
Journal of Siberian Federal University. Mathematics & Physics 2024, 17(3), 398–407

EDN: VUWGFQ
УДК 517.958

On the Stability of the Solutions of Inverse Problems
for Elliptic Equations

Alexander V. Velisevich∗

Anna Sh. Lyubanova†

Siberian Federal University
Krasnoyarsk, Russian Federation

Received 10.03.2023, received in revised form 15.06.2023, accepted 14.02.2024

Abstract. The inverse problems on finding the unknown lower coefficient in linear and nonlinear second-
order elliptic equations with integral overdetermination conditions are considered. The conditions of
overdetermination are given on the boundary of the domain. The continuous dependence of the strong
solution on the input data of the inverse problem for the linear equation is proved in the case of the mixed
boundary condition. As to the nonlinear equation, the continuous dependence of the strong solution on
the overdetermination data is established for the inverse problem with the Dirichlet boundary condition.
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Introduction

In this paper the stability of the solutions of two inverse problems for second order elliptic
equations are considered.
Problem 1. For given functions f(x), β(x), h(x), α(x) and a constant µ find the pair of functions
u and constant k, satisfying the equation

− div(M(x)∇u) +m(x)u+ ku = f, (1)

the boundary condition (
∂u

∂N
+ α(x)u

)∣∣∣
∂Ω

= β(x), (2)

and the condition of overdetermination∫
∂Ω

uh(x)ds = µ. (3)

Problem 2. For given functions f(x), β(x), h(x) and a constant µ find the pair of funtcions u
and constant k satisfying the equation

− div(M(x)∇u) +m(x)u+ kr(u) = f, (4)
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the boundary condition
u|∂Ω = β(x), (5)

and the condition of overdetermination∫
∂Ω

∂u

∂N
h(x)ds = µ. (6)

Here Ω ∩ Rn is a bounded domain with a boundary ∂Ω ∈ C2, M(x) = mij(x) is a matrix

of functions mij , i, j = 1, 2, . . . , n, m(x) is a scalar funtcion,
∂

∂N
= (M(x)∇,n),n is the unit

vector of the outward normal to the boundary ∂Ω.
A main goal of this paper is to establish stability (in the sense of continuous dependence

on the source data) of strong generalized solutions of Problems 1 and 2. The conditions of the
solvability and uniqueness of solutions to Problems 1 and 2 were established in [1,2]. The proof of
the existence and uniqueness of the solutions follows the method developed by A. Sh. Lyubanova
and A.Tani in [3,4] where inverse problems with integral overdetermination conditions were also
considered. The method is based on the idea of reducing the inverse problem to an operator
equation of the second kind for the unknown coefficient [5].

Practical interest in such inverse problems is due to many applications in the theory of
diffusion and filtration [6] as well as the fact that filtration processes tend to stabilize over
time [7]. The steady fluid flow in a fissured medium is described by a stationary equation in
which the pressure u, coefficients and the right-hand side are independent of t. In general, the
stationary equation of the compressible fluid filtration has the form

− div(k(x, u)∇ψ(u)) + γ(x, u) = f, x ∈ Ω, (7)

where k(x, u) is a matrix of functions, ψ(u) и γ(x, u) are scalar functions, Ω ⊂ Rn is a bounded
domain with the boundary ∂Ω. An example of a diffusion model is the problem of finding the
concentration of a pollutant in the environment [8]

−λ∆u+ v∇u+ ku = f, u|∂Ω = β,

where k is a value characterizing the breakdown of a pollutant due to chemical reactions, λ is
the diffusion coefficient, f is the bulk source density, v is the velocity vector.

