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Abstract. We describe the strong dual space (Os(D))∗ for the space Os(D) = Hs(D) ∩ O(D) of holo-
morphic functions from the Sobolev space Hs(D), s ∈ Z, over a bounded simply connected plane domain
D with infinitely differential boundary ∂D. We identify the dual space with the space of holomorhic
functions on Cn \D that belong to H1−s(G \D) for any bounded domain G, containing the compact D,
and vanish at the infinity. As a corollary, we obtain a description of the strong dual space (OF (D))∗ for
the space OF (D) of holomorphic functions of finite order of growth in D (here, OF (D) is endowed with
the inductive limit topology with respect to the family of spaces Os(D), s ∈ Z). In this way we extend
the classical Grothendieck–Köthe–Sebastião e Silva duality for the space of holomorphic functions.
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One of the first dualities in the spaces of holomprphic functions was discovered in 1950-’s
independently by A.Grothendieck [1], GKöthe [2] and J. Sebastião e Silva [3], who described the
strong dual (O(D))∗ for the space of holomorphic functions O(D) (endowed with the standard
Frechét topology) in a bounded simply connected domain D ⊂ C:

(O(D))∗ ∼= O(Ĉ \D), (1)

where O(Ĉ \D) is the space of holomorphic functions on neighborhoods of the closed set C \D,
vanishing at the infinity, endowed with the standard inductive limit topology of holomorphic
functions on closed sets. One of the most general results, describing the duality for the spaces of
solutions to elliptic differential operators with the topology of uniform convergence on compact
sets, belong to A.Grothendieck, see [4, Theorems 3 and 4]; it is similar in a way to (1). Another
general scheme of producing dualities for (both determined and overdetermined) elliptic systems
was presented in [5]. It involves the concept of Hilbert space with reproducing kernel and
the constructed pairings are closely related to the inner products of the used Hilbert spaces.
However it works easily for formally self-adjoint strongly elliptic operators, while in general case
the application of the scheme depends on the very subtle information regarding the properties
of the reproducing kernel that is not always at hands. Actually, similar results (with the use of
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classical Bergmann reproducing kernel and pairing induced by the inner product of the Lebesgue
space L2(D)) was obtained by E. Straube [6, Sec. 3] for harmonic and holomorphic functions
of finite order of growth of many complex variables. Paper [5] contains also description of a
Grothendick type duality for spaces of solutions of finite order of growth to strongly elliptic
systems.

In the present short note we describe a Grothendick type duality for the spaces Os(D) of
holomorphic Sobolev functions and OF (D) of holomorphic functions of finite order of growth
over a bounded simply connected plane domain D with infinitely differential boundary ∂D with
the use the pairing induced by the inner product of the Lebesgue space L2(∂D).

1. Duality for the space of Sobolev holomorphic functions

Let L2(D) be the Lebesgue space and Hs(D), s ∈ N, be the Sobolev space of functions over
plane domain D, endowed with the standard inner products. As it is known the scale extends
to all values s > 0, as the Sobolev-Slobodetskii scale. We denote by H−s(D), s > 0, the strong
dual for the space Hs

0(D) (i.e. for the closure of smooth functions with compact support in D

in Hs
0(D)); the related pairing between elements of H−s(D) and Hs(D) is induced by the inner

product in the Lebesgue space L2(D). Denote by h(D) the space of harmonic functions in D,
set hs(s) = Hs(D) ∩ h(D) and, similarly, Os(s) = Hs(D) ∩O(D), s ∈ Z, where O(D) the space
of holomorhic functions in D. By the standard a priori estimates for harmonic functions, hs(s)

and Os(s) are closed subspaces of Hs(D), s ∈ Z, see, for instance, [6, p. 568]. We note that
a holomorphic function is harmonic and then Os(D) is a closed subspace in hs(D). According
to [6, Corollary 1.7], any element u ∈ hs(D) has a weak boundary value u|∂D on ∂D belonging to
Hs−1/2(∂D), s ∈ Z. Of course, u|∂D coincides with the usual trace of u on ∂D if s ∈ N. It tollows
immediately from [6, Corollary 1.7] that for each u ∈ hs(D) the functional ∥u|∂D∥Hs−1/2(∂D)

defines a norm on hs(D) that is equivalent to the standard one. As Os(D) ⊂ hs(D), we prefer
to endow Os(D) with the norm ∥u|∂D∥Hs−1/2(∂D).

