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Abstract. In this paper, our program is to obtain a ¢-fixed point result along with some applications.
The problem considered here is formulated by combining together several recent trends in metric fixed
point theory and its extensions. Two illustrative examples are discussed. It is shown that some results
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Volterra and Fredholm integral equations.
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Introduction

There have been several emerging aspects in fixed point theory developed in recent times.
Our program in this paper is to solve a fixed point problem formulated by combining several of
these emerging trends. We describe in brief the areas of the theory which we consider here.

The structure of b-metric spaces is one of many generalizations of the concept of metric space
in which several studies originally performed in metric spaces has been successfully extended. The
concept was introduced in the work of Czerwick [4] in 1993. Fixed point theory has commendably
developed in recent years. [2,3,14,17,18] are some instances of these works. The idea of w-distance
was advanced by Kada et al. [9] in an attempt to solve a non-convex minimization problem as
well as to generalize certain fixed point theorems. It is essentially an additional distance function
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defined in a metric space. Many metric fixed point results were extended and also some new
results were produced by the use of w-distance inequalities. Further, there has also been an
extension of w-distance to the metric spaces known as wi-distance [10,16] which has also been
utilized in creating new fixed point results on fixed points of functions defined on metric spaces.
¢-functions were used for the first time by Jleli et al. [8] for investigating fixed points of functions
which are also zeroes of ¢-functions. The motivation for this consideration is that the process
of finding the fixed point becomes technically easier once zeroes of the ¢-function are already
known. This category of problems has become to be known as ¢-fixed point problems which has
been considered by several authors in works like [7,11,12].

The present paper combines the above-mentioned trends of fixed point theory in order to
formulate a ¢-fixed point problem on a b-metric space with a wt-distance. A particular function
O is utilized for defining a wit-distance inequality which is supposed to be satisfied by the mapping
under consideration. There are two illustrative examples through one of which it is shown that
the main theorem properly generalizes some previously known results. In the last section of the
paper we discuss an application of the fixed point theorem obtained in the paper to the problem
of integral equations.

1. Mathematical Preliminaries

In this section, we briefly review some basic notations and preliminary results, which we will
use in the paper.

Definition 1.1 ([4]). Let X be a non-empty set. A mapping p: X x X — [0,00) is called a
b-metric if there exists a real number I > 1 such that for all x,y,z € X,

(i) nlw,y) = 0 if and only if & = y;

(1) p(z,y) = ply, x);

(idi) p(z, 2) < lp(z,y) + ply, 2)]-

Then the triplet (X, u,1 > 1) is called a b-metric space.

Definition 1.2 ([9,15]). Let (X,d) be a metric space. A function p: X x X — [0,00) is called
a w-distance on X if p satisfies the following conditions:

(i) p(z,2) < p(x,y) +p(y,2), for any v,y,2z € X;
(i1) p is lower semi-continuous in the second variable, that is, if x € X and y, — y in X,
then

p(w,y) < lim inf p(z, yn);
n oo
(#i7) for any € > 0 there exists § > 0 such that p(z,x) < 0 and p(z,y) < 0 imply d(z,y) < €.

Definition 1.3 ([6]). Let (X,pu,l > 1) be a b-metric space. A function P: X x X — [0,00) is
called a wt-distance if P satisfies the following conditions:

(1) P(z,2z) <IU[P(z,y) + Py, 2)], for all x,y,z € X;

(#4) P is l-lower semi-continuous in the second variable, that is, if ¢ € X and y, — y in X,
then P(x,y) < nlin;o inflP(z,yn);

(ii1) for any e > 0 there exists § > 0 such that P(z,z) < § and P(z,y) < 0 imply u(x,y) < e.

Remark 1.1 ([1,5]). Clearly, every metric space is a b-metric space with | =1, but the converse
is mot true in general. Also, every w-distance is a wt-distance but the converse is not true.

Lemma 1.1 ([13]). Let (X,pu,l > 1) be a b-metric space and P be a wt-distance on X. Let
{zn} and {yn} be two sequences in X, x,y,z € X and let {a,} and {B,} be sequences in [0, 0)
converging to 0.
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(¢) If lim P(zp,x) = lim P(x,,y) =0, then x = y. In particular, if P(z,2) = P(z,y) =0,
n—r00 n— oo
then x = y.
(1) If P(zp,yn) < oy and P(xy,,y) < By for any n € N, then the sequence {y,} converges
to y, that is, p(yn, y) — 0 as n — co.

