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Introduction
The Dirac equation is a relativistic quantum mechanical equation that specifically describes

massive particles with spin-1⁄2, such as electrons. It is a fundamental equation in quantum
mechanics, providing a framework for understanding the behavior of these particles within the
realm of relativistic effects. The classical limit (CL) of the Dirac equation can be investigated
by neglecting the influences of quantum mechanics. In doing so, we can describe the system’s
behavior using classical physics, providing insights into the classical aspects of the system. In
the CL, phenomena inherent to quantum mechanics, such as interference, superposition and
entanglement, are expected to diminish at the macroscopic scale, however, this demise is not easy
to explain. In this scenario, the quantum system adheres to the classical laws of physic. The CL
is commonly defined in terms of the limit of a vanishing Planck’s constant, i.e., ~ → 0 as scaled
with the system’s action. In this context, Hamilton’s principle adopts its classical expression,
and all operators commute. In the following, we present some scenarios and approaches that
help explain the exploration of the CL of the Dirac equation. So, one can initiate the exploration
by examining the solutions of the equation under conditions of large distances and durations, or
under the conditions of large energies and momenta. Within these limits, the effects of quantum
mechanics become negligible [1]. Put differently, the CL emerges if the system possesses a big
quantum number, undergoes significant interactions with its surroundings, or if its de Broglie
wavelength becomes significantly smaller compared to other relevant length measurements. A
frequent example illustrating the CL of a quantum system is the Bohr correspondence principle
[2], which asserts that in the limit of large quantum numbers, a quantum system exhibits behavior
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similar to the corresponding classical system. Also, the Ehrenfest’s theorem is considerably
used when exploring the CL of quantum mechanical systems [3]. This theorem establishes a
connection between the evolution of expected values of observables and classical equations of
motion. It serves as an effective tool for understanding the conduct of such systems. Through its
application, we observe the way quantum mechanical influences dissipate, giving way to classical
dynamics [4]. In the context of the Dirac equation, this theorem remains used to explore its
CL, there, the quantum influences will be very small, leading simplify the Dirac equation to its
classical counterpart.

In this work, we aim to investigate whether it can be asserted that Ehrenfest’s theorem is
applicable to the CL of the Dirac equation within a deformed framework, subject to specific
conditions. Extensive research in the literature [5–14] has delved into the alignment between
quantum and classical aspects. We also emphasize that other concepts may overlap with the
concept of the CL, such as the semiclassical and non-relativistic limits. Note that the semiclassical
limit of a quantum mechanical system, can be attained if external potentials vary slowly, like
in the case of the electrostatic potential [15]. On the other hand, the non-relativistic limit of
a relativistic quantum mechanical system as the Dirac equation [16, 17], is the limit where the
speed of the particle is much less than the speed of light, i.e., v ≪ c or low energy in front of
the rest energy, consequently, this limit permits to neglect the relativistic influences. However,
the non-relativistic and classical limits are related but distinct concepts, they address different
aspects of the system’s behavior. It is important to highlight that in many physical situations,
the CL and the non-relativistic limit can align, leading to similar descriptions of the system’s
behavior.

On the other side, recently, there has been a rising interest in the advancement of doubly
special relativity (DSR) theories. This type of special relativity emerges at energy scales close

to the domain of quantum gravity, specifically near the Planck energy κ =

√
c5~
G

= 1019GeV,
there special relativity may undergo deformation. This deformation entails κ transforming into
an observer-independent constant, analogous to the speed of light c. Amelino-Camelia [18–20],
in conjunction with Magueijo and Smolin [21,22], advanced the concept of DSR, which requires
adopted the parameter κ alongside the speed of light c. This incorporation implies a noncom-
mutative structure in space-time, resulting in the formation of the κ-Minkowski space-time. The
second parameter κ is assumed to be of the order of Planck energy κ = EP , or in the form of an
energy scale κ = 1/lp. The models based on this assumption are referred to as DSR. However,
as κ → ∞, special relativity is regained. Many studies and research in this regard have been
carried out in the literature. However, we will not delve into the historical background, as it is
thoroughly covered in Amelino-Camelia’s recent and comprehensive paper [23]. One of the latest
extensions of the DSR is the Deformed General Relativity introduced in [24], which associates
the geometric structure of an internal De Sitter space with a noncommutative curved space. It is
also worth highlighting the significant role of noncommutative geometry in modern physics today.
Its integration with several branches of physics greatly facililates understanding and overcoming
many complexities, especially those related to quantum field theory, string theory, cosmology,
black holes, and high energy. (For an overview, check Refs. [25–37]).

