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1. Introduction and preliminaries

We investigate maximal operators defined by the following formula:
Mf(y) :=sup | Af(y) |, (1)
>0

where

Af(y) = /S f(y — ta)p(2)dS(z) @)

is an averaging operator, S € R™t! is a hyper-surface, v is a fixed non-negative smooth function
with compact support, i.e. 0 <1 € C§°(R"!) and f € C5°(R™T1).
The maximal operator of the form (1) is said to be bounded in LP := LP(R""!) if there exists

a positive number C, such that for any function f € C§°(R"*1) the following inequality

[IMFlle < ClISfll e

holds, where || - ||+ is the natural norm of the space LP.

Denote by p’(S) a minimal number such that for all p, satisfying p > p’(S), the maximal
operator (1) is bounded in LP. A number p’(S) is said a critical (boundedness) exponent of the
maximal operator (1).

Firstly, the boundedness of the maximal operators (1) in LP(R™), when S is an unit sphere
centered at the origin, was proved by I. M. Stein with p’(S) = %, for n > 3 [1]. Later these

operators were investigated in the works of J. Bourgain [2], A.Greenleaf [3], K.D. Sogge [4, 5],
A.Tosevich, E. Sawyer and A. Seeger [6,7].
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Also, the boundedness problem for the maximal operators (1) were studied in the papers of
I. A.Tkromov, M. Kempe and D. Miiller [8,9]. In these papers it is considered homogeneous and
smooth hypersurfaces of a finite type and proved the boundedness of maximal operators in the
space LP(R3), when p > 2.

In [10], it was investigated maximal operators (1) associated with smooth hypersurfaces and
defined a boundedness exponent of these operators in the space LP(R"*1).

The papers [11-14] were devoted to the study of the boundedness of maximal operators
associated with singular surfaces.

2. Statement of the problem

The concept of fractional power series is defined using the following definition.
Definition. Let V C R”} be an open connected set such that 0 € V, f is called a fractional power
series in the set V if there is an open set W C R™, containing V', a natural number N and a
real analytic function g in <I>]_V1(W) such that the identity f = go ®1,n holds in the set V', where
Oy :R™ — R™ is a map, given by the formula ®x(x) = (2,2, ... ) [15].

In the present work we consider singular surfaces in the space R3 given by the following
parametric equations
ai, a b1, b
w1 (ur,uz) =11+ uitug®gr(ur, uz), wa(ur,uz) = 12 + uytuy® ga(ur, ug), 3)
C C
.1‘3(’111, UQ) =r3+ U11U2293(U1, Ug),
where r1, 73,73 are arbitrary real numbers and aq, as, b1, ba, c1, co are non-negative rational num-
bers, uy > 0,uz > 0, {gx(u1,uz2)}3_, are fractional power series.
We use the following necessary denotations:

by ¢
by ¢

ap by ay €

By =

732: ;B3:

az b as ca|’

Remark 1. If at least one of the numbers By, By, B3 is nonzero, then the points of the surface
(3) lie in a sufficiently small neighborhood of the origin of the coordinate system Orirars and
outside the coordinate planes are nonsingular points. The points of the surface (3) lie in a
small neighborhood of zero and on the coordinate planes of the coordinate system Orirers may
be singular points (see lemma in [11]).

In the paper we study the following averaging operator defined by the relations (2) and (3)

AL fy) = /R2 f(yl —t(r +utuggr(ur, u2)), vz — t(r2 + ultubga(ur, us)), W
T
ys — t(rs + ui'us’ g3 (ug, U2))>¢1(U1, u2)/d(u1, uz)duydus,

here ¢(u1,us) = EG — F? is fractional power series, as usual, E, G, F are the coefficients of the
first quadratic form of the surface (3) and f € C$°(R?). Maximal operator, which corresponds
to the operator .Af’ f, is defined by the correlation

M f(y) = sup | AP f(y) |,y € R

In this paper we investigate the maximal operators (1) associated with singular surfaces (3).
More precisely, we study the maximal operator M?f in a sufficiently small neighborhood of
the point (r1,79,73) of the surface (3) and prove that these operators are bounded in the space
LP(R?) for some p > 2.
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3. On the boundedness of the maximal operator M?f.

