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Abstract. Periodic Generalized Autoregressive Conditionally Heteroscedastic (PGARC H) models were
introduced by Bollerslev et Ghysels. These models have gained considerable interest and continued
to attract the attention of researchers. This paper is devoted to extensions of the standard bilinear
threshold GARCH (BLTGARCH) model to periodically time-varying coefficients (PBLTGARCH)
one. In this class of models, the parameters are allowed to switch between different regimes. Moreover,
these models are allowed to integrate asymmetric effects in the volatility. Firstly, we give necessary and
sufficient conditions ensuring the existence of stationary solutions (in periodic sense). Secondly, a quasi
maximum likelihood (QM L) estimation approach for estimating PBLTGARCH model is developed.
More precisely, the strong consistency and the asymptotic normality of the estimator are studied given
mild regularity conditions, requiring strict stationarity and the finiteness of moments of some order for
the errors term. The finite-sample properties of QM LE are illustrated by a Monte Carlo study. Finally
our proposed model is applied to model the exchange rates of the Algerian Dinar against the single
European currency (Euro).
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1. Introduction and preliminaries

In recent years, many papers discussed the periodic generalized autoregressive conditionally
heteroskedastic models (PGARCH,) process introduced by Bollerslev and Ghysels [10]. This
process has been proved to be a power tool for modeling and forecasting many non stationary
time series, which makes a distinctive by a stochastic conditional variance with periodic dy-
namics. Generally, by PGARCH; process we mean a discrete-time strictly stationary process
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(e, t € 2),Z2 ={0,£1,42,...,} defined on some probability space (€2, F, P) and satisfying the
factorization
Et = htet, (11)

Here, the innovation process (e;,t € Z) is independent and identically distributed sequence with
zero mean and unit variance (i.7.d (0,1)) defined on the same probability space (2, F, P) and
time-varying coefficients "volatility” process (ht,t € Z) satisfy the recursion

q
hi=og(t)+ > a;(t)ef Z+Zﬂj hi_j, (1.2)
=1

where (o; (t),0 <7 < ¢) and (35 (t),0 < j < p) are non negative periodic functions with period s
with ag (t) > 0. PGARC H; model is potentially more efficient than the standard one. It becomes
increasingly important and an efficient tool to model seasonal asset returns of stocks, exchange
rates and other financial time series and continues to gain a growing interest of researchers (see
Ghezal [1] and Lescheb [4]). This interest is due to its multiple advantages; for instance, among
others, it is able to capture the stylized facts, e.g., volatility clustering, leptokurticity, depen-
dency without correlation and tail heaviness. However, in some asymmetric financial datasets
exