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Introduction
Isaac Newton, in a letter to Oldenburg [1], outlined the idea of an algorithm for finding a

solution to an algebraic equation F (z, w) = 0 in the form of a series with a fractional exponent of
the variable z. Now it is called the Newton diagram method. It should be noted that Newton did
not consider the question of the convergence of the resulting series. For the first time, the fact
that the solutions obtained by the Newton diagram method converge in a certain neighborhood
of zero was proved by Victor Puiseaux in [2]. This fact is called Puiseaux’s theorem.

The next stage in the development of interest in this issue was work using techniques equiv-
alent to resolving the singularities of algebraic curves in modern terminology. Namely, for an
algebraic curve V , defined by the equation F (w, z) = 0, a non-singular curve is constructed V̄
and display ϕ : V̄ → V such that the narrowing ϕ : V̄ \ ϕ−1(Vsing) → V \ Vsing is a birational
isomorphism. Display ϕ is a composition of blow-ups of singular points (σ−processes). For a
non-singular curve V̄ identifying regular branches in a neighborhood of points from ϕ−1(Vsing)
possible due to the implicit function theorem. When displayed ϕ these branches go into solutions
of the equation F (z, w) = 0, which are convergent series. Presentation of this approach to finding
solutions to the equation F (z, w) = 0, in the language of modern algebraic geometry is most fully
presented in the book [3, book 2, chapter 2], as well as in [4, section 8.4].

Puiseux’s theorem can also be obtained from other considerations, for example, from the
expansion of the polynomial F (z, w) into the product of irreducible Weierstrass polynomials with
respect to the variable z. By considering each irreducible polynomial separately, it is possible
to construct a local parameterization of the branch of the curve it defines. Each of the formal
solutions of the equation F (z, w) = 0 coincides with one of the obtained parameterizations, and
is thus convergent. A detailed proof of this fact can be found in the monograph [4, section 8.3].

For some classes of equations, the proof of Puiseau’s theorem can be obtained without using
the constructions discussed above. This paper presents one such class of equations whose coef-
ficients are convergent Puiseux series. It is shown that all convergent solutions can be obtained
immediately from the Newton diagram of the original equation, and, in particular, intermediate
resolutions of singularities can be omitted. Thus, the proposed method is of interest for assessing
the theoretical complexity of solving equations of the form F (z, w) = 0.
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1. Newton’s diagram and statement of the main theorem
In this paper we consider an arbitrary equation of two complex variables

F (z, w) =
∑

(β,α)⊂A⊂N2

aβαz
αwβ =

∑
β

Aβ(z)w
β = 0, (1)

where Aβ(z) ∈ C[z].

Definition 1. A Puiseux series in one variable is a formal algebraic expression of the form

f(z) =

+∞∑
n=n0

anz
n
m ,

where n0 — integer, m — natural (at m = 1 the result is a Laurent series), coefficients an taken
from some ring R.

Definition 2. Newton’s diagram N(F ) equation (1) is the set of compact faces of the unbounded
polyhedron c.h. (∪Pβ), where Pβ = {(β, s) : s > α}, c.h. — convex hull.

Let’s give a brief description of Newton’s algorithm.
It is necessary to find all solutions w = w(z) of equation (1) in the form of Puiseux’s series:

F (z, w(z)) = 0.

Strategy for finding solutions w(z):
Let w(z) = czσ + w̃(z), where w̃ is a series of monomials of degree > σ and let σ =

p

q
. Then

F (z, w(z)) =
∑

(β,α)∈A

aβαz
α(czσ + w̃)β =

∑
(β,α)∈A

(aβαc
βzα+

p
q β + o(zσβ+α)).

In order for F (z, w(z)) ≡ 0, it is necessary that the quantity

α+
p

q
β =

1

q
(αq + pβ)

reached a minimum on A in at least two points, i.e. on some edge τ ⊂ N(F ). So, the condition
on σ =

p

q
is as follows:

(1) N(F ) has an edge τ with slope σ, i.e. with direction vector (q, p).
And the condition on c:

(2) c — nonzero solution to the equation∑
(β,α)∈τ

aαβc
β = 0.

The number of such roots (taking into account multiplicity) is equal to the length of the projection
τ onto the β axis.

Let us formulate the main result of this work.

Theorem. Let the equation F (z, w) = 0 be such that each edge of its Newton diagram does
not contain integer points other than the vertex ones. Then each of its solutions, obtained using
Newton’s algorithm, is a convergent Puiseux series.
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2. Auxiliary statements
We precede the proof of the theorem with several auxiliary statements.