Our objective in this study is to investigate the CL of the Dirac equation within the framework
of the Magueijo–Smolin (MS) approach of the DSR by using the Ehrenfest’s theorem. In the
same context of the used framework, B. Hamil. et al. [38] have studied relativistic oscillators in
the context of MS noncommutative model. Likewise, S. Mignemi and A. Samsarov [39] addressed
the vacuum energy from withing noncommutative framework in several models including MS
model from DSR. In addition, M. Coraddu and S. Mignemi [40], studied the non-relativistic limit
of the motion of a classical particle from Klein-Gordon and Dirac equations in the MS model.
Moreover, they found that the rest masses of particles and antiparticles differ and violating the
CPT invariance. They claimed that this effect is close to observational limits and future exper-
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iments may give indications on its effective existence, etc. This work came as a continuation of
some works on the CL we did before. For instance, in [41], we studied the CL and Ehrenfest’s
theorem of noncommutative Dirac equation in the context of Minimal Uncertainty in Momen-
tum. Also, we explored the comparison between the CL and the non-relativistic limit of the
noncommutative Dirac equation in presence of minimal length. Furthermore, in [42], we have
investigated Ehrenfest’s theorem from the Dirac equation in a noncommutative phase-space.

The rest of the paper is organized as follows. Section 1 provides a concise review of the
MS modeld. In Section 2, the CL of the Dirac equation in the context of MS model using the
Ehrenfest’s theorem is explored, where in Sub-section A, a κ-deformed Dirac equation in presence
of an electromagnetic field is derived. In Sub-section B, based on the Ehrenfest’s theorem, κ-
deformed classical equations are obtained, subsequently, these obtained classical equations are
examined under the discrete, CPT and Lorentz symmetries in Sub-section C. Section 3 is devoted
to the conclusion and remarks.

1. Review of Magueijo–Smolin model
The model we employ belongs to the κ-Poincarй class and is referred to as the MS model [21].

However, there exist alternative models that could be beneficial for our calculations. For example,
we mention the Snyder model [43] and the Majid–Ruegg model [44]; the latter model belongs to
the κ-Poincarй class as well. We opt to employ the MS approach primarily due to its profound and
non-trivial results. The MS model considerations, similar to those outlined in [45–47], indicate
that the Euclidean theory can be defined following the prescription p0 → ip0, κ→ iκ. Now, the
MS model is defined by the following transformation between noncommutative variables Xµ, Pµ

and a canonical momentum variable pµ [39]:

Xµ = i
(
1 +

p0
κ

) ∂

∂pµ
, Pµ =

pµ(
1 + p0

κ

) , (1)

with p0 = E, where −∞ < pi < +∞, and 0 < p0 < +∞. Note that the operators Xµ and Pµ are
Hermitian and symmetric, i.e. ⟨χ|Xµ |ψ⟩ = ⟨ψ|Xµ |χ⟩, ⟨χ|Pµ |ψ⟩ = ⟨ψ|Pµ |χ⟩, with respsect to

the scalar product ⟨χ | ψ⟩ =
∫

dp(
1 + p0

κ

)χ× (p)ψ (p). The MS algebra, derived from equation (1)

(Heisenberg relations) in the Granik basis [48], can be expressed as follows:

[Xi, X0] =
i

κ
Xi, [Pi, X0] = − i

κ
Pi,

[Xi, Pj ] = iδij , [X0, P0] = −i
(
1− P0

κ

)
,

(2)

where κ (with κ > P0) is the Planck momentum, which implies an upper bound for the allowed
particle energy in MS model. For this deformed Poincarй algebra, the Casimir operator takes
the form of:

M2 =
P 2
0 − P 2

i(
1− P0

κ

)2 , (3)

where M is the physical mass.