The study of the inverse problems for the elliptic equations goes back to fundamental works
of M.M. Lavrentiev [9–11]. Various issues related to coefficient inverse problems for the linear
and nonlinear equations (7) were discussed in [11–22]. Problems of finding highest coefficients
of (7) from additional boundary data on ∂Ω or on some part of ∂Ω are of particular interest.
In [15, 16, 20] this problem is considered in the case of ψ(u) = u, γ(x, u) ≡ 0, k(x, u) = kE,
E is the identity matrix, and function k is unknown. It is assumed that k = k(x) [15, 16], or

k = k(u) [20]. The overdetermination condition is k
∂u

∂n

∣∣∣
∂Ω

= ν(x) for the Dirichlet boundary
problem and u|∂Ω = ν(x) for the Neumann boundary problem. The pioneering work in this
line is Calderon’s one [16] where the inverse problem of finding the unknown k(x, u) = k(x)

with such overdetermination condition was first discussed and an approximate representation
was suggested for the unknown coefficient close to a constant.

Problems of recovering unknown lowest coefficients in elliptic equations have been considered
by many authors. The works of [8, 12, 21–23] should be noted here. In these works, unknown
coefficients are recovered from information on the values of some integral operator over the whole
domain or the solution trace on some surface inside the domain in which the problem is solved.
Integral conditions on the boundary were not considered in such problems.
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1. The preliminaries

We use the following notations: ∥ · ∥R, (·, ·)R — the norm and the inner product in Rn; ∥ · ∥,
(·, ·) — the norm and the inner product in L2(Ω); ∥ · ∥j ,

⟨
·, ·
⟩
1

— the norm in W j
2 (Ω), j = 1, 2,

and the duality relation between
◦
W 1

2 (Ω) and W−1
2 (Ω), respectively, ∥ · ∥j+1/2 — the norm in

W
s+1/2
2 (∂Ω), s = 0, 1.
Let us introduce the linear operator M :W 1

2 (Ω) → (W 1
2 (Ω))

∗ of the form

M = − div(M(x)∇) +m(x)I,

where I is the identity operator. We use the notation⟨
Mv1, v2

⟩
M

=

∫
Ω

((M(x)∇v1,∇v2)R +m(x)v1v2)dx

for any v1, v2 ∈W 1
2 (Ω), and reason that the following assumptions of the operator M are fulfilled.

I. mij(x), ∂mij/∂xl , i, j, l = 1, 2, . . . , n, andm(x) are bounded in Ω. OperatorM is strongly
elliptic, that is, there exist positive constants m0 and m1 such that for all v ∈W 1

2 (Ω)

m0∥v∥21 6
⟨
Mv, v

⟩
M

6 m1∥v∥21.

II. M is self-adjoint, that is mij(x) = mji(x) for i, j = 1, . . . , n.

We also impose restrictions on function r(ρ).

III. The function r(ρ) is continuous and strictly monotone (−∞,+∞), that is for all ρ1, ρ2 ∈
(−∞,+∞), ρ1 ̸= ρ2,

(r(ρ1)− r(ρ2))(ρ1 − ρ2) > 0,

and r(0) = 0.

IV. For all ρ ∈ (−∞,+∞)

|r(ρ)| 6 Cr|ρ|p−1. (8)

Here Cr > 0, p – constants, p > 0 when n 6 2 and 0 < p 6 n/(n− 2) when n > 2.

V. For any number R > 0 and funtcions v1, v2 ∈W 1
2 (Ω) such that ∥vi∥L2(p−1)(Ω) 6 R, i = 1, 2,

the inequality
∥r(v1)− r(v2)∥ 6 c(R)∥v1 − v2∥1

is valid where constant c(R) > 0 depends on R.

By the solution of Problem 1 is meant the pair, consisting of a function u ∈ W 2
2 (Ω) and a

constant k > 0 which satisfies the equation (1), the boundary condition (2) and the overdeter-
mination condition (3). By the solution of Problem 2 is meant the pair involving a function
u ∈ W 2

2 (Ω) and a constant k > 0 which satisfies the equation (4), the boundary condition (5)
and the overdetermination condition (6).