(7i1) The sequence {x,} is a Cauchy sequence if lim P(x,,x,) = 0, that is, if for each
m,n—o0

€ > 0 there exists a natural number k such that for m >n >k, P(x,,zm,) < €.
(iv) The sequence {x,} is a Cauchy sequence if P(y,x,) < ay, for alln € N.

Let X be a non-empty set, 7': X — X and ¢ : X — [0, 00) be two mappings. Let Fr denote
the set of all fixed points of T, that is, Fr = {x € X : Ta = z}. Let Z, denote the set of all
zeroes of ¢, that is, Zy = {z € X : ¢(z) = 0}.

In [8], Jleli et al. introduced the concept of ¢-fixed point and proved some ¢-fixed point
results using a class of control functions F.

Definition 1.4 ( [8]). Let X be a non-empty set, T : X — X and ¢ : X — [0,00) be two
mappings. An element x € X is said to be a ¢-fized point of T' if and only if v € Fr N Zy, that
is, Tx = and ¢(z) = 0.

Definition 1.5 ([8]). Let (X, d) be a metric space and ¢ : X — [0,00) be a mapping. A mapping
T : X — X is said to be a ¢-Picard operator if and only if there exists x,. € X such that

(1) PrnZy = {x.};

(14) T"x — 2. as n — oo, for every x in X.

Definition 1.6 ([8]). Let (X,d) be a metric space and ¢ : X — [0,00) be a mapping. A mapping
T:X — X is said to be a weakly ¢-Picard operator if and only if

(1) FrNZy # 0;

(ii) the sequence {T™x} converges to a ¢-fized point of T, for every x € X.

Let F denote the set of all functions F : [0,00)3 — [0, 00) satisfying the following conditions:
(F1) max{a,b} < F(a,b,c), for a,b,c € [0,00);
(F2) F(0,0,0) = 0;
(F3) F is continuous.

Theorem 1.1 ([8]). Let (X, d) be a complete metric space, ¢ : X — [0,00) be a given function
and FF € F. Let T : X — X be a mapping such that

F(d(Tz, Ty), o(Tx), 9(Ty)) < kF(d(z,y), ¢(x), ¢(y)), for z,y € X, (1.1)
where k € (0, 1) and ¢ is lower semi-continuous. Then
(Z) Fr C Z¢;

(i4) T is a ¢-Picard operator.

Again, Kumrod et al. [11] further generalized the above ¢-fixed point result of Jleli et al. [§]
with the help of a class of control functions (2. Here, {2 denotes the set of all non-decreasing and

continuous functions © : [0, 00) — [0,00) such that > ©"(t) < oo, for every t > 0.
n=0

Lemma 1.2 ( [11]). If © € Q, then O(t) <t for allt > 0 and ©(0) = 0.

Theorem 1.2 ([11]). Let (X,d) be a complete metric space, ¢ : X — [0,00) be a given function,
FeFand©® Q. Let T : X — X be a mapping such that

F(d(Tz, Ty), ¢(Tx), o(Ty)) < O(F(d(x,y), §(x), ¢(y))), for z,y € X, (1.2)
where ¢ is lower semi-continuous. Then
(Z) Fr C Z¢;

(i) T is a ¢-Picard mapping.
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Recently, Roy et al. [16] established the above result of Kumrod et al. [11] in a metric
space with a w-distance. In the following result the used functions F : [0,00)% — [0,00) is a
member of Y which is a larger class than the class F. Here, T denotes the set of all functions
F :[0,00)% — [0, 00) satisfying max {a,b} < F(a,b,c), for a,b,c € [0,0).

Theorem 1.3 ([16]). Let (X,d) be a complete metric space, p be a w-distance on X and
¢: X — [0,00) be a mapping. Let F € T and © € Q. Let T : X — X be a mapping satisfying
the following conditions:

F(p(Tz, Ty), o(Tx), ¢(Ty)) < O(F(p(z,y), (), (y))), for all z,y € X (1.3)
and
inf{p(z,y) + p(x,Tz) :x € X} >0, for everyy € X with Ty # y. (1.4)
Then
(i) Fr C Zy;

(#4) T is a ¢-Picard operator;
(130) p(x«,z+) =0, where Fr N Zy = {z.}.
In this paper, we take a class of function A which is the set of all non-decreasing and con-
tinuous functions © : [0,00) — [0,00) such that Y s"©"(t) < oo, where ¢t > 0 any real number
n=0

and s > 1 is a constant.
Lemma 1.3. If© € A, then O(t) <t for every t > 0 and ©(0) = 0.