2. Classical limit of the κ-deformed Dirac equation
In this section, we obtain the Dirac equation in the context of MS model and then use it to

investigate its CL through the Ehrenfest’s theorem. Additionally, the resulting classical equations
will be examined under the CPT symmetry.
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A. κ-Deformed Dirac equation
In a commutative phase-space, the time-independent Dirac equation in interaction with an

electromagnetic four-potential Aµ
(−→
A,Φ

)
is{

c−→α ·
(−→p − e

−→
A (−→x )

)
+ eΦ (−→x ) + βmc2

}
ψ (−→x ) = Eψ (−→x ) , (4)

where ψ (−→r ) =
(
ϕ (−→x ) χ(−→x )

)T is the bispinor in the Dirac representation. The momentum
−→p is given by −→p = −i~

−→
∇ and αi and β are the Dirac matrices, which satisfy the following

anticommutation relations:

{αi, αj} = 2δij , {αi, β} = 0 , α2
i = β2 = 1. (5)

Additionally, there is a clarification to make regarding equation (4). In our previous works

[17, 41], where we employed
e

c

−→
A rather than e

−→
A . Here, suppose to be no

1

c
factor in SI units;

instead, it appears in Gaussian units (old notation).
Now, the Dirac equation resulting from the DSR based on the MS model in the representation

of the noncommutative operators Xµ, Pµ is given as{
c−→α ·

(−→
P − e

−→
A
(−→
X
))

+ eΦ
(−→
X
)
+ βmc2

}
ψ
(−→
X
)
= P0ψ

(−→
X
)
, (6)

then, by applying the definition of the position and momentum operators reported in equation
(1), we obtain the following deformed Dirac equation{

c−→α ·

( −→p(
1 + p0

κ

) − e
−̃→
A (−→x )

)
+ eΦ̃ (−→x ) + βmc2

}
ψMS =

p0(
1 + p0

κ

)ψMS . (7)

Note that
−̃→
A (−→x ) =

−→
A
(−→
X
)

and Φ̃ (−→x ) = Φ
(−→
X
)

with

−→
X = i

(
1 +

p0
κ

) ∂

∂−→p
, (8)

then in more elegant simple form, we have{
c−→α ·

−̃→
Π +

(
1 +

p0
κ

)
eΦ̃+

(
1 +

p0
κ

)
βmc2

}
ψMS = EψMS , (9)

where the minimal substitution −→p − e
(
1 +

p0
κ

) −̃→
A =

−̃→
Π . Here ψMS is the wave function in the

DSR framework. Next, we move to employ the obtained deformed Dirac equation (9) to explore
the CL through Ehrenfest’s theorem.

B. Ehrenfest’s theorem in the context of MS model
Ehrenfest’s theorem, which originates from the Dirac equation, establishes that the time

evolution of expected values of observables in quantum mechanics aligns with classical equations
of motion. Essentially, it suggests that the average behavior of a quantum system corresponds
to classical physics. Additionally, it is noteworthy that this theorem applies to all quantum
systems. However, in the present context, we are computing the time derivatives of position and
kinetic momentum operators for Dirac particles interacting with an electromagnetic field in the
context of MS model of DSR. Consequently, the equation of motion for an arbitrary operator F̂
is expressed as follows:
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dF̂
dt

=
∂F̂
∂t

+
i

~

[
Ĥ , F̂

]
, (10)

where Ĥ is the Hamiltonian operator. Now, let commence with the operator of position

d−̂→x
dt

=
∂−̂→x
∂t

+
i

~

[
Ĥ MS

D , −̂→x
]
=
i

~

[
Ĥ MS

D , −̂→x
]
, (11)

and the Hamiltonian operator from equation (9) is given as:

Ĥ MS
D = c−→α ·

−̃→
Π +

(
1 +

p0
κ

)
eΦ̃+

(
1 +

p0
κ

)
βmc2, (12)

subsequently, the commutator expressed in equation (11) is as follows:[
Ĥ MS

D , −̂→x
]
= c

[−̂→α · −̂→p , −̂→x
]
− ec

(
1 +

p0
κ

)[−̂→α ·
−̃→
A, −̂→x

]
+ e

(
1 +

p0
κ

) [
Φ̃, −̂→x

]
+
(
1 +

p0
κ

)
mc2

[
β̂, −̂→x

]
,

(13)

The position operator x̂ is diagonal concerning the spinor indices, i.e., −̂→x ψ = −→x ψ and contains
no differentiation, thus

[
β̂, −̂→x

]
=
[−̂→α , −̂→x ] = 0, then for three arbitrary vectors

−→
A 1,

−→
A 2 and

−→
A 3

we use the identity [−→
A 1

−→
A 2,

−→
A 3

]
=
[−→
A 1,

−→
A 3

]−→
A 2 +

−→
A 1

[−→
A 2,

−→
A 3

]
. (14)

Then we have [−̂→α · −̂→p , −̂→x
]
= −i~−̂→α , (15)

also [
−̃→
A, −̂→x

]
=
[
Φ̃, −̂→x

]
= 0, (16)

because both
−̃→
A , Φ̃ are functions of

∂

∂−→p
. Consequently, we obtain

d−̂→x
dt

= c−̂→α . (17)

Let us subsequently see how the operator (17) acts on the Dirac spinor. By considering single
components ψ, then we obtain

dx̂

dt
ψ = ±cψ, (18)

where the eigenvalues of −̂→α are ± 1. This result has no classical analogy because despite the
considered effects, the Dirac particle is still moving at the speed of light.