We define the auxiliary funtcions a, aσ, b, d, dτ and g as a solutions of the problems

Ma = f(x),

(
∂a

∂N
+ α(x)a

)∣∣∣
∂Ω

= β(x); (9)
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Maσ + σaσ = f,

(
∂aσ

∂N
+ α(x)aσ

)∣∣∣∣
∂Ω

= β(x); (10)

Mb = 0,

(
∂b

∂N
+ α(x)b

)∣∣∣∣
∂Ω

= h(x); (11)

Md = f(x), d|∂Ω = β(x); (12)

Mdτ + τr(aτ ) = f(x), dτ |∂Ω = β(x); (13)

Mg = 0, g|∂Ω = h(x). (14)

Here σ > 0, τ > 0 — real numbers.
Existence and uniqueness theorems for strong solutions of the inverse Problems 1 and 2 were

proven earlier in [1, 2]. For the sake of convenience, we give their formulations.

Theorem 1 ( [1]). Let ∂Ω ∈ C2 and assumptions I and II be fulfilled. Suppose also that

(i) f(x) ∈ L2(Ω), β(x), h(x) ∈W
3/2
2 (∂Ω), α(x) ∈ C(∂Ω);

(ii) f(x) > 0 almost everywhere in Ω; β(x) > 0, α(x) > 0, h(x) > 0 for almost all x ∈ ∂Ω and
there is a smooth piece Γ of the boundary ∂Ω and a constant δ > 0 such that β > δ and
h > δ almost everywhere in Γ.

Then Problem 1 has a solution {u, k}, if

0 6 µ− Φ 6 m0(a, b)
2

∥a∥∥b∥
,

where Φ =
∫
∂Ω

ah ds, and the estimates

aσ 6 u 6 a, 0 6 k 6 σ, ∥u∥2 6 C(σ + 1)∥a∥+ ∥a∥2, (15)

holds for some σ > 0, constant C depends on mesΩ, σ,m0 and m1. Moreover, if

0 6 µ− Φ <
m0(a, b)

2

∥a∥∥b∥
(16)

then the solution of Problem 1 is unique.

Theorem 2 ( [2]). Let assumptions I–V be fulfilled. Suppose also that

(i) f(x) ∈ L2(Ω), β(x), h(x) ∈W
3/2
2 (∂Ω);

(ii) f(x) > 0 almost everywhere in Ω;β(x) > 0, h(x) > 0 for almost all x ∈ ∂Ω and there is
a smooth piece Γ of the boundary ∂Ω and a constant δ > 0 such that β > δ and h(x) > δ
almost everywhere in Γ.

If

0 6 Q ≡ (f, g)− ⟨Md, g⟩1 + µ 6 m1 (r(d), g)2

4cp0 C
p/(p−1)
r Ψ

,

where Ψ = c(∥d∥L2p−2(Ω))∥d∥1∥g∥1, c0 — embedding constant W 1
2 (Ω) in Lp(Ω), then the problem

(4)–(6) has a solution {u, k}, and estimates

0 6 k 6 τ, dτ 6 u 6 d, ∥u∥2 6 CM (τ Cr ∥d∥p−1
1 + ∥d∥) + ∥d∥2. (17)

holds for some τ > 0, with a constant CM , depends on m0, τ and mesΩ. Moreover, if

0 6 Q ≡ (f, g)− ⟨Md, g⟩1 + µ <
m1 (r(d), g)2

4cp0 C
p/(p−1)
r Ψ

,

then the solution is unique.
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2. Stability of the solutions of inverse problems

The main results of the work are theorems on the continuous dependence of strong solutions
on the input data of the above inverse problems.

Let us consider Problem 1.

Theorem 3. Let assumptions of Theorem 1 be fulfilled and a pair {uj , kj} be the unique solution
of Problem 1, where f = fj , β = βj , h = hj , and µ = µj , j = 1, 2. Then the estimate

∥u1 − u2∥2 + |k1 − k2| 6 K(|µ1 − µ2|+ ∥f1 − f2∥+ ∥β1 − β2∥3/2 + ∥h1 − h2∥1/2) (18)

holds with a constant K > 0.

