

∂(ρ1s1ϕ)

∂t
+∇ · (ρ1ϕs1v⃗1) = 0,

∂(ρ2s2ϕ)

∂t
+∇ · (ρ2ϕs2v⃗2) = 0, s2 + s1 = 1,

∂(1− ϕ)ρ3
∂t

+∇ · ((1− ϕ)ρ3v⃗3) = 0.

(1)

Here ρ1, ρ2, ρ3, v⃗1, v⃗2, v⃗3 are true phase densities and velocities, respectively (1 is the wetting
fluid, 2 is the non-wetting fluid, 3 is the solid deformable skeleton), s1, s2 are fluid saturations,
ϕ is the porosity.

Instead of the equations of conservation of momentum in the theory of two-phase filtration,
a generalized Darcy law for liquid phases is used, taking into account the motion of a solid
skeleton [16,17]:

s1ϕ(v⃗1 − v⃗3) = −K0(ϕ)
k01(s1)

µ1
(∇p1 − ρ1g⃗), (2)

s2ϕ(v⃗2 − v⃗3) = −K0(ϕ)
k02(s2)

µ2
(∇p2 − ρ2g⃗), (3)
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where p1, p2 are fluid pressures, k01(s1), k02(s2) are permeabilities, µ1, µ2 are dynamic viscosities,
g⃗ is the acceleration vector of gravity. Taking into account capillary forces means that the phase
pressures p2 and p1 differ by the magnitude of the capillary jump: p2 − p1 = pc(s1), pc(s1) is the
capillary pressure (is a given function).

The system of equations (1)–(3) with respect to the sought functions of pressures, phase
velocities and saturations of immiscible liquids moving in a non-deformable porous medium, in
the isothermal case (the temperature in the flow is constant) is closed either by the assumption
of incompressibility of liquids, i.e. the densities are assumed to be constant, or by an equation
of state relating the densities and pressures of the phases.

The resulting mathematical model in the case of a stationary porous medium v⃗3 = 0 is called
the Musket–Leverett model (in the case of the absence of a capillary jump — the Buckley–
Leverett model). The mathematical theory of the process for the Musket–Leverett model was
justified in the monograph [18].

The fundamental point is to take into account the compressibility of the porous medium.
Work using variable porosity began in the 1920s in connection with attempts to mathematically
model filtration processes in sedimentary rocks [4]. At first, simple dependences of porosity on
depth were used (see review in [19]]), obtained on the basis of experimental data. Then more
complex dependences appeared for porosity through effective pressure [5], which, according to
Terzaghi’s concept, is defined as the difference between the total pressure and the fluid pressure.
This position reflects the fact that the fluid bears part of the load. In this approach, the relation-
ship between the deformation of the skeleton of the solid matrix and the processes of fluid flow
is fundamental. Experimental data on unknown porosity are contained in the works of [20,21].

The Maxwell-type relationship between porosity and effective pressure pe is as follows [22–24]:

∇ · v⃗3 = −(α(ϕ)pe + β(ϕ)
dpe
dt

), (4)

where α(ϕ), β(ϕ) are given functions that depend on porosity (parameters of the medium that are

responsible for viscosity and elasticity, respectively),
d

dt
=

∂

∂t
+(v⃗3 ·∇) is the material derivative.

The effective pressure pe and the pressures in the liquid phases p1, p2 and the solid p3 phases are
related by the relations:

ptot = ϕpf + (1− ϕ)p3, pe = (1− ϕ)(p3 − pf ), pf = s1p1 + s2p2. (5)

The balance equation of forces for the system as a whole has the form [22,23,25]:

∇ptot = ρtotg⃗+∇·
(
(1− ϕ)η

(
∂v⃗3
∂x⃗

+

(
∂v⃗3
∂x⃗

)∗))
, ρtot = ϕρf +(1−ϕ)ρ3, ρf = s1ρ1+s2ρ2, (6)

where ptot is the total pressure, ρtot is the total density, η is the viscosity of the porous skeleton,
∗ is the symbol for the transposition operation. Here, the approach is used in which the deviator
of the stress tensor in the liquid phase is neglected, because the viscosity of the liquid is much
smaller than the shear viscosity of the skeleton.

Thus, the system of equations (1)–(6), describing the motion of two immiscible liquids in a
deformable porous medium, takes the form [14]:

∂(ρ1s1ϕ)

∂t
+∇ · (ρ1ϕs1v⃗1) = 0,

∂(ρ2s2ϕ)

∂t
+∇ · (ρ2ϕs2v⃗2) = 0,

∂(1− ϕ)ρ3
∂t

+∇ · ((1− ϕ)ρ3v⃗3) = 0,

(7)
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s1ϕ(v⃗1 − v⃗3) = −K0(ϕ)
k01(s1)

µ1
(∇p1 − ρ1g⃗),

s2ϕ(v⃗2 − v⃗3) = −K0(ϕ)
k02(s2)

µ2
(∇p2 − ρ2g⃗),

(8)

∇ · v⃗3 = −(α(ϕ)pe + β(ϕ)
dpe
dt

),
d

dt
=

∂

∂t
+ (v⃗3 · ∇), (9)

ptot = ϕpf + (1− ϕ)p3, pe = (1− ϕ)(p3 − pf ), p2 − p1 = pc(s1), (10)

∇ptot = ρtotg⃗ + div

(
(1− ϕ)η

(
∂v⃗3
∂x⃗

+

(
∂v⃗3
∂x⃗

)∗))
, ρtot = ϕρf + (1− ϕ)ρ3. (11)

This model is quite complex for investigation, relatively new and has not been studied in suf-
ficient detail. In the paper [26] a similar system of equations is investigated, for which some exact
solutions are obtained in the thin layer approximation in the model case. In the paper [14] the
solvability of the model problem in the Hele–Shaw cell approximation for the equations (7)–(11)
is established. In the one-dimensional case for the system (7)–(11) at a constant temperature
and single-phase filtration, the dependence of the liquid phase density on the pressure and in
the absence of phase transitions, local solvability is established in [11]. With constant densities,
global solvability is proved in [12]. In the papers [27, 28] the problems of two-phase filtration in
a deformable medium with known porosity are considered. The purpose of this work is to study
the stability of the stationary solution of the general system of equations (7)–(11).

2. A study of the stability of the problem of the motion
of two immiscible fluids in a poroelastic medium

2.1. Steady-state solution of the system

To find an analytical solution to the system (7)–(11) we will use the following hypotheses:

•fluids and solid skeletons are incompressible, that is, ρ0i = const (i = 1, 2, 3);

• gravity acceleration and capillary jump are equal to zero: −→g = 0, pc = 0.

We consider a stationary solution in which the phase velocities are zero (v⃗1 = v⃗2 = v⃗3 = 0),
and the porosity and saturation are constant:

ϕ = ϕ0, s1 = s01, s2 = s02, (ϕ0, s01, s
0
2) ∈ (0, 1).

From the equation (11) it follows that ptot = h = const.

From the absence of a capillary jump it follows that p1 = p2.
Under these assumptions, equations (7)–(11) are satisfied automatically. From equation (9)

it follows that pe = 0. From the equation for effective pressure: pe = ptot − pf we establish that
ptot = pf = p1 = p2 = p3 = h.
Thus, the steady-state solution has the form:

s1 = s01, s2 = s02, v⃗1 = v⃗2 = v⃗3 = 0, ϕ = ϕ0, p1 = p2 = p3 = h.
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2.2. Perturbed solution

The perturbed solution of the system (7)–(11) is sought in the vicinity of the stationary one
and has the following form [29]:

v⃗1 = ⃗̄v1, v⃗2 = ⃗̄v2, v⃗3 = ⃗̄v3, s1 = s01 + s̄1, s2 = s02 + s̄2,

ϕ = ϕ0 + ϕ̄, s01 + s02 = 1, s̄1 + s̄2 = 0,

p1 = p̄1 + h, p2 = p̄2 + h, p3 = p̄3 + h, p̄2 = p̄1.

where the functions v3, v1, v2, p1, p2, p3, s1, s2, ϕ are small and have continuous derivatives. The
functional parameters K0(ϕ), k01(s1), k02(s2) can be represented as:

K0(ϕ) = K0(ϕ
0) +K ′

0(ϕ
0)ϕ,

k01(s1) = k01(s
0
1) + k′01(s

0
1)s1,

k02(s2) = k02(s
0
2) + k′02(s

0
2)s2,

α(ϕ) = α(ϕ0) + α′(ϕ0)ϕ̄, β(ϕ) = β(ϕ0) + β′(ϕ0)ϕ̄.

Substituting the perturbed solution into the system (7)–(11) and discarding the nonlinear terms,
we arrive at the following linear system (for convenience, we omit the dashes from above):

∂(1− ϕ)

∂t
+ (1− ϕ0)∇ · v⃗3 = 0, (12)

ϕ0 ∂(s1)

∂t
+ s01

∂(ϕ)

∂t
+ ϕ0s01∇ · v⃗1 = 0, (13)

ϕ0 ∂(s2)

∂t
+ s02

∂(ϕ)

∂t
+ ϕ0s02∇ · v⃗2 = 0, (14)

s01ϕ
0(v⃗1 − v⃗3) = −K0(ϕ

0)
k01(s

0
1)

µ1
∇p1, (15)

s02ϕ
0(v⃗2 − v⃗3) = −K0(ϕ

0)
k02(s

0
2)

µ2
∇p2, (16)

∇ · v⃗3 = (1− ϕ0)

(
α(ϕ0)(p3 − p1) + β(ϕ0)

∂(p3 − p1)

∂t

)
, (17)

(1− ϕ0)∇p3 + ϕ0∇p1 = η(1− ϕ0)(∆v⃗3 +∇(∇ · v⃗3)). (18)

To find v⃗3 we add the continuity equations (12)–(14). We get:

∇ · v⃗3 = − ϕ0

1− ϕ0

(
s01∇ · v⃗1 + s02∇ · v⃗2

)
. (19)

After adding the equations (15), (16), and apply the div operator to both parts of the resulting
equality we get:

∇ · (ϕ0s01v⃗1 + s02ϕ
0v⃗2)− ϕ0∇ · v⃗3 = −K0(ϕ

0)

(
k01(s

0
1)

µ1
+

k02(s
0
2)

µ2

)
.

Taking into account the relation (19), we obtain

∇ · v⃗3 = K0(ϕ
0)

(
k01(s

0
1)

µ1
+

k02(s
0
2)

µ2

)
∆p1. (20)
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Taking the div operator to both parts of the equation (18) and, taking into account the previous
equality, we obtain

(1− ϕ0)∆p3 = 2ηK̃(1− ϕ0)∆2p1 − ϕ0∆p1. (21)

Equation (17) taking into account (20) will take the form

K̃∆p1 = (1− ϕ0)

(
α(ϕ0)(p3 − p1) + β(ϕ0)

∂(p3 − p1)

∂t

)
,

where K̃ = K0(ϕ
0)

(
k01(s

0
1)

µ1
+

k02(s
0
2)

µ2

)
. Taking the operator ∆ to the previous equation, we

get

K̃∆2p1 = α(ϕ0)((1−ϕ0)∆p3)−α(ϕ0)(1−ϕ0)∆p1+β(ϕ0)
∂

∂t
((1−ϕ0)∆p3)−β(ϕ0)(1−ϕ0)

∂

∂t
(∆p1).

Taking into account equation (21), we have the equation for p1

∂

∂t
(∆p1)−A∆2p1 −B

∂

∂t
(∆2p1) + C∆p1 = 0, (22)

where

A= K̃
2α(ϕ0)η(1− ϕ0)− 1

β(ϕ0)
, B= 2ηK̃(1− ϕ0), C=

α(ϕ0)

β(ϕ0)
, K̃= K0(ϕ

0)

(
k01(s

0
1)

µ1
+

k02(s
0
2)

µ2

)
.

Let us describe the scheme for finding all the desired functions. After finding p1 from the
equation (22) we find p2, since pc = 0 and, therefore, p1 = p2. We also obtain divv3 from (20).
We find p3 from (21), and then we find v3 from (18). We can find v1 and v2 from (15), (16), and
ϕ from (12). From (13) we find s1, and, therefore, s2, since s1 + s2 = 1.

We now seek a plane wave solution of the form [30]

p1 = p̂1 exp(st) exp(ik · x), s = ξ − iη̄,

where k is the wave vector of the plane wave, η̄ is related to the velocity of propagation V by
V = η̄/|k|, where |k| is the wave number.