We use the following denotation:

ai as b1 bQ C1 C2 }
b1+01,b2+C27a1+017a2+02’a1+b1’a2+b2

pWS)—HMX{

The main result of the present paper is the following

Theorem 3.1. Let {gy(u1,u2)}i_, be fractional power series at the origin in R? such that
9x(0,0) # 0 and B1ByBs # 0. If at least one of the numbers r1,r9,13 is non-zero, then there
exists a neighborhood U of the point (r1,r2,73) such that for any function ¢ € C§(U), the
mazimal operator M®f is bounded in LP(R®) for p > max{p”(S),2}. Moreover, if 11(0,0) =
Y(ry,ma,73) >0 and p”(S) > 2, then the mazimal operator M? f is not bounded in LP(R?) when
2<p<p”(9).

Proof. Assume first that 73 # 0. We investigate the maximal operator M?f at nonsingular
points of the surface (3). After direct calculations for the function ¢(uy,us) in (4) we have

d(u, uz) = ui" uy? h2 (w1, ug) + uytug? h%(Uq,UQ) + ulllul22 h3(u1,u2), (5)
where
my = 2(@1 +b1 — ].)7 mo = 2(&2 +b2 — ].)7 ny = 2(&1 +Cl — 1),
Ny = 2(&2 + co — 1), 1 = 2(b1 +c1 — 1), lo = 2(()2 —+ co — 1)
and
dg1(uy,u 0go(uy,u
ha(u1,u2) :(algl(ul,uz) + Ul%ﬂ) (5292(161,%2) + Uzm(#zﬂ)*
0g1(u1, u 0go(u1,u
— (a291(u17U2) + Uzgl(aTIQQ)) <b192(u1,u2) + U192<6T112)),
dg1(uy,u 0gs(uy,u
hg(ul,UQ) :(algl(ul,UQ) + U gl ! 2 )(CQQg U1,u2 +U2g3(#22))_
dg1(u1,u 0g3(u1,u
- (a291(u17u2) + ug g1( ! 2)) <C1gs(u1,uz) +U193(8T112))7
0go(uy,u dgs(uy,u
h3(ul,’u,2) =<blgg(U1,U2) + U 92 ! 2 )(ngg Ul,UQ +UQ%(#22))—
6 UL, U 0gs(u1,u
- (5292(U17U2) +u 92( ! 2)) (0193(U1,U2) +U1g?’(#12))

are fractional power series.

From the conditions By By Bs # 0, ¢;(0,0) # 0 follow that h,;(0,0) # 0.

We need to consider the following cases.
Case 1. Suppose that either min{my,n1,l; } =mq, min{ma, ns,lo} =ms, or min{my,ny,l; } =nq,
min{mes, na,la} = ng, or min{my,ny, 11} =1, min{ma,na,la} = l3. For these cases, we can find
easily that by formulas (4), (5) and by Theorem 3.1 in [13] the critical exponent of the maximal
operator M?f is equal to

p1(S) = max a , €2 ,
0,5m1+1°0,5mo +1
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i.e., the maximal operator M? f is bounded in LP(R3) for p > max{p;(S), 2}, and if 11 (0,0) > 0,
p1(S) > 2, then this operator is unbounded when 2 < p < p1(5).

Case 2. Assume that min{mi,n1,l1} = mq, min{ms,na,l2} = na. Then the function ¢(uy,us)
in (5) can be written in the form

P(ur, uz) = uf" uy*n(us, uz), (6)
where
n(u1, up) = uy'> 2R3 (ug, ug) 4+ uft T RS (g, ug) 4 ult T UG T (ug, ug) (7)

is fractional power series.