Proof. Let aj , aσ, bj are solutions of problems (9), (10), (11), where f = fj , β = βj , h = hj ,
j = 1, 2. It was shown in [1] that kj is the solution of the operator equation kj = Ajkj , where
Ajkj is determined as

Ajkj =
µj − Φj

(uj , bj)
, (19)

where Φj =
∫
∂Ω

ajhjds, and σj is given by the relation

σj =

√
m0((aj , bj)−

√
Dj)

2∥aj∥∥bj∥
, (20)

with
Dj ≡ (aj , bj)

2 − 4(µj − Φj)∥aj∥∥bj∥√
m0

> 0,

Estimating the right side of the difference

k1 − k2 = A1k1 −A2k2 =
Φ2 − Φ1 + µ1 − µ2

(u1, b1)
+ k2

[ (u2 − u1, b1)− (u1, b1 − b2)

(u1, b1)

]
.

in absolute value with (15) and the relation [1]

(u1, b1) > (aσ1 , b1) = (a1, b1)− (a1 − aσ1 , b1) > (a1, b1)−
σ1√
m0

∥a1∥∥b1∥ > 0,

we come to the inequality

|k1 − k2| 6 K1(|µ1 − µ2|+ |Φ1 − Φ2|+ ∥b1 − b2∥1) +
k2
√
m0∥b1∥∥u1 − u2∥√

m0(a1, b1)− σ1∥a1∥∥b1∥
, (21)

where positive constant K1 depends on m0, mesΩ, µj , Φj , ∥aj∥1, ∥bj∥1, j = 1, 2.
On the other hand, difference u = u1 − u2 satisfies the relations (1)–(2), where k = k1,

f = (k2 − k1)u2 + f1 − f2 and β = β1 − β2. Using (15) and (19), for uj , kj when a = aj and
σ = σj , j = 1, 2, and also estimate [24]

∥v∥2 6 CM (∥Mv∥+ ∥v∥), (22)

valid for all v ∈ W̊ 1
2 (Ω)

∩
W 2

2 (Ω), we obtain

∥u1 − u2∥1 6 1

m0
(σ1∥a1 − a2∥+ |k1 − k2|∥a1∥) + ∥a1 − a2∥1,
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∥u1 − u2∥2 6 CM (m0 + 1)

m0
(σ1∥a1 − a2∥+ |k1 − k2|∥a1∥) + ∥a1 − a2∥2. (23)

Without loss of geberality, it may be suggested that k1 > k2. Then (15), (16), (20) for j = 1 and
(21) lead to inequality

|k1 − k2| 6 K2

[
|µ1 − µ2|+ |Φ1 − Φ2|+ ∥b1 − b2∥1

]
, (24)

where K2 depends on K1, m0, σ1, ∥a1∥. For a1 − a2 and b1 − b2, we have [25, Chapter 2]

∥a1 − a2∥j 6 C2(∥f1 − f2∥+ ∥β1 − β2∥j−1/2), j = 1, 2, (25)

∥b1 − b2∥1 6 C1∥h1 − h2∥1/2, (26)

where constants Ci > 0, i = 1, 2, depend on n, m0, m1 and mesΩ. Taking into account definition
of Φj , j = 1, 2, and relations (23)–(26), we come to the estimate (18). Theorem is proved. 2

Let us turn our attention to the theorem on stability of the strong solution of Problem 2.

Theorem 4. Let the assumptions of Theorem 2 be fulfilled and a pair {uj , kj} be a solution of
Problem 2 where µ = µj , j = 1, 2. Then the estimate

∥u1 − u2∥2 + |k1 − k2| 6 H|µ1 − µ2| (27)

holds with a constant H > 0.

Proof. Let dτj be the solution of (13) with τ = τj , j = 1, 2, where

τj =
((r(d), g)−

√
Gj)m0

2Qj C
p/(p−1)
r cp0 Ψ

, Gj = (r(d), g)2 − 4Qj
C

p/(p−1)
r cp0 Ψ

m0
,

and
Qj = (f, g)− ⟨Md, g⟩1 + µj .