Lemma 1. Let G ⊂ C be a bounded domain with piecewise smooth boundary and let f ∈ O(Ḡ)
have a unique zero a ∈ G in Ḡ of multiplicity 1. Then for any φ ∈ O(Ḡ) the following formula
holds:

1

2πi

∫
∂G

φ
df

f
= φ(a) (2)

Proof. It follows immediately from Cauchy’s theorem and the residue formula for a meromorphic
function at a simple pole:

1

2πi

∫
∂G

φ
df

f
= resz=a

φf ′

f
=
φ(a)f ′(a)

f ′(a)
= φ(a).

Note: If in the lemma we assume that f has a finite number of simple zeros a1, a2, . . . , aN ∈ G
in Ḡ, then by the residue theorem and the formula (2) we get

1

2πi

∫
∂G

φ
df

f
=

N∑
i=1

φ(aj). (3)

In particular, when φ ≡ 1, the formula known from the complex analysis course is obtained

1

2πi

∫
∂G

df

f
= N.

Let us now assume that a — zero f of multiplicity µ, i.e. in a neighborhood U of point a

f(z) = (z − a)µψ(z), ψ(a) ̸= 0.

Then, for any complex sufficiently small ξ, the function f(z)− ξ has in U exactly µ simple roots
zj(ξ), tending to a as ξ− > 0. Indeed, let us make the biholomorphic change (ξ − z)ψ

1
µ (z) = w

(here is a branch of the radical ψ
1
mu (z) can be distinguished in U since ψ(a) ̸= 0). Then the

function f(z)− ξ takes the form wµ − ξ, which shows that it has µ simple roots tending to zero
as ξ− > 0.

According to (1) and (2)

1

2πi

∫
∂U

φ(z)
df(ξ)

f(ξ)
=

1

2πi
lim
ξ−>0

∫
∂U

φ(z)
d[f(ξ)− ξ]

f(ξ)− ξ
= lim

ξ−>0

µ∑
j=1

φ(zj(ξ)) = µφ(a).

From here, using the residue theorem, we get

Theorem 1 (about logarithmic residue). Let G ⊂ C be a bounded domain with piecewise smooth
boundary and f ∈ O(Ḡ) has a finite number of zeros aj ∈ G of multiplicities in Ḡ µj. Then for
any φ ∈ O(Ḡ)

1

2πi

∫
∂G

φ
df

f
=

∑
j

µjφ(aj).

In particular, for φ ≡ 1 the integral on the left is equal to the number of zeros of the function
f , taking into account their multiplicities.

Consider a holomorphic function (ζ, z) = (0, 0) ∈ C2 holomorphic in coreness and having a
Taylor expansion of the form

Φ(ζ, z) = zP (ζ, z) +
∑

i+j>d

aijz
iζj , (4)
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where d > 2, P is a homogeneous polynomial of degree d− 1, and P (ζ, 0) ̸= 0, that is, P has a
monomial of the form aζd−1.

Theorem 2 (A. P.Yuzhakov). The equation Φ(ζ, z) = 0 has a solution (branch) of the form

z = z(ζ) =
∑
k>2

ckζ
k.

Proof. Let us choose the weight with respect to which the monomial azζd−1 has minimal degree
in expansion (3). As such a weight we can take

(
3
2 , 1

)
. Since each monomial ziζj with respect to

this weight has a degree
3

2
i+ j =

1

2
i+ (i+ j),

and it is easy to see that on the Newton diagram it reaches its minimum value at a single point
(i, j) = (1, d− 1).

Let us denote θ(ζ, z) = Φ(ζ, z)− azζd−1. Then on the skeleton |z| = r
3
2 , |ζ| = r we have

|azζd−1| = |a|rd+ 1
2 ;

|θ(ζ, z)| = r
1
2+d+ϵα(r),

where ϵ > 0, α(r) — bounded size. Consequently, for a sufficiently small r on the product{
|z| = r

3
2

}
×

{r
2
leq|ζ| 6 r

}
there is inequality

|azζd−1| > |θ(ζ, z)| (5)

Considering Φ(ζ, z) as a function of z in the circle |z| 6 r
3
2 with parameter ζ from the ring

K =
{r
2
6 |ζ 6 r

}
, according to Rouche’s principle, we obtain that it has a single zero in the

indicated circle z = z(ζ).
By the logarithmic residue formula

(
applied to G =

{
|z| < r

3
2

}
, ϕ(z) = z

)
:

z(ζ) =
1

2πi

∫
|z|=r

3
2

zΦ′
z(ζ, z)

Φ(ζ, z)
dz.

As an integral over the compact set |z| = r
3
2 of a continuous integrand that holomorphically

depends on the parameter ζ from the ring K, the function z(ζ) is holomorphic in this ring.