Suppose that ms —no, ny —myq, l1 —mq, mo—Ia, n1—I1, lo —ns are positive rational numbers.
In this case 7(0,0) = 0 and consider the following two cases.
Case 2.1. Assume that the Newton diagram ( see [10,16]) of the function n(u;,us) consists
of segments 7 and 72 connecting points (I; — mq,ls — ng), (0,m2 — ng) and (I1 — my,ls — n2),
(n1 —mq,0). In this case the point (I3 — mq,l3 — n2) lies below the line connecting the points
(ny —m1,0), (0,m2 — ny) and we have

ll—ml + lg—ng

< 1. (8)
ny —miq mo — N2

Consider an open small square E = {(u1,us) € R? : 0 < uy,us < €}, where ¢ is a sufficiently
small positive number. Now following Section 2 of [16], we can divide E into the regions

Vi = {(ul,u2) c kb Mluiql < ug < 61ui1},
Vo = {(u1,us) € E: Mau3® < ug < 0ui?},
which correspond to the edges 1, 2 and

V3 = {(ul,u2) e FE: (Sglj,i2 < ug < Mluil}
Vy= {(ul,UQ) eFE:u < Mgu‘f"‘}
Vs = {(ul,u2) el :us > 51u‘i1}

corresponding to the vertices (I — m1,ls — ng), (n1 —mq,0), (0, ma — na), respectively. Here
My, My, 61,05 are some positive numbers,

hhi—mi  ca—a ni—li  a—b
51 = = 5 82 = =
mgflg ag — C2 lgfng bgfag
1 1 .
and s; < sg, ——, —— are slopes of the edges 71, 72, respectively.

S1 S9
Following Lemma 2.2 in [16], we make the power transformation

up =1, Up = VU2 9)

in V1. Then from the relations (4), (6) and (9) follows

A s = [

R

ai+siaz, ax> bi+s1b2, ba~

. f(yl —tuy v52g1(v1,v2), Y2 — tvy vy g2(v1,v2),
2

~ -~ 0,5m1+(0,5m2+1)s1_ 0,5 =
y3—t(l+Ufﬁsl”v?g?)(vhUz))%(vhvz) x vy (0,5ma )Slvg "2/ (v1, v2)dvrdvg,
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where wl(vla/UQ) = wl(vlyvf102)7 ,gi(vhUZ) = gi(’Ul,Ufl’UQ), 1= 17 27 37
’f]l (’Ul, ’Ug) = U?27n2 B%(Ul, UQ) + U?1—m1—81(m2—n2)}~z§(1}17 ’UQ) + Uézinz fzg(vl, 1}2),
iLi(Ul,Ug) = hi(vl, 'Uil’UQ), 0< v < Eg, M1 < vy < (51.

By (8) we have ny —my — s1(ma — n2) > 0 and 71 (0,v2) > 0.

It is easy to see that the maximal operator M®! f, which corresponds to the averaging operator
Afl f, satisfies assumptions of Theorem 3.1 in [13]. Therefore, according to this theorem, maximal
operator M?! f is bounded in LP(R3) for

p>p2(5)=maX{ G ot = }

0,5m1 + 1+ (0,5m2 + 1)81,0,57L2 +1

and is not bounded for 2 < p < p2(5), while p2(S) > 2, ¥1(0,0) > 0.
Similarly, one can show that the critical exponent of the maximal operator M? f is equal to

ps(S) = max{ €1+ co8o Co }

0,5m; + 1+ (0,5m2 + 1)52’ 0,5n9 + 1
in V5.

Next, to prove the boundedness of the maximal operator M?f in V3 we apply Lemma 2.1
in [16]. Let us write n(u1,us2) in (7) in the form n(uy, us) = auy, us) + B(u1, uz), where

auy, ug) = w2 "3 (uy, ug) + 0, 5ult T w2 T2 R (uy, ug),

Blur,uz) = uf* ™ h3(ur, uz) + 0, 5ult T U T A3 (uy, up).