Proof. If possible, let ©(t) > t for some ¢ > 0. Since O is non-decreasing, ©"(t) > ¢ for all n.
As s> 1,s"0"(t) >t for all n. As Y s"O"(t) < oo, where ¢ > 0 any real number and s > 1

n=0
is a constant, we have 0 = lim s"©"(t) > ¢, that is, ¢ < 0, which is a contradiction. Hence
n—oo

O(t) < t, for every t > 0. Now, if possible, suppose that ©(0) # 0. Then ©(0) > 0. Suppose that
O(0) = ¢, where ¢ > 0 is a constant. As ©(0) > 0, applying the non-decreasing property of © we
have O(c) = ©(0(0)) > ©(0) = ¢, which is a contradiction to O(c) < ¢. Therefore, ©(0) =0. O

2. Main results

Theorem 2.1. Let (X, pu,l > 1) be a complete b-metric space with a wt-distance P on it. Let
FeT, ¢: X —[0,00) be a mapping and © : [0,00) — [0,00) be a non-decreasing and continuous

mapping such that > 1"O"(t) < oo, where t > 0. Let T : X — X be a mapping such that

n=0
inf{P(z,y) + P(z,Tx) : x € X} >0, foreveryy e X with Ty #y (2.5)
and
F(P(Tx,Ty), (Tx), 6(Ty)) < O(Nf(z,y)), for all 2,y € X, (26)
where

Jz\flif(x, y) = max{F(P(z,y), p(x), o(y)), F(P(x, Tx), o(x), o(T)), F(P(y, Ty), p(y), 9(Ty))}-

(1) Pr € Zs;
(it) T has a unique ¢-fixed point;
(730) P(xy,z4) =0, where Fr N Zy = {x.}.

- 701 -



Ranajit Jyoti... ¢-fixed Point Results in b-metric Spaces with wt-distance

Proof. Let z, € Fp. Then Tz, = x,. Applying (2.6) with z = y = z,, we get
F(P(Tx, Tx.), p(Tx.), ¢(Tx,)) < O(NS(2s, 2.)),

that is,

F(P(xy,2.), 6(.), 6(2.)) < O(Np (s, 2.)). (2.7)
Now,
Nf«:(m*v .7;*) =
= max{F(P(z.,z.), (z.), o(2.)), F(P(x,, Tx.), d(x.),
= max{F(P(zx,z.), 6(x4), (@), F(P(xs, 2.), d(2.),
= F(P(xx,2.), 6(2.), d(x.)).

We have from (2.7) that

Suppose that F(P(x,x«), ¢(x«), ¢(x4)) > 0. By Lemma 1.3, we have from the above inequality
that

¢

which is a contradiction. Therefore, we have

Using the property of F', we have

max{P (T, Ts), d(Ts)} < F(P(Xs, xx), d(x4), P(x4)) = 0,

which implies that

Pz, x.) = ¢(xs) = 0. (2.9)
Thus, z, € Fr implies =, € Z4 and hence Fir C Z.
Starting with a point zop € X, we construct a sequence {z,} by z,11 = Tz,, for all

n € NU{0}. If possible, suppose that x;1; = x;, for some i € NU {0}. Then z; = x;41 = Ty,
that is, z; is a fixed point of T and consequently xz; € Fr N Zs. Hence we shall as-
sume that @, # x,, for all n € NU {0}. Now, F(P(zn,Tnt+1),d(zn), ¢(xnt1)) = 0, for
all n € N U {0}. If possible, suppose that F(P(zyn,Tnt1),d(xn), d(zny1)) = 0, for some
K € NU{0}. Then F(P(zxg,xx+1),p(K),P(xx+1)) = 0. Using the property of F, we have
Pz, xx+1) = ¢(zk) = 0. Here, xg41 # Txy2 = Txx 1. By (2.5), we have