Now, the equation of motion for the kinetic momentum operator
−̂→
Π = −̂→p − e

c

−→
A is

d
−̂→
Π

dt
=
∂
−̂→
Π

∂t
+
i

~

[
Ĥ MS

D ,
−̂→
Π

]
= −e∂

−→
A

∂t
+
i

~

[
Ĥ MS

D ,
−̂→
Π

]
, (19)

consequently, the commutator is given by[
Ĥ MS

D ,
−̂→
Π

]
=
[
Ĥ MS

D , −̂→p
]
− e

[
Ĥ MS

D ,
−→
A
]
. (20)
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At first, we calculate the first commutator in equation (20)[
Ĥ MS

D , −̂→p
]
= c

[−̂→α · −̂→p , −̂→p
]
− ce

(
1 +

p0
κ

)[−̂→α ·
−̃→
A, −̂→p

]
+
(
1 +

p0
κ

)
e
[
Φ̃, −̂→p

]
+
(
1 +

p0
κ

)
mc2

[
β̂, −̂→p

]
,

(21)

with
[
β̂, −̂→p

]
=
[−̂→α , −̂→p ] = 0 because β̂ and −̂→α are independent of space coordinates. Furthermore,

we have [
Φ̃, −̂→p

]
= i~

[−→∇, Φ̃] = i~
(−→∇Φ̃− Φ̃

−→∇
)
, (22)

then through equation (22), we have[
Φ̃, −̂→p

]
ψ = i~

(−→
∇Φ̃− Φ̃

−→
∇
)
ψ = i~

(−→
∇Φ̃

)
ψ, (23)

and [−̂→α · −̂→p , −̂→p
]
= 0. (24)

Also [
−̂→α ·

−̃→
A, −̂→p

]
= −i~

∑
i,j

α̂i

[
Ãi,∇j

]
ej , (25)

then by considering the effect of equation (25) on ψ, we obtain:[
−̂→α ·

−̃→
A, −̂→p

]
ψ = i~

∑
i,j

α̂i

(
∇jÃiψ − Ãi∇jψ

)
ej = i~

∑
i,j

α̂i

(
∇jÃi

)
ejψ. (26)

Now, we pass to the second commutator in equation (20), so, we have[
Ĥ MS

D ,
−→
A
]
= c

[−̂→α · −̂→p ,
−→
A
]
− ce

(
1 +

p0
κ

)[−̂→α ·
−̃→
A,

−→
A

]
+
(
1 +

p0
κ

)
e
[
Φ̃,

−→
A
]

+
(
1 +

p0
κ

)
mc2

[
β̂,

−→
A
]
.

(27)

Thereafter, we move to calculate each commutator in equation (27), thus we start with[−̂→α · −̂→p ,
−→
A
]
= −i~

∑
i,j

α̂i [∇i, Aj ] ej , (28)

and its act on ψ yields [−̂→α · −̂→p ,
−→
A
]
ψ = −i~

∑
i,j

α̂i (∇iAj) ejψ. (29)

Note that in equations (26, 29), the gradient acts on
−→
A only. Then, we continue with[

β̂,
−→
A
]
=
[−̂→α ,−→A] = 0, (30)

and [
Φ̃,

−→
A
]
=

[
−̃→
A,

−→
A

]
= 0. (31)

Now in total, we have

d
−̂→
Π

dt
= −e

{
∂
−→
A

∂t
+
(
1 +

p0
κ

)(−→
∇Φ̃

)}
+ e

∑
i,j

(cα̂i)
{(

1 +
p0
κ

)
∇jÃi −∇iAj

}
ej . (32)
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By using equation (17), and after some simplifications we get

d
−̂→
Π

dt
= −e

(
1 +

p0
κ

)
∂

−→
A

(1+ p0
κ )

∂t
+
(−→
∇Φ̃

)+ e
(
1 +

p0
κ

)∑
i,j

vi

(
∇jÃi −∇i

Aj(
1 + p0

κ

)) ej . (33)

But if
−̃→
A =

−→
A(

1 + p0

κ

) , one has

−̃→
E = −1

c

∂
−̃→
A

∂t
−
−→
∇Φ̃, (34)

and ∑
i,j

vi

(
∇jÃi −∇iÃj

)
ej =

−→v × curl
−̃→
A. (35)

Then, we have

d
−̂→
Π

dt
= e

(
1 +

p0
κ

){−̃→
E +−→v ×

−̃→
B

}
, (36)

where curl
−̃→
A =

−̃→
B .