Using the change of variables
S
Uy = Wi, Uz = Wy Wa,

in V3 the function «(uq,us) is represented as
ar(wryw) = w0 (e (o, wp) + 0,583 (w, w) ), (10)

where 0 < wy <Eg, 62’&)?2781 <wo < Ml, iLl(’wh wg) = hl (wl, wflwg), fz3(w1, ’LU2) = hg(wl, wflwg).
Assume that M is a sufficiently small positive number.
If we exchange the roles of the u; and us axes, then we have

1 1 1 1

Vi ={(u1,u2) EE: M, Tugt < up < 5y 2 ug?

After changing variables
1

Ul =12, Ux = s (11)

in V4 the function B(uy,us) takes the form

B1(v1,v0) = Vilfmlyf(nliml) (V{“illﬁg(yl, va) + 0, 5ﬁ§(u1, 1/2)>, (12)

1 1 1 1

where M, "vyt "2 < <6y 7%, 0 < vy <e. We assume that d5 is a sufficiently large number.
Consequently, by (6), (10) and (6), (12) we have

Pa(wy,wa) = w1 2wl i, (wy, wy), (13)
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1
— “-nitnz_

Gy (v1,10) = Vi vy M2 (v1,12), (14)
where
ﬁg(wl,’LUQ) = wgﬁ”rlzh?(wl,wg) + O7 5h§(w1,w2),
To(v1,v9) = U T R3(v1, v2) + 0,53 (v, v9)

and 72(0,0) > 0, 7,(0,0) > 0.
Thus, from the formulas (4), (13) and (14), we get

AP f(y) = fRi f<yl — tw{ T8 gy (wr, wa), Yo — twh T2 wh? gy (w, ws),

. 5 0,501 +(0,51241)s1 0,51 ~
yz —t(1 +wfl+slc2w§2g3(w1,wz))¢1(w1,w2)w1 10,50 )Slwz 2 X /M2 (w1, wa)dwy dws,

% Y tay tby
Afzf(y) =/ f(yl — Py g (v, ), ye — A s Ga (v, va), Y3 —
]R2

€1

s te2 - 0,51 (0,5n1+1) L +0,5n2 —
—t(1+ v{'wy? g3(1/1,1/2))w1(ul,1/2)ul ‘v, 2 X /Ty (v1, v9)dry dus,

where 1 (w1, w2) = 1 (w1, w5 ws), §i(wi, w2) = gi(wy, wi ws),
_ 1 1
V1 (v, v2) = 1 (1vy® ,12), §;(vi, 1) = gi(ivy® ,12), 1= 1,2,3.
Obviously, the maximal operators M?2 f and M?2 f which correspond to the operators Af :f

and Af 2 f, satisfy assumptions of Theorem 3.1 in [13]|. Therefore, by means of this theorem the
boundedness exponent of these maximal operators is equal to

pa(S) = max{ €1 + €281 €1 + C281 C1 C2 }

0,5l1+1+(0,512+1)81’0,577,1+].+(0,5n2+1)81,0,5l1+1,0,512+1

Analogously, it can be proved that using the power transformations (9) and (11) in the
domains V; and V5, respectively, we get the following critical exponent for the maximal operator

M?f

ST e SRR

O,5n1+1+(O,5n2+1)52’0,5m1+1+(0,5m2+1)51’0,5n2+170,5m1+1

Case 2.2. Assume that the Newton diagram of the function n(uj,us2) in (7) is a segment
connecting the points (ny —mq,0) and (0, me — ns2).
Following section 2 of [16], we can divide the set E into the regions

D1 = {(Ul,’LLQ) e FE: Nlu‘i?’ < u9 < )\111,?3 s
which corresponds to the edge connecting the vertices (nqy — mq,0), (0,ma — ng) and
Dy = {(ul,”uQ) cEF:uy < Nlui?’}, D3 = {(’U,l,’u,g) el :uy > Alui?’}

corresponding to the vertices (ny — m1,0), (0,ma — na), respectively. Here Ny, A; are positive
ny—m c1—b )
numbers, s3 = ! 1_4 Land —— isa slope of the edge, ny —my; > 0, mo — ngy > 0.
mo — N2 b2 — C2 S3
Similarly, as in the case 2.1, we obtain the boundedness exponent p;(S) for the maximal