As was shown in [2], kj is a solution of the operator equation

kj = Bjkj =
Qj

(r(uj), g)
. (28)

For the sake of convenience, we denote by {ū, k̄} the difference of solutions {u1, k1} and {u2, k2}.
k̄ is a solution of the equation

k̄ = B1k1 −B2k2 =
Q1

(r(u1), g)
− Q2

(r(u2), g)
=

(Q1 −Q2)(r(u1), g)−Q1(r(u1)− r(u2), g)

(r(u1), g)(r(u2), g)
,

or, by the defenition of Qj and (28),

k̄ =
Q1 −Q2

(r(u2), g)
− k1(r(u1)− r(u2), g)

(r(u2), g)
=

µ1 − µ2

(r(u2), g)
− k1(r(u1)− r(u2), g)

(r(u2), g)
. (29)

Let us estimate the last term of the right side of the resulting relation by absolute value, taking
into account (8), (17), (28), assumption V and the inequality [2]

(r(u2), g) > (r(d), g) + (r(dτ2)− r(d), g) > (r(d), g)− τ2
C

p/(p−1)
r cp0
m0

c(∥d∥L2p−2)∥d∥p−1
1 ∥g∥1.
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Without loss of generality one may suggest that k1 6 k2. We have∣∣∣k1(r(u1)− r(u2), g)

(r(u2), g)

∣∣∣ = Q2 · |(r(u1)− r(u2), g)|
(r(u2), g)2

6

6 m0(r(d), g)
2

4C
p/(p−1)
r cp0Ψ

· c(∥d∥L2p−2)∥u1 − u2∥1∥g∥
((r(d), g)− τ2C

p/(p−1)
r cp0m1

−1c(∥d∥L2p−2(Ω))∥d∥p−1
1 ∥g∥1)2

=

=
m0(r(d), g)

2

C
p/(p−1)
r cp0∥d∥

p−1
1 ((r(d), g) +

√
G2)2

· ∥u1 − u2∥1. (30)

On the other hand, difference {ū, k̄} satisfies the equation

Mū+ k1(r(u1)− r(u2)) = (k2 − k1)r(u2) (31)

and the boundary condition
ū|∂Ω = 0. (32)

Then multiplying (31) by ū in terms of the inner product in L2(Ω) and integrating by parts in
the first term with regard to (32) give

⟨Mū, ū⟩1 + k1(r(u1)− r(u2), ū) = (k2 − k1)(r(u2), ū). (33)

We estimate the right-hand side of (33) by the absolute value using the embedding theorem
W 1

2 (Ω) in Lp(Ω) and (8).

|(k2 − k1)(r(u2), ū)| 6 Cp/(p−1)
r |k2 − k1|∥u2∥p−1

Lp(Ω)∥ū∥Lp(Ω) 6

6 Cp/(p−1)
r cp0 |k2 − k1|∥d∥p−1

1 ∥ū∥1 6 C
2p/(p−1)
r c2p0

2m0
|k2 − k1|2∥d∥2p−2

1 +
m1

2
∥ū∥21.

By the assumptions I – V, the equalty (33) and the last relation lead us to the inequality

∥ū∥1 6 C
p/(p−1)
r cp0
m1

∥d∥p−1
1 |k2 − k1|. (34)

Combining (29), (30) and (33) we obtain the estimate

|k̄| 6 |µ1 − µ2|
(r(d), g) +

√
G2

+
(r(d), g)2

((r(d), g) +
√
G2)2

|k̄|,

which implies that

|k̄| 6 (r(d), g) +
√
G2√

G2(2(r(d), g) +
√
G2)

|µ1 − µ2|. (35)

Inequalities (34) and (35) give us an estimates

∥ū∥1 6 C
p/(p−1)
r cp0
m1

∥d∥p−1
1

(r(d), g) +
√
G2√

G2(2(r(d), g) +
√
G2)

|µ1 − µ2|

and in view of IV
∥r(u1)− r(u2)∥ 6 c(∥d∥L2p−2(Ω))∥u1 − u2∥ 6

6 C
p/(p−1)
r cp0
m0

∥d∥p−1
1 c(∥d∥L2p−2(Ω))

(r(d), g) +
√
G2√

G2(2(r(d), g) +
√
G2)

|µ1 − µ2| ≡ C3|µ1 − µ2|.
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We now multiply (31) by Mū in terms of inner product in L2Ω.

