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Abstract. It is shown that the moving basis of a curve in polar coordinates can always be considered as
a right-handed reference frame moving with acceleration. A system of differential equations is obtained
that describes the trajectory of a freely falling body in a non-inertial reference frame coinciding with
the standard basis of the curve. Finally, they were solved numerically using the Archimedean spiral, the
three-petal rose and the cardioid as examples.
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Introduction

In this paper we will consider one of the aspects of using the plane curve’s moving basis [1–3]
and, with its help, we will provide solutions to a number of curvilinear motion problems. The
effectiveness of the moving basis method has been sufficiently demonstrated in a series of original
papers [4–6]. However, attention should be paid to the disadvantage of the standard basis of the
τ −n curve, where the unit tangent vector τ and the unit normal vector n are related by simple
linear relationships: 

dτ

ds
= Kn,

dn

ds
= −Kτ ,

(1)

where curvature K =
|y′′|(

1 + y′2
)3/2 =

|ÿẋ− ẍẏ|
(ẋ2 + ẏ2)

3/2
> 0 (see [1–3]). As shown in Fig. 1, the

moving basis with this definition changes its orientation from "right" to "left", moving from the
concave region to the convex region.

It should be noted that it was possible to avoid the influence of this circumstance on the
re-sults obtained in papers [4–6]. Although it is clear that a reference frame that constantly
changes its orientation is extremely inconvenient.

∗sonjaf@list.ru https://orcid.org/0000-0001-8503-1794
†sglad51@mail.ru https://orcid.org/0000-0002-2755-9133

c⃝ Siberian Federal University. All rights reserved

– 537 –



Sophie B. Bogdanova, Sergey O.Gladkov An Application of the Plane Curve’s Standard Basis . . .

Fig. 1. In the concave section AB, the τ − n basis is right-handed, and in the convex section
BC, it al-ready has a left orientation

1. Physical moving basis
Here we will consider two fundamentally different cases.

1. Let the curve be a graph of the function y = y(x). Then the situation can be improved
by transforming the standard basis to the T−N basis (Fig. 2). Its unit vectors are quite

Fig. 2. The moving T−N basis is right-handed on any section of the curve

similarly related (1): 
dT

ds
= K ·N,

dN

ds
= −K ·T,

(2)

Here the curvature of the curve is defined as

K =
y′′(

1 + y′2
)3/2 =

ÿẋ− ẍẏ

(ẋ2 + ẏ2)
3/2

. (3)

As a result of transformations (2)–(3), the T−N basis can be considered as a convenient
physical reference frame.

2. Let the curve be given in polar coordinates as a function R0(φ) = i·r(φ) cosφ+j·r(φ) sinφ
where the polar angle increases in counterclock-wise direction. A careful examination of
all curves known in polar coordinates [7] shows that the moving basis of such curves never
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changes its orientation (and always remains "right-handed"), which happens due to the
specific direction of change in the parameter φ (see Fig. 3) Thus, the invariance of the

Fig. 3. The moving basis on the Archimedean spiral is always right-handed

moving basis of curves in polar coordinates with respect to changes in the convex and
concave sections allows it to be used as a physical reference frame for solving curvilinear
motion problems.

2. Trajectory of a freely falling body in a moving basis
Any curvilinear motion is accelerated, and therefore a moving basis moving along its trajec-

tory can be considered as a non-inertial reference frame [8–10]. As we know [8–10], the trajectories
of moving bodies are different in different reference frames. For example, from the perspective
of a stationary observer, a freely falling body moves along a vertical straight line, but the same
trajectory from the center of a moving basis of a curve moving at a given speed will differ
significantly from a straight vertical fall. Thus, the task is to de-scribe the trajectory of a body
freely falling from point from the perspective of an observer lo-cated in the center of the moving
basis of the curve R0 (φ) (see Fig. 4). The binormal vector b is determined by the well-known
rule b = τ × n (see [1]). For a plane curve it is constant, i.e., ḃ = 0. According to [4] we have

r̈(φ) = R̈(φ)− R̈0(φ), (4)

where 
R̈0(φ) = v̇ · τ + v2K · n,

R̈(φ) = −g · b,

r̈(φ) =
d

dφ
(X(φ) · τ + Y (φ) · n+ Z(φ) · b) ,

(5)