0 < inf{P(x,y) + P(x,Tz) : x € X}, for every y € X with Ty #y
< inf{P(xn,2x4+1) + P(zp, Txy) : n € NU{0}}
=inf{P(zn,2x+1) + P(xp,xnt1) : n € NU{0}}
=0, [as P(J;naxK-‘rl) + P(xnaxn—l—l) =0, for n = K]
which is a contradiction. Therefore, F(P(zy, Znt1), d(xn), d(znt1)) > 0, for all n € N U {0}.
Now,
F(P($n7xn+1)7¢(xn)7¢(xn+1)) = F(P(T-rnflyTxn)y(b(Twnfl)a¢(T$n)) <

< ONE(n_1, ). (210)
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where,

N?(xn—lvxn) = max{F(P(zp_1,%n), ¢(Tn-1), ¢(xn)), F(P(xp_1,Txpn_1),¢(xn_1),o(TTn_1)),
F(P(xn, Twn), ¢(zn), o(Tn))} =
= max{F(P(2p-1,2n), #(@n-1), d(@n)), F(P(2n-1,2n), ¢(xn-1), ¢(n)),
F(P(2n, Tnt1), ¢(an), (Tn41))} =
= max{F(P(zn-1,2n), ¢(¥n-1), §(zn)), F(P(Tn; Tpt1), (Tn), d(Tn+1))}-

If possible, suppose that Nl‘fl(xn_l,xn) = F(P(zn,zn+1),d(xn), d(xne1)). By (2.10) and
Lemma 1.3, we have

F(P(Stl’n,anrl),¢<$n)7¢(l’n+1)) < e(F(P(xn’anrl)v¢<xn)7¢($n+1))> <
< F(P($n7xn+1)a ¢((En), Qs(anrl))?

which is a contradiction. Therefore, Ng(xn,hwn) = F(P(zn-1,%n), o(Tn-1),¢(x,)) and hence
from (2.10), we get

F(P(zn, Tnt1), d(n), d(Tni1)) < O(F(P(Tn—1,2n), d(Tn-1), ¢(T0)))-

By repeated application of the above inequality, we have

F(P(zn, Tnt1), d(Tn), d(Tni1)) < OF (P(Tn—1,2n), d(Tn-1), d(74))) <
< 92(F( (Tp—2,Tn-1), ¢(Tn—2),p(Tn-1))) <

< @n(F(P(anxl)a ¢($0)7 d)(xl)))
Using the property of F', we have

P(xnaxn—o—l) @n(F(P(CEo,xl),¢($0),¢($1))) (211)

As 1 > 1, we have ©"(F(P(zo,x1), ¢(x0), d(x1))) < I"O™(F(P(x0,21), d(0), p(x1)))-
By a property of ©, we have lim ["O"(F(P(xq,x1),¢(x0),d(x1))) = 0.
1)

n—oo
Hence lim ©"(F(P(xzo,x1),d(x0), d(x1))) = 0. From (2.11), we get
n— oo

lim P(zy,2n41) =0. (2.12)

n—00

Using (2.11), we have for m > n, where m and n are natural numbers,
P(zp,xm) <
<UP(xp, Tpt1) + Z2P(In+1, Tpta) + ...+ lmfnfl[P(:cm_g, Tm—1) + P(Zm—1,2m)] <
SIP(%p, Tpg1) + PP (@ng1, Tng2) + oo 1™ P (20, T 1) F U P (21, T <
<10 (F(P(wo,21), ¢(0), $(21))) + 20" (F(P(x0, 21), d(x0), d(21))) + . ..
+HIMTTIOM T (F(P(x0, 1), $(wo), (1)) + IO THF(P (w0, 21), ¢(w0), $(1))) <

m—1
< fimr X VO (F(Plao,1), dlan), () <

< o L HOI(F(Plao, 1), 6(ao), 6(2),

j=n

(2.13)
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which, by a property of ©, implies that lim P(z,,x,,) = 0, that is, {x, } is a Cauchy sequence

m, n—oo
in X. As the b-metric space (X, pu,1 > 1) is complete, there exists x, € X such that z, — z, as
n — oco. Since P(x,,.) is l-lower semi-continuous, we have