∥Mū∥2 = (k2 − k1)(r(u2),Mū)− k1(r(u1)− r(u2),Mū).

We estimate the right hand side of the last relation taking into account (35). This gives

|(k2 − k1)(r(u2),Mū)− k1(r(u1)− r(u2),Mū)| 6 1

2
(τ1C3|µ1 − µ2|+ |k̄|∥r(u2)∥)2 +

1

2
∥Mū∥2 6

6 1

2

(
τ1C3 +

r(d), g) +
√
G2√

G2(2(r(d), g) +
√
G2

)2

|µ1 − µ2|,

whence, due to the inequality (22), we obtain the estimate

∥ū∥26CM

(
τ1C3+

(r(d), g) +
√
G2√

G2(2(r(d), g)+
√
G2)

+
C

p/(p−1)
r cp0
m0

∥d∥p−1
1

(r(d), g) +
√
G2√

G2(2(r(d), g)+
√
G2)

)
|µ1−µ2|.

Theorem is proved. 2

This work is supported by the Russian Science Foundation, the administration of the Kras-
noyarsk krai, and the Krasnoyarsk Regional Science Foundation (grant no. 22-21-20028).

References

[1] A.V.Velisevich On an inverse problem for the stationary equation with a boundary condition
of the third type, J. Siberian Federal University. Mathematics and Physics, 14(2021), no. 5,
659–666. DOI: 10.17516/1997-1397-2021-14-5-659-666

[2] A.Sh.Lyubanova, A.V.Velisevich An inverse problem fot the quasilinear elliptic equation,
Journal of Mathematical Sciences, 270(2023), 591–599. DOI 10.1007/s10958-023-06370-9

[3] A.Sh.Lyubanova, Identification of a constant coefficient in an elliptic equation, Applicable
Analysis, 87(2008), 1121–1128. DOI: 10.1080/00036810802189654

[4] A.Sh.Lyubanova, A.Tani, An inverse problem for pseudoparabolic equation of filtration: the
existence, uniqueness and regularity, Applicable Analysis, 90(2011), 1557–1571.
DOI: 10.1080/00036811.2010.530258

[5] A.I.Prilepko, D.G.Orlovsky, I.A.Vasin, Methods for solving inverse problems in mathemat-
ical physics, New York, Marcel Dekker, 2000.

[6] A.N.Konovalov, Problems of the filtration of incompressible fluid, Novosibirsk, Nauka, 1988
(in Russian).

[7] R.Helmig, A.Weiss, B.I.Wohlmuth, Dynamic capillary effects in heterogeneous porous me-
dia, Computational Geosciences, 11(2007), no. 3, 261–274. DOI: 10.1007/s10596-007-9050-1

[8] G.V.Alekseev, Е.А.Kalinina, Identification of the lower coefficient for the stationary
convection-diffusion-reaction equation, Sib. Zh. Ind. Math., 10(2007), no. 1(29), 3–16.
(in Russian).

[9] M.M.Lavrentiev, On the Cauchy problem for the Laplace equation, Iz. AN URSS: S. Math.,
20(1956), no. 6, 816–842 (in Russian).

– 405 –



Alexander V.Velisevich, Anna Sh. Lyubanova On the Stability of the Solutions of Inverse Problems . . .

[10] М.М.Lavrentiev, On some ill-posed problems of mathematical physics, Novosibirsk, Nauka,
1962 (in Russian).