where g is the acceleration of gravity. Below, we will use uppercase letters X(φ), Y (φ), Z(φ) to
denote the coordinates of the falling body in the non-inertial τ − n − b frame, and lowercase
letters x(φ), y(φ), z(φ) to denote its coordi-nates in the stationary basis i− j− k. As a result of
double differentiation of the radius vector r(φ), taking into account relations (1), we get:

r̈(t) = Ẍ · τ + Ÿ · n+ Z̈ · b +

+ τ ·
(
−2Ẏ vK −Xv2K2 − Y v̇K − Y vK̇

)
+

+ n ·
(
2ẊvK +Xv̇K +XvK̇ − Y v2K2

)
.

(6)
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Fig. 4. Problem geometry. The moving basis τ − n − b moves along the curve R0 (φ) in the
direction of in-creasing parameter φ

Substituting further (5) and (6) into equality (4) and equating the projections onto the corre-
sponding moving unit vectors, we obtain the following system of differential equations:

Ẍ = 2Ẏ vK +Xv2K2 + Y v̇K + Y vK̇ − v̇,

Ÿ = Y v2K2 − v2K2 − 2ẊvK −Xv̇K −XvK̇,

Z̈ = −g.

(7)

Their solution determines the trajectory of a freely falling body in the moving basis.

3. Analysis of the results obtained
The results of numerical simulation of system (5) are analyzed in three specific cases.

1. Archimedean spiral r = aφ. Its curvature according to [7] is as follows

K =
1

a
· φ2 + 2

(φ2 + 1)
3/2

.

2. Three-petal rose r = a sin 3φ with curvature [7].

K =
2

a
· 9cos23φ+ 4sin23φ(

9cos23φ+ sin23φ
)3/2 , 0 < φ < 2π.

3. A cardioid represented by the equation r = a (1− cosφ), whose curvature according to [7]
is as follows

K =
3

4a
√
2 sin

φ

2

, 0 < φ < 2π

The solution results are illustrated in Fig. 5–7.
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Fig. 5. The trajectory of a freely falling body from the center of the moving basis of the
Archimedean spiral r = φ, moving with the following speed v = φ2 for 0 6 φ 6 3π. Initial
conditions X(0) = Y (0) = 5, Z(0) = 10, X ′(0) = Y ′(0) = Z ′(0) = 0

Fig. 6. The trajectory of a freely falling body from the center of the moving basis of the three-
petal rose r = 2 sin 3φ, moving with the following speed v = φ2 for 0 6 φ 6 2π. Initial conditions
X(0) = Y (0) = 5, Z(0) = 10, X ′(0) = Y ′(0) = Z ′(0) = 0

Conclusion

1. The fundamental possibility of using a moving basis chosen along a given curve in solving
a number of physical problems in polar coordinates is shown.
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Fig. 7. The trajectory of a freely falling body from the center of the moving basis of the cardioid
r = 2 (1− cosφ), moving with the following speed v = φ3 for 0 6 φ 6 2π. Initial conditions
X(0) = Y (0) = 5, Z(0) = 10, X ′(0) = Y ′(0) = Z ′(0) = 0

2. A system of differential equations is presented that describes the free fall of a body in the
non-inertial reference frame moving along a plane curve specified in polar coordinates.

3. The results of the numerical solution of the resulting system of equations are graphically
illustrated using the Archimedean spiral, the rose and the cardioid as examples.
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Об одном применении естественного базиса плоской
кривой к решению задач механики

Софья Б.Богданова
Сергей О. Гладков

Московский авиационный институт (Национальный исследовательский университет)
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Аннотация. Показано, что подвижный базис кривой в полярной системе координат можно рас-
сматривать как правую систему отсчета, движущуюся с ускорением. Построена система диффе-
ренциальных уравнений, описывающая траекторию движения свободно падающего тела в неинер-
циальной системе координат, совпадающей с естественным базисом кривой. Приведены результаты
моделирования этой системы на примере спирали Архимеда, трехлепестковой розы и кардиоиды.

Ключевые слова: относительное движение, кривизна линии, механика криволинейного движе-
ния, компьютерное моделирование.
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