. L i
0 < P(wp,x4) < n}gnoo inf [P (2, 2m) < [n—2 le@J(F(P(xo,xl),qS(xo),¢(m1))),

which implies that li_>m P(zp,x.) =0.
n—oo
We assume that Tz, # x.. Using (2.5), (2.12) and the result lim P(z,,z.) =0, we have

n—o0
0 < inf{P(z,z,)+ P(zx,Tz) :z € X} <
< inf{P(xpn, z) + P(xp, T2y) : n € N} = inf{P(x,,z.) + P(2p, Tnt1) : n € N} =0,
which is a contradiction. Therefore, Tz, = x, and consequently x. € Fr N Zy.
We now prove that Fr N Zy = {x.}. If possible, let z,,y, € Fr N Z,. Then, Tz, = z, and
Ty. =y« and also by (2.9), P(z.,x.) = ¢(x.) = 0 and P(y«,yx) = #(y«) = 0. Now,

where,

(:E*,y*)
=max{F(P(z+, ys), p(s), d(y«)), F(P (s, Txs), (@), d(T0)), F (P, Ty ), p(ys), 9(Tys)) } =
= max{F(P(zs,ys), §(2+), oY), F (P20, 22), (), ¢()), F(P(Ys, y), @y ), D)) } =
= max{F (P(Z«,¥x),0,0),0,0} [using (2.8)]
= F(P(z+,y+),0,0).
Therefore,

F(P(x+,yx),0,0) < O(F(P(2+,y4),0,0)),

which, by Lemma 1.3, is a contradiction unless F'(P(z+, y+),0,0)=0. Hence F(P(z, y+),0,0)=0.

Then using the property of F'; we have P(z.,y.) = 0. Also, P(z.,z.) = 0. By (i) of Lemma 1.1,
we have x, = y,. Therefore, Fr N Zy = {z,} and hence T has a unique ¢-fixed point.

Example 2.1. Take the complete b-metric space (X,u,l > 1), where X = [0,1],
wlx,y) = (x —y)? and | = 2. Take the wt-distance P on X, where P(x,y) = y2, for
z,y € X. Let F € Y and © : [0,00) — [0,00) be defined respectively by F(a,b,c) = a+ b and

15
O(t) = —t. Let T : X — X be defined by

38

. 1
0 ifog<z <,
Tz=91 1 2
- if-<ax<gl.

2 2

Consider ¢ : X — [0,00), where
0 ifz=0,

1 if0< <1
da)={1 H0<w<s,

1
3 if-<x<l.

Clearly, inf{P(z,y) + P(xz,Tz) : « € X} > 0, for every y € X with Ty # y. Here, all the
conditions of Theorem 2.1 are satisfied and 0 is the only ¢-fized point of T'.
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Theorem 2.2. Let (X, d) be a complete metric space with a w-distance p on it. Let T : X — X
be a mapping such that

inf{p(x,y) +p(z,Tz) :x € X} >0, foreveryye X withTy#y (2.14)

and
F(p(Tx,Ty), 6(Tx), o(Ty)) < O(Np(2,y)), for z,y € X, (2.15)

where
N (z,y)=max{F(p(z,y), 6(x), (), F(p(x, T), (), 6(Tx)), F(p(y, Ty), 6(y), 6(Ty))}, O
and F, ¢ are as defined in Theorem 2.1. Then

(1) Fr C Zy;

(i) T is a ¢-Picard operator;

(130) p(x«,z+) =0, where Fr N Zy = {z.}.

Proof. Here the complete metric space (X, d) is a complete b-metric space (X, u,l) with [ =1
and w-distance p is a wt-distance. Then by an application of Theorem 2.1, we have the required
proof. O

Example 2.2. Take the complete metric space X = [0, 3] with the usual metric ‘d’. Consider
the w-distance p on X, where p(x,y) =y, for all z,y € X. Let F € T and © € Q be defined

4
respectively by F(a,b,c) =a+b and O(t) = —915. Let T : X — X be defined by

100
0 f0<s<,
1 if - <a<3.
2
Consider ¢ : X — [0,00), where
0 ifxz=0,
1 5
¢(JI)= 5 if0<x<§,
1  otherwise.

Here, all the conditions of Theorem 2.2 are satisfied, and 0 is the only ¢-fized point of T.