As can be seen, equation (36) is a κ-deformed Lorentz force in the classical case. It is a force
exerted by the electromagnetic field on an electron having an electric charge e. Unlike the case
of velocity in equation (17), here the effect of MS model of DSR on the Lorentz force appears
widely in equation (36) through the parameter κ. In the limit of κ→ ∞, we have

d
−̂→
Π

dt
= e

{−→
E +−→v ×

−→
B
}
,with Φ̃→ Φ, (37)

which is the Lorentz force in the classical case. Now, let us discuss the findings:
It is observed that −̂→x does not comply with classical equations of motion. Nevertheless, a

classical equation of motion can be established for the operator
−̂→
Π . Interestingly, equation (36)

appears to formally align with the corresponding classical equation; however, it is crucial to bear
in mind that any expectation values derived from (37) lack utility due to Zitterbewegung, with
a reduction in velocity. At best, the projection of the even contributions from (37) yields result
pertinent to a classical single-particle description. Shifting focus to equation (36), it illustrates the
impact of DSR on the Lorentz force, which undergoes deformation based on these considerations.
Conversely, equation (17) indicates that DSR does not exert an influence on velocity. Notably,
the applied considerations of the MS model are found to impact Ehrenfest’s theorem.

C. CPT and Lorentz symmetries of κ-deformed Lorentz force
Both CPT and Lorentz symmetries hold a crucial role in modern quantum field theory, in-

cluding the standard model of particle physics, and its potential violation could have profound
implications for our understanding of fundamental physics and the nature of spacetime. Ongoing
experimental efforts aim to test the CPT symmetry with increasing precision, providing valuable
insights into the symmetrical underpinnings of the universe. However, the CPT symmetry com-
bines charge conjugation C, parity inversion P and time reversal T into a more encompassing
symmetry. This combined operation must be an exact symmetry. It ensures that the physics
laws remain unchanged when particles are replaced by their antiparticles, space is inverted and
time flows backward simultaneously. The CPT symmetry is a powerful concept that underlies
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our understanding of the fundamental symmetries of the universe. On the other hand, Lorentz
symmetry, ensures that laws of physics are the same for all observers in inertial reference frames.

Now, by applying the transformation rules from Tab. 1 to equation (33), we examine the
deformed Lorentz force under the discrete symmetries C, P, and T , as well as the CPT symmetry.
Consequently,

C

{
d
−̂→
Π

dt

}
̸=

{
d
−̂→
Π

dt

}
,

P

{
d
−̂→
Π

dt

}
̸=

{
d
−̂→
Π

dt

}
,

T

{
d
−̂→
Π

dt

}
̸=

{
d
−̂→
Π

dt

}
,

(38)

where
−→
A , Φ depend on x, but

−̃→
A , Φ̃ depend on p. Then

CPT

{
d
−̂→
Π

dt

}
̸=

{
d
−̂→
Π

dt

}
, (39)

this clearly means that the Lorentz force operator in the MS model of DSR violates the CPT
symmetry, this in turn violates the Lorentz symmetry. Moreover, under the discrete symmetries
C, P and T , the κ-deformed Lorentz force is not invariant. Note that the discrete symmetries of
−→
X (defined in equation (8)),

−̃→
A =

−→
A
(−→
X,B

)
and Φ̃ = Φ

(−→
X, e

)
are successively given as follows:

−→
X

C−→ −
−→
X,

−→
X

P−→ −−→
X,

−→
X

T−→ −−→
X,

(40)

then −̃→
A

C−→
−̃→
A,

−̃→
A

P−→ −
−̃→
A,

−̃→
A

T−→ −̃→
A,

(41)

and
Φ̃

C−→ Φ̃,

Φ̃
P−→ −Φ̃,

Φ̃
T−→ −Φ̃.

(42)

However, based on the equation (40), one can see that the noncommutative variable
−→
X

undergoes changes under discrete C, P, T and CPT transformations. Consequently, other related
physical aspects may also exhibit alterations.