In any case, Os(s), s ∈ Z, is a Hilbert space (because ∥ · ∥Hs−1/2(∂D) posesses parallelogram
property) and we immediately have the standard Riesz duality with the pairing related to the
corresponding inner product:

(Os(D))∗ ∼= Os(D). (2)

However we want to produce a Grothendieck type duality for Os(D). With this purpose, denote
by Os(Ĉ \ D), s ∈ Z, the space of holomorphic functions in C \ D vanishing at the infinity
that belong to Hs(G \ D) for any bounded domain G, containing the compact D. By the
discussion above, any element v ∈ Os(Ĉ \D) has a weak boundary value v|∂D on ∂D belonging
to Hs−1/2(∂D). Then, taking into the account the connection between the interior and exterior
Dirichlet problems for the Laplace operator, for each v ∈ Os(Ĉ \D) functional ∥v|∂D∥Hs−1/2(∂D)

defines a norm on Os(Ĉ \D) and, by the discussion above, Os(Ĉ \D) is Hilbert space.

Theorem 1.1. Let D be a bounded simply connected domain with C∞-smooth boundary. Then
for each s ∈ Z we have an isomorphism of Banach spaces:

(Os(D))∗ ∼= O1−s(Ĉ \D). (3)

Proof. We begin with the description of the related pairing. First, we note that since ∂D is a
compact, then Hs′(∂D) = Hs′

0 (∂D) for each s′ ∈ R. Hence there is a natural duality

H−s′(∂D) ∼= Hs′(∂D), s′ ∈ R, (4)
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with the pairing
⟨·, ·⟩∂D,s′ : H

−s′(∂D)×Hs′(∂D) → C,

induced by the inner product in L2(∂D). In particular,

|⟨u, v⟩∂D,s′ | 6 ∥u∥Hs′ (∂D)∥v∥H−s′ (∂D) for all v ∈ H−s′(∂D), u ∈ Hs′(∂D). (5)

For the sake of notations we drop the index s′ in the pairing.
Thus, for each s ∈ Z we obtain a natural pairing

⟨u|∂D, v|∂D⟩∂D : Os(D)×O1−s(Ĉ \D) → C, (6)

inducing a continuous (conjugate-) linear mapping

O1−s(Ĉ \D) ∋ v → fv ∈ (Os(D))∗, fv(u) = ⟨u|∂D, v|∂D⟩∂D. (7)

As (4) is an isomorphism of normed spaces, we see that

∥fv∥(Os(D))∗ = ∥v|∂D∥Hs−1/2(∂D).

Now we note that the integral Cauchy formula may be extended to the elements of the space
Os(D) with the use of the notion of the weak boundary values. Namely, for a distribution
u0 ∈ Hs−1/2(∂D) denote by Ku0 its integral Cauchy transform:

(Ku0)(z) =
1

2πι
⟨(· − z)−1, u0⟩∂D, z ̸∈ ∂D,

where ι is the imaginary unit. Of course, Ku0(z) is just the Cauchy integral for u0 if s ∈ N.
Then for any u ∈ Os(D) we have

(Ku|∂D)(z) =

{
0, z ̸∈ D,

u(z) z ∈ D;
(8)

see, for instance, [7, 8] even for the Martinelli-Bochner integral in Cn. Similarly, taking into
the account the behaviour at the infinity and the orientation of the curve ∂D, for elements
v ∈ O1−s(Ĉ \D) we have

−(Kv|∂D)(z) =

{
0, z ∈ D,

v(z) z ̸∈ D.
(9)

It follows from (9) that if fv(u) = 0 for all u ∈ Os(D) then, as the kernel (ζ−z)−1 is holomorphic
in D with respect to ζ for all z ̸∈ D, we conclude that

0 = ⟨(· − z)−1, v|∂D⟩∂D = 2πι (Kv|∂D)(z) = 2πι v(z) for all z ̸∈ D,

i.e. mapping (7) is injective.
To finish the proof we have to show that mapping (7) is surjective. As we noted above,

the space Os(D) can be treated as a closed subset of the Hilbert space Hs−1/2(∂D). Then, by
Hahn–Banach theorem and Riesz theorem on functionals on Hilbert spaces, for any functional
f ∈ (Os(D))∗ there is a function v0 = v0(f) ∈ H1/2−s(∂D) such that

f(u) = ⟨u|∂D, v0⟩∂D for all u ∈ Os(D).

Next, denote by (Kv0)
− the restriction of the integral Cauchy transform to D and (Kv0)

+ its
restriction to C \D. Then theorems on the boundedness of potentials, see [9, Sec. 2.3.2.5], and
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the structure of the Cauchy kernel yield (Kv0)
− ∈ O1−s(D), (Kv0)

+ ∈ O1−s(Ĉ \D). Now, by
the weak jump theorem of the Cauchy transform, see [8], we have in the sense of weak boundary
values:

(Kv0)
−
|∂D − (Kv0)

+
|∂D = v0 on ∂D.