Let z(ζ) =
+∞∑

k=−∞
ckζ

k be the Laurent expansion for z(ζ), convergent at least in the ring K.

The coefficient ck is represented by the integral

ck =
1

2πi

∫
|ζ|=ρ

z(ζ)

ζk+1
dζ =

1

(2πi)2

∫
|ζ|=ρ

|z|=r
3
2

zΦ′
z(ζ, z)

ζk+1Φ(ζ, z)
dzdζ, (6)

where
r

2
6 |ρ| 6 r.

Let us remind you that
Φ(ζ, z) = azζd−1 + θ(ζ, z),

where θ is a series in powers ziζj , for which i+ j > d.
Due to the inequality (4) on the skeleton |ζ| = ρ, |z| = r

1
2 there is an expansion into a series

of geometric progression

1

Φ
=

1

azζd−1(1 + θ
azζd−1 )

=
∞∑
l=0

(−1)l
θl

(azζd−1)l+1
,
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convergent uniformly on the skeleton. The integrand expression will then expand into the series

∞∑
l=0

(−1)l
ζ−k−1zΦ′

zθ
l

(azζd−1)l+1
.

The order of the numerator is equal to −k − 1 + d+ dl = −k − 1 + d(l + 1), and the degree
of the denominator is equal to d(l + 1). Therefore, the integral of each term is equal to zero if
−k − 1 > −2, that is, if k < 1.

Thus, ∀k < 1 Laurent coefficient ck = 0, thereby z(ζ) is holomorphic at zero, and z(0) = 0.
It is easy to show (taking into account the form of θ = z2p′ + θ′, where p′ is homogeneous of
degree d− 2, and ordθ′ > d+ 1), so c1 = 0.

3. Proof of Puiseux’s theorem
Now we prove the main theorem of two-dimensional algebraic geometry.
So, let F (z, w) be a polynomial of two variables whose Newton diagram N(F ) has an edge

with ends (α, p+ β) and (q + α, β).
We also assume that the edge has no other integer points, so F has the form

(azp + bwq)wαzβ +
∑

ip+jq>αp+(p+β)q

aijw
izj .

The selected two terms can be normalized so that a = 1, b = −1 :

(zp − wq)wαzβ +
∑

ip+jq>αp+(p+β)q

aijw
izj .

Replacement zp = ξq, z = ξ
q
p :

(zp − wq)wαξ
βq
p +

∑
ip+jq>αp+(p+β)q

aijw
iξ

pj
q .

But ξq − wq = (ξ − w)(ξq−1 + ξq−2w + · · ·+ wq−1), which means function F will look like

(ξ − w)P (ξ, w) +
∑

ip+jq>αp+(p+β)q

aijw
iξ

pj
q .

After replacing ξ − w = u we get

uP (ξ, ξ − u) +
∑

ip+jq>αp+(p+β)q

aijw
iξ

pj
q .

But according to Yuzhakov’s theorem there is a solution (holomorphic) u = u(ξ),

therefore, w = ξ − u(ξ) = z
p
q + seriesinpowersofz

1
q .

4. Comparison with the singularity method
Let us illustrate with an example when the proven theorem leads to the goal faster than

the technique for resolving the singularities of algebraic curves. Thus, the given result can be
considered as an interesting fact for assessing the theoretical complexity of solving an equation
of the form F (z, w) = 0.
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Consider an equation of the form

G(z, w) = azαwβ +
∑

i+j>α+β

aijz
iwj = 0

and satisfying the conditions of Theorem 1. This function has a singular point (0, 0) of order
α + β. Recall that a σ-process centered at the point (0, 0) is (for the case of a plane curve) a
transformation which in the affine part of the projective plane is a mapping ϕ : C2 → C2 , whose
coordinate record has the form: (u, v) → (u, uv). After substituting z = u, w = vu we get:

uα+β(avβ +
∑

i+j>d

ui+j−(α+β)vj) = uα+βG̃(u, v) = 0,

from which it is clear that the point (0, 0) remains singular for the function G̃(u, v). This is due to
the fact that the tangent cone at the point (0, 0) for the curve G(z, w) had multiple components
(component z = 0 of multiplicity α and component w = 0 of multiplicity β). According to the
construction of the resolution, it is necessary to continue inflating the singular point, i.e. at least
more than one step is required. At the same time, the use of Theorem 1 immediately allows us
to obtain a convergent solution.
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Еще одно доказательство теоремы Пьюизо
об алгебраической функции
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Аннотация. В работе дано более простое доказательство теоремы Пьюизо об алгебраической
функции для многочленов специального вида.

Ключевые слова: диаграмма Ньютона, ряд Пьюизо, особая точка, полином Вейерштрасса.
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