Substituting this representation into (22), we obtain

p̂1k
2(s+Ak2 +Bsk2 + C) = 0.

The solutions p̂1 = 0 represent transverse waves. We also have that

ξ = −k2K̃(2α(ϕ0)η(1− ϕ0)− 1) + α(ϕ0)

β(ϕ0)(1 + 2ηK̃(1− ϕ0)k2)
. (23)

From this equation we obtain the relationship between the degree of growth of the harmonic
ξ perturbations and its wavelength (wave number |k| = 2π/λ). For ξ > 0 the perturbations grow
exponentially and, therefore, the initial solution is unstable, for ξ < 0 the perturbations decay
and the solution is stable. It is easy to see that ξ > 0 for |k| ∈ (0, kc), where

kc =

(
α(ϕ0)

K̃(1− 2α(ϕ0)η(1− ϕ0))

)1/2

,

if the condition 1 > 2αη(1− ϕ0) is satisfied.
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Note that in the absence of viscosity in the skeleton and the prevalence of its elastic properties,
i.e., when α = 0, we have unstable perturbations, since it is easy to see from the equality (23)
that ξ > 0 for any initial data of the equations. In the presence of viscosity and when the
condition is satisfied

1 < 2ηα(1− ϕ0) (24)

the process will be stable, since there are no real kc. Therefore, viscosity can stabilize the process
under consideration. In the absence of skeleton elasticity (β = 0) we have kc = ∞ and the
solution is always unstable. Therefore, elasticity also contributes to the stabilization of the
process. In other words, the process will be stable if the (24) condition is met and the skeleton
has viscoelastic properties.

The study was supported by the Russian Science Foundation grant no. 23-71-10045,
https://rscf.ru/project/23-71-10045/.

References

[1] Geological Storage of CO2 in Deep Saline Formations, Springer, Editor: Niemi, Bear and
Bensabat, 2016.

[2] M.Ferronato, G.Gambolati, C.Janna, P.Teatini, Geomechanical issues of anthropogenic
CO2 sequestration in exploited gas fields, Energy Conversion and Management, 51(2010),
1918–1928.

[3] A.Fabbri, N.Jacquemet, D.M.Seyedi, A chemo-poromechanical model of oilwell cement
carbonation under CO2 geological storage conditions, Cement and Concrete Research,
42(2012), 8–19.

[4] L.F.Athy, Density, porosity, and compaction of sedimentary rocks, Amer. Ass. Petrol. Geol.
Bull., 14(1930), 1–24.

[5] K.Terzaghi, Theoretical Soil Mechanics, Wiley J., New York, 1943.

[6] M.A.Biot, General theory of three-dimensional consolidation, J. Appl. Phys., 12(1941),
no. 2, 155–164.

[7] O.B.Bocharov, On the filtration of two immiscible liquids in a compressible formation, Dy-
namics of continuous media: Coll. scientific papers / USSR Academy of Sciences. Siberian
Branch. Institute of Hydrodynamics, 50(1981), 15–36 (in Russian).

[8] V.V.Vedernikov, V.N.Nikolaevskii, Mechanics equations for porous medium saturated by
a twophase liquid, Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, 5(1978),
769–773.

[9] O.B.Bocharov, V.Ya.Rudyak, A.V.Seryakov, The simplest models of deformation of a poroe-
lastic medium saturated with fluids, Physical and technical problems of mineral development,
2(2014), 54–68. (in Russian)

[10] V.Ya.Rudyak, O.B.Bocharov, A.V.Seryakov, Hierarchical sequence of models and deforma-
tion peculiarities of porous media saturated with fluids, Proceedings of the XLI Summer
School-Conference Advanced Problems in Mechanics (APM-2013), 1-6 July , St-Petersburg,
2013, 183–190.

– 257 –



Margarita A.Tokareva, Alexander A.Papin Filtration of Two Immiscible Liquids . . .

[11] A.A.Papin, M.A.Tokareva, On local solvability of the system of the equations of one dimen-
sional motion of magma, Journal of Siberian Federal Universit. Mathematics and Physics,
10(2017), no. 3, 385–395.

[12] M.A.Tokareva, A.A.Papin, Global solvability of a system of equations of one-dimensional
motion of a viscous fluid in a deformable viscous porous medium, Journal of Applied and
Industrial Mathematics, 13(2019), no. 2, 350–362.