Clearly, by the definition of the weak boundary values and the classical Cauchy theorem, we have

⟨u|∂D, (Kv0)
−
|∂D⟩∂D = 0 for all u ∈ Os(D).

Therefore
f(u) = −⟨u|∂D, (Kv0)

+
|∂D⟩∂D for all u ∈ Os(D),

and then mapping (7) is surjective (i.e. v = v(f) = −(Kv0)
+ ∈ O1−s(Ĉ \D)).

2. Holomorphic functions of finite order of growth

One says that a function u ∈ h(D) has a finite order of growth near ∂D, if for each point
z0 ∈ ∂D there are positive numbers γ, C and R such that

|u(z)| 6 C|z − z0|−γ for all z ∈ D, |z − z0| < R.

The space of such functions we denote by hF (D). E. Straube [6] proved that

hF (D) = ∪s∈Z h
s(D)

and hence we may endow the space with the inductive limit topology with respect to the family
{hs(D)}s∈Z of Banach spaces, see, for instance, [10, Sec. 6]. Again, as O(D) ⊂ h(D), we obtain

OF (D) = ∪s∈Z Os(D); (10)

we endow this space of holomorphic functions of finite order of growth near ∂D with the same
topology as hF (D). According to [10, Ch. 4, Exercise 24e], OF (D) is a DF-space and then
its dual is expected to be a Fréchet space, see [10, Ch. 4, Exercise 24a]. Thus, we denote by
O(Ĉ \D) the space of holomorphic functions in C \D vanishing at the infinity. By the Sobolev
Embedding Theorem,

O(Ĉ \D) ∩ C∞(C \D) = ∩s∈ZOs(Ĉ \D). (11)

We endow the space with the projective limit topology with respect to the family {Os(Ĉ\D)}s∈Z
of the Banach spaces, see [6, Ch. I, Sec. 5]. Thus, O(Ĉ \D) is a Fréchet space, see [6, Ch. II,
Sec. 6, Corollary 1].

Theorem 2.1. Let D be a bounded simply connected domain with C∞-smooth boundary. Then
we have a topological isomorphism:

(OF (D))∗ ∼= O(Ĉ \D) ∩ C∞(C \D). (12)

Proof. It follows almost immediately from Theorem 2.1. Indeed, as v|∂D ∈ C∞(∂D) for each
O(Ĉ \D) ∩ C∞(C \D), formulae (10) and (11) imply that (6) defines a sesquilinear pairing

⟨u|∂D, v|∂D⟩∂D : OF (D)×O(Ĉ \D) ∩ C∞(C \D) → C. (13)
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Again, taking into the account the topologies of the space and inequality (5), we may define
continuous mapping

O(Ĉ \D) ∩ C∞(C \D) ∋ v → fv ∈ (OF (D))∗, fv(u) = ⟨u|∂D, v|∂D⟩∂D. (14)

Its injectivity and surjectivity follow by the same arguments as in the proof of Theorem 2.1.
Finally, the continuity of the inverse mapping follows from the Closed Graph Theotem for Fréchet-
spaces, see [10, Ch. 3, Theorem 2.3].

Similarly, we obtain the following statement.

Theorem 2.2. Let D be a bounded simply connected domain with C∞-smooth boundary. Then
we have a topological isomorphism:

(O(D) ∩ C∞(D))∗ ∼= OF (Ĉ \D). (15)

The investigation was supported by the Krasnoyarsk Mathematical Center and financed by
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О двойственности для пространств голоморфных
функций конечного порядка роста

Аркадий Б. Левский
Александр А. Шлапунов

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. Мы описываем сильное сопряженное пространство (Os(D))∗ для пространства
Os(D) = Hs(D) ∩ O(D) голоморфных функций из пространства Соболева Hs(D), s ∈ Z, над
ограниченной односвязной плоской областью D с бесконечной гладкой границей ∂D. Мы иденти-
фицируем сопряженное пространство как пространство голоморфных функций на Cn \D, которые
принадлежат H1−s(G \ D) для любой ограниченной области G, содержащей компакт D, и равны
нулю в бесконечности. Как следствие, мы получаем описание сильного сопряженного простран-
ства для пространства OF (D) голоморфных функций конечного порядка роста в D (здесь, OF (D)
снабжено топологией индуктивного предела относительно семейства пространств Os(D) голоморф-
ных соболевских функций, s ∈ Z). Таким образом, мы обобщаем классическую двойственность
Гротендика–Кёте–Себастиана и Сильвы для голоморфных функций.

Ключевые слова: теоремы о двойственности, голоморфные функции конечного порядка роста.
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