3. Conclusion and remarks

In this study, using Ehrenfest’s theorem, we have analytically explored the CL of the Dirac
equation in interaction with electromagnetic potential and in the context of MS model of DSR.
We successfully examined the effects of the MS model on the CL, which yields a κ-deformed
classical equations. Our findings affirm the feasibility of obtaining CL within the framework of
DSR, specifically, the MS model. Once again, Ehrenfest’s theorem demonstrates its efficacy in
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deriving CL of the Dirac equation, regardless of the effects on the relativistic system. Conse-
quently, we emphasize the significance of this type of theorems. In addition, it is shown that
considering MS model of DSR in the CL of Dirac equation is not suitable for the invariance of the
CPT and Lorentz symmetries. Clearly, our results can be considered a useful tool for exploring
further related studies, encompassing non-relativistic and semiclassical limits, and other scenar-
ios involving specific models within the framework of DSR such as Snyder and Majid–Ruegg
models. Additionally, expanding the study to include more generalizations, such as particles
with arbitrary higher spins, would be a promising avenue for future research. Knowing that, in
the limit of κ → ∞, the κ-deformed Dirac and the obtained classical equations reduce to those
of ordinary quantum mechanics, confirms that our results are consistent with and reducible to
those found and discussed in the literature.

Appendix A: C, P and T discrete symmetries
The discrete symmetries play a fundamental role in modern theoretical physics and among

these symmetries, C, P and T are particularly significant and basic.

• The C symmetry, i.e., charge conjugation, involves exchanging particles with their corre-
sponding antiparticles while reversing their charges, e.g., e→ −e and i→ −i.

• The P symmetry, i.e., parity, reflects the spatial inversion of a physical system, interchang-
ing left and right, e.g., −→x → −−→x .

• The T symmetry, i.e., time reversal, entails reversing the direction of time in a process,
e.g., t→ −t.

In classical mechanics, the definitions of physical quantities like momentum, angular momentum
and energy etc., decide their transformation properties under P and T symmetries, but, C
symmetry does not enter the classical field. However, one could define it as an operation which
changes the charge of a particle, leaving other attributes the same. Consequently, classical
electrodynamics is invariant under C, provided the fields change sign under C. On the other
hand, while C has no place in non-relativistic quantum mechanics, it arises naturally in relativistic
quantum mechanics, particularly, it represents a symmetry between matter and antimatter.

Tab. 1 shows some of the discrete C, P and T symmetries operations known in the litera-
ture [41].

Table 1. Summary of some discrete symmetry operations

Quantity Notation P C T
Electric charge e 1 –1 1
Time derivative ∂

∂t 1 1 –1
Nabla vector

−→
∇ –1 1 1

Position −→x –1 1 1
Velocity −→v –1 1 –1

Momentum −→p –1 1 –1
Electric field

−→
E –1 –1 1

Magnetic field
−→
B 1 –1 –1

Scalar potential Φ 1 –1 1
Electromagnetic vector

−→
A∝ Bx –1 –1 –1

– 443 –



Ilyas Haouam A Classical Limit for the Dirac Equation in the Context . . .

Funding

This research received no external funding.

Conflicts of Interest

The author declares no conflict of interest.

References

[1] P.A.Tipler, R.A.Llewellyn, Modern Physics (5 ed.), W.H. Freeman and Company, 2008,
160–161.

[2] N.Bohr, Über die Serienspektra der Elemente, Z. Physik., 2(1920), 423.
DOI: 10.1007/BF01329978.
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Классический предел уравнения Дирака в контексте
модели Магейхо-Смолина двойной специальной теории
относительности с использованием теоремы Эренфеста

Ильяс Хауам
Лаборатория математической и субатомной физики (LPMPS)

Университет братьев Ментури
Константин 25000, Алжир

Аннотация. В этой статье в контексте модели Магейхо–Смолина и с использованием теоремы
Эренфеста мы исследуем классический предел уравнения Дирака в рамках двойной специальной
теории относительности. Это приводит к получению деформированных классических уравнений.
Здесь мы оцениваем эффективность теоремы Эренфеста при выводе классического предела в при-
сутствии модели Магейхо–Смолина. Кроме того, мы исследуем деформированные классические
уравнения относительно дискретной, CPT и симметрии Лоренца.

Ключевые слова: уравнение Дирака, дважды специальная теория относительности, модель
Магейхо-Смолина, теорема Эренфеста, классический предел.
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