[13] M.A.Tokareva, A.A.Papin, On the existence of global solution of the system of equations of
one-dimensional motion of a viscous liquid in a deformable viscous porous medium, Siberian
Electronic Mathematical Reports, 18(2021), no. 2, 1397–1422.

[14] P.V.Gilev, A.A.Papin, Filtration of two immiscible incompressible fluids in a thin poroelastic
layer, Journal of Applied and Industrial Mathematics, 18(2024), 234–245.

[15] R.I.Nigmatulin, Fundamentals of the Mechanics of Heterogeneous Media, Moscow, Izda-
tel’stvo Nauka, 1978 (in Russian).

[16] J.Bear, A.H.D.Cheng, Modeling Groundwater Flow and Contaminant Transport, Springer
Science & Business Media, Berlin, 2010.

[17] F.Schneider, J.L.Potdevin, S.Wolf, I.Faille, Vechanical and chemical compaction model for
sedimentary bsasin simulation, Tectonophysics, 263 (1996), 307–317.

[18] S.N.Antontsev, A.V.Kazhikhov, V.N.Monakhov, Boundary Value Problems in Mechanics of
Nonhomogeneous Fluids, North-Holland, 1989.

[19] J.JE.Lee, Modelling and Simulation of Compacting Sedimentary Basins, University of Ox-
ford, 2019.

[20] P.A.Waldner, M.Schneebeli, U.Schultze-Zimmermann, H.Fluhler, Effect of snow structure
on water flow and solute transport, Hydrological Processes, 18(2008), no. 7, 1271–1290.
DOI:10.1002/hyp.1401

[21] R.R.Khasanov, A.R.Smirnova, Experimental research of physical characteristics of prelimi-
nary compressed clay soil at moistening, International Research Journal, 12(2017), no. 66,
178–182. DOI: 10.23670/IRJ.2017.66.130

[22] A. Fowler, Mathematical Geoscience Springer-Verlag London Limited, (2011).

[23] C.Morency et al., A numerical model for coupled fluid flow and matrix deformation with ap-
plications to disequilibrium compaction and delta stability, Journal of Geophysical Research:
Solid Earth, 112(2007), no. B10.

[24] J.A.D.Connolly, Y.Y.Podladchikov, Compaction-driven fluid flow in viscoelastic rock,
Geodin. Acta, 11(1998), 55–84.

[25] O.Coussy, Poromechanics, John Wiley & Sons, 2004.

[26] M.A.Tokareva, A.A.Papin, A.A.Beregovykh, Two-phase filtration in a thin poroelastic layer,
AIP Conference Proceedings, 2528(2022), 020008. DOI: 10.1063/5.0106334

– 258 –



Margarita A.Tokareva, Alexander A.Papin Filtration of Two Immiscible Liquids . . .

[27] V.V.Shelukhin, A poroelastic medium saturated by a two-phase capillary fluid, Contin.
Mech. Thermodyn, 26(2014), no. 5, 619–638. DOI: 10.1007/s00161-013-0321-x

[28] A.Jardani, A.Revil, Seismoelectric couplings in a poroelastic material containing two immis-
cible fluid phases, Geophys. J. Int., 202(2015), no. 2, 850–870. DOI: 10.1093/gji/ggv176

[29] A.A.Glushkova, A.A.Papin, Stability of two-phase flows in a poroelastic medium, Proceed-
ings of the Seminar on Geometry and Mathematical Modeling, 5(2019), 55–59 (in Russian).

[30] S.K.Garg, J.W.Pritchett, Dynamics of gasfluidized beds, Journal of Applied Physics,
46(1975), 4493.

Фильтрация двух несмешивающихся жидкостей
в вязкоупругой пористой среде

Маргарита А. Токарева
Александр А.Папин

Алтайский государственный университет
Барнаул, Российская Федерация

Аннотация. В рамках теории взаимодействующих континуумов получены определяющие уравне-
ния для движения двух несмешивающихся жидкостей в пороупругом скелете. Исследована устой-
чивость стационарного решения системы.

Ключевые слова: пороупругость, двухфазная фильтрация, закон Дарси, устойчивость, вязко-
упругость.
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