Remark 2.1. Theorem 2.2 is a generalization of the Theorem 1.3. Taking x € [2,3] and
y = 0 in Ezample 2.2, we see F(p(Tx,Ty),d(Tx),¢(Ty)) = Ty + ¢(Tx) = 0+ ¢(1) = 1

and O(F(p(z,y), ¢(z), ¢(y))) = %(y + ¢(x)) = %(0 +1) = % The inequality (1.3) of

Theorem 1.3 is not satisfied for the case when x € [%, 3} and y = 0. Hence Theorem 1.3 is not

applicable to the above example, that is, Example 2.2. This shows that Theorem 2.2 is a proper
generalization of the Theorem 1.5.

3. Applications
In this section we have two applications. Theorem 2.1 is applied to a problem of Volterra
integral equation while Theorem 2.2 is applied to obtain a solution of a Fredholm integral equa-

tion.
Consider the non-empty set C[m, n] of all real-valued continuous functions defined on [m, n]. Take
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a complete b-metric p with a parameter [ = 2 on C[m,n], where u(z,y) = sup (2(t) —y(t))>.
te[m,n]
Consider the non-homogeneous Volterra integral equation

z(t) = g(t) —/ K(t,s,x(s))ds, (3.16)

where m,n€R with m < n, m<t<n, x€C[m,n], g: [m,n] - Rand K: [m,n] x [m,n]xR—R
are continuous functions.
Take a mapping T : C[m,n] — C[m,n] defined by

(T2)(t) = g(t) — / K(t, s, 2(s))ds. (3.17)

Theorem 3.1. The integral equation (3.16) has a unique solution in C[m,n] if there exists a

oo}
non-decreasing and continuous function © : [0,00) — [0,00) such that Y 2"O"(t) < oo, where
n=0

t > 0, and K satisfies the following condition

(Kt 5,2(5))) + (K(t,5,9()* < ——[@(max{ swp (@) + swp (4(1))",

n—m te[m,n] te[m,n]

sup (2(t)®+ sup ((Tw)(®)2, swp (y(®)>+ sup (Ty)(t)?*}) = 2(a(8)?],

te[m,n] te[m,n] te[m,n] te[m,n]

(3.18)

where t, s € [m,n] and x,y € C[m,n].

Proof. Let P be a wt-distance on C[m,n] defined as P(z,y) = sup (z(¢))? + sup (y(t))%
te[m,n] te[m,n]

Take a function ¢ : C[m,n] — [0,00), where ¢(z) = 0 for all z € C[m,n] and F € T, where

F(z,y,2) =z +y+ =

For z,y € C[m,n], we get

2

(T2)(1)? + (Ty)()* = (g<t>— / tK(t,s,ms))ds) +<g<t>— /m K(t,s,ycs))ds) <
( K(t,s,x(s))d8>2+ </T:K(t,s,y(s))d8>2 <
<2060+ [ (K (s, x(s)) ds + / (K (1 s, p(s) ds <

<2090) + [ [ (t52() + (Kt 9(5)*] ds <

— [0V, y)) — 2 (g(t)*] ds =

: m [@(Nﬁ(x,y)) -2 (g(t))ﬂ tds

m

N

< O(Nj(,9))-
Therefore,

sup ((T)(t)* + sup ((Ty)(t)* < O(Np(z,y)).

te[m,n] te[m,n]
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Thus, F(P(Tx, Ty), p(Tx),p(Ty)) < O(No(z,y)), for all z,y € Clm,n]. All the conditions of
Theorem 2.1 are satisfied and the equation (3.16) has a unique solution.

Consider the complete metric space C[m,n| of all real-valued continuous functions defined on

[m,n] with the metric ‘d’, where d(z,y) = sup |z(t) — y(¢)]. Consider the non-homogeneous
te[m,n]
Fredholm integral equation
z(t) = f(t) +/ G(t,s,z(s))ds, (3.19)

where m,n € R with m <n, z € C[m,n], f : [m,n] - R and G : [m,n] x [m,n] x R — R are
continuous functions.
Consider a mapping T': C[m,n] — C[m,n| defined by

(T2)() = £(t) + / "Gt 5, 2(s))ds. (3.20)

Theorem 3.2. The integral equation (3.19) has a unique solution in C[m,n] if there exists © € Q
such that G satisfies the following condition

Gt s,2())] + Gt 5 9(s))] < — [@<max{ sup (O] + sup |y(0)]

n—m te[m,n] te[m,n]