[11] М.М.Lavrebtiev, V.G.Romanov, V.G.Vasiliev, Multidimensional inverse problems for dif-
ferential equations, Novosibirsk Nauka, 1969 (in Russian).

[12] G.V.Alekseev, V.А.Levin, Optimization method in problems of thermal masking of material
bodies, Dokl. RAN, 471(2016), no. 1, 32–36 (in Russian).
DOI: 10.1134/S102833581611001X

[13] R.А.Aliev, On some inverse problem for quasilinear equation of the elliptic type, Iz. Sar.
Univ. N. Ser. Math. Mech. Inf., 11(2011), no. 1, 3–9 (in Russian).
DOI: 10.18500/1816-9791-2011-11-1-3-9

[14] S.G.Pyatkov, On some inverse problems for the elliptic equations and systems, J. Appl.
Industr. Math., 5(2010), no. 3, 417–430. DOI: 10.1134/S199047891103015X

[15] G.Alessandrini, R.Caburro, The Local Calderon Problem and the Determination at the
Boundary of the Conductivity, Comm. Partial Differential Equations 34(2009), 918–936.
DOI: 10.1080/03605300903017397

[16] A.P.Calderon, On an inverse boundary value problem, Seminar on Numerical Analysis and
its Applications to Continuum Physics, Rio de Janeiro, Brazil, Soc. Brazil. Mat., Rio de
Janeiro, 1980, 65–73.

[17] F.Kanca, Inverse coefficient problem for a second-order elliptic equation with nonlocal
boundary conditions, Mathematical Methods in the Applied sciences, 39(2016), 3152–3158.

[18] M.V.Klibanov, A.Timonov, Carleman Estimates for Coefficient Inverse Problems and Nu-
merical Applications, VSP, Utrecht, the Netherlands, 2004.

[19] A.I.Kozhanov, Nonlinear inverse problems for elliptic equations, Journal of Inverse and
Ill-Posed Problems, 9(2001), no. 4, 413–424.

[20] M.A.Pilant, Uniqueness Theorem for Determining Conductivity from Overspecified Bound-
ary Data, Journal of Mathematical Analysis and Applications, 136(1988), no. 1, 20–28.

[21] V.V.Soloviov, Inverse problems for the elliptic equations in space, Diff. Ur., 47(2011), no. 4,
499–506 (in Russian). DOI:10.1134/S0012266111040057

[22] M.Franca, A.Sfecci, On a diffusion model with absorption and production, Nonlinear Anal-
ysis: Real World Applications, 34(2017), no. 1, 41–60.

[23] Y.T.Mehraliyev, F.Kanca, An Inverse Boundary Value Problem for a Second Order Elliptic
Equation in a Rectangle, Mathematical Modelling and Analysis, 19(2014), no. 2, 241–256.
DOI: 10.3846/13926292.2014.910278

[24] О.А.Ladyzhenskaya, N.N.Uralceva, Linear and quasilinear elliptic equations, Moskva,
Nauka, 1964 (English transl. New York: Academic press, 1973).

[25] J.-L.Lions, E.Magenes, Non-homogeneous boundary value problems and applications,
Dunod, Paris, 1968.

– 406 –



Alexander V.Velisevich, Anna Sh. Lyubanova On the Stability of the Solutions of Inverse Problems . . .

Об устойчивости решений некоторых обратных задач
для эллиптических уравнений

Александр В.Велисевич
Анна Ш.Любанова

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. В работе рассматриваются обратные задачи отыскания неизвестного младшего коэф-
фициента в линейном и нелинейном эллиптических уравнениях второго порядка с интегральными
условиями переопределения на границе исследуемой области. Для линейного уравнения доказана
непрерывная зависимость сильного решения обратной задачи от ее исходных данных в случае сме-
шанного граничного условия. Для нелинейного уравнения установлена непрерывная зависимость
сильного решения обратной задачи с граничным условием первого рода от данных переопределе-
ния.

Ключевые слова: обратная задача, эллиптическое уравнение, интегральное переопределение,
непрерывная зависимость от входных данных.
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