operator M?f in the regions Dy, Dy and Dj (see also Theorem 2, [11]).
It is easy to see that if at least one of the numbers n; — my, ms — no is zero, i.e., s3 =0 or

s3 = +oo or ny —my = 0, mg —no = 0, then the boundedness exponent of the maximal operator
M? f remains unchanged.
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Analogously, one can investigate that if either min{my,ny,l;} = mq,
min{mes, na,la} = la, or min{my, n1,l1} = n1, min{ma, n2,lo} = ma, or min{mq,ny,l;} = Iy,
min{mes, na,la} = me, or min{my,ny,l;} = nq,
min{mg,no,lo} = la, or min{mq,ny,l1} = l1, min{meg,ns,lo} = no, then the boundedness
exponent of the maximal operator is equal to p1(.5).

. c c
Hence, we obtain p’(S) = max {pl(S),pg(S),pg(S),p4(S),p5(S)}:max {Tibf ﬁ}

Then making similar arguments for r; #0 or ro #£0, we can get pg(S) :max{ “ , @2 }
b b bl + 1 bQ + c2
1 2

ar+c1’ag+ e
Thus, assuming p”(S) = max {p’(S), ps(S),pr(S) }, we complete the proof of Theorem 3.1.
In the proof of the main result, we assumed that I —my, mo —l2, ny — Iy, ls —ns are positive
rational numbers. It should be noted that if at least one of these numbers is equal to zero then
the exponent of the boundedness of maximal operator remains unchanged. It is not difficult to
see that the following remarks hold.

or p7(S) = max{ }, respectively.

Remark 2. By the conditions of Theorem 3.1 there are no cases when all numbers Iy — my,
mao — la, n1 — 1y, lo — no or any three of these numbers are zero. In other words, if either s,
and sy does not exist, i.e., Ps1, Psa, either Psi, s = 400, or s1 = +00, Bsa, or Bsq, so =0, or
51 =0, fiso, then they are contradictions to the conditions B # 0, By # 0, By # 0.

Remark 3. If either fs1,s2 > 0, or 51 = 400,59 = 0, or s; > 0,Asa, or 51 = 400,52 > 0, or
s1 > 0,82 =0, then they contradict the to inequality (8).

Remark 4. If either s; = 0,85 = 0, or s1 = 0,89 = +00, or s = +00,8y = 400, then the
boundedness indicator of the maximal operator is equal to p1(S).

Remark 5. If either s; = 0,52 > 0 or s1 > 0,82 = +00, then it is easy to show that the critical
exponent of the mazimal operator M® f is equal to pi(S).

Proposition 1. Let {g;(u1,u2)}3_1, é(u1,uz) be real analytic functions at the origin in R2.
Then the statements of Theorem 3.1 are true.
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O6 orpaHMYeHHOCTU MAKCHMAaJbHBIX OIEPaTOPOB,
ACCOIMMPOBAHHBIX C CUHIYJISPHBIMHI IIOBEPXHOCTSIMM

Canum 9. YcmaHOB

CamapKaHJICKUil TOCY/IapCTBEHHBIA yHUBEPCUTET
nmenu [11.Pamunosa

Camapkans, Y36ekucran

Anvnoranusi. CraTbsi IOCBSAIIEHA K UCCJIEJOBAHUIO MAKCUMAJIbHBIX OIIEPATOPOB, aCCOIMUPOBAHHBIX C
CHUHTYJIIPHBIMU [TOBEPXHOCTAMU. JloKa3aHa OrpaHUnYeHHOCTD 3TUX OIEpaTOPOB B IpocTpancTee LY, Korma
CHHTYJISIPHEIE TOBEPXHOCTH 3aaI0TCS TAPAMETPHICCKIMI ypaBHeHusmu B R,

KuaroueBrle ciioBa: MaKCHMAJIBHBIN OIEPATOD, OIEPATOD YCPEIHEHUsI, TPOOHO-CTEIIEHHON DsiJl, HECHUH-
ryJsipHasi TOYKa, KDUTUIECKUN [TOKA3ATEb.
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