(3.21)
sup [o(0)]+ sup [TO), s o]+ s (7)1} ) - 2150
te[m,n] te[m,n] te[m,n] te[m,n]
where t,s € [m,n] and x,y € Clm,n].
Proof.
Let p be a w-distance on C[m,n] defined by p(x,y) = sup |z(t)]+ sup |y(t)]. We take

te[m,n] te[m,n]
a function ¢ : Clm,n] — [0,00), where ¢(z) = 0 for all z € Clm,n] and F € T, where
Fr,y,2) =z +y+z.
For z,y € C[m,n], we get

()OI + (T = 150 + [ Glt.sas)ds] + 17(0) + / " Gt s y(s))ds] <

m m

<

<2f@)+| [ Gleos.ato)is] +] [ Gles.us)is
<2lf)+ | "Gt s x(s))|ds + / "Gt s y(s)ds <

m

<2f(0)] + / (IG(t, 5,2(5))] + |G (1, 5, y(s))]) ds <

m

<20+ [ [eWE ) - 250)] ds =
=200+ —— [0(Vf(w.0) ~21)]] [ as =

m

= O(Np(,y))-

Therefore,
sup |(Tx)(t)] + sup |(Ty)(t)| < O(Np(z,y)).

te[m,n] te[m,n]

Hence, F(p(Tx, Ty), $(Tx), 6(Ty)) < O(Np(x,y)), for all z,y € Cm,n]. All the conditions of
Theorem 2.2 are satisfied and the equation (3.19) has a unique solution.
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Conclusion

In fixed point theory w-distances have proved to be useful in obtaining several new results and

also in extending results already existing in the literature. The present paper is another demon-
stration of the above fact obtained by establishing a new ¢-fixed point result in the framework
of b-metric spaces.

We hope that the present approach can be utilized in other contexts gainfully for deducing

new results. This is supposed to form the subject of our future works.
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¢-HeToJIBM2KHAA TOYKA IMPUBOAUT K D-MeTpUIeCKNM
IIPOCTPAHCTBaAM C Wi-pacCTOSHUEM

Panamkur /I>xkoTn

Bunask C. Hoyaxypu

WHauiicKuil MHCTUTYT WHKEHEPHBIX HayK U TexHosornit, [1Iubmyp
XoBpax-711103, 3anaguas beuranus, Nnmgus

Hukxusiern Metus

CoBapaHu MeMopHuas KoJUIe/K, JlxkaraThba/iaBiyp
OBpa-711408, Nnmgus

Canty /lyTTa

KaibKyTTCKUil MHCTUTYT HAYKU U YIPABJICHUS
KanbkyTTa-700040, Sanaguas Beuramus, Ungus

Canxkap II. Mougan

Maymnana A6y Kanam Acan yausepcurer TexHosoruii, Apurara
Hamns-741249, anannas Benramus, Maaus

Amnsoranus. B 3roil craTbe Hala mporpaMMa 3aKJII0YaeTcs B IIOJIYyUYEeHUU Pe3yJIbTaTa (-HEllOIBUAKHOM
TOYKM BMECTE C HEKOTOPBIMU MPUJIOKEHUsIMU. PaccMarpuBaemast 31eCh pobsiema chopMyIUpOBaHa ITy-
TeM 00'beINHEHNS HECKOJIBKUX MOCIEHUX TEHIEHIUH B METPUIECKON TEOPUN HEIIOJBUKHON TOYKU U €e
pacmupenuii. OBCYKIAIOTCs JIBa MILUIIOCTPATUBHBIX IprMepa. [loka3aHo, 9TO HEKOTOPBIE Pe3yJbTraThl,
CYIIECTBYIOIIUE B JIUTEPATYPE, PACIINPSIOTCS HAIlIel OCHOBHOM TeopeMoii. IIpecraBiennoe npuioxkenne
HaXOMUTCS B 00JIACTH MHTErPAJIbHBIX ypaBHeHnit Bosbreppa u @penromgpma.

KuaroueBrle ciioBa: b-MeTpuueckoe IIPOCTPAHCTBO, wi-PACCTOSHUE, HENOJABIPKHAA TOYKa, -
HEIOJIBUXKHAS TOYKA, NHTErPAJbHOE YPaBHEHUE.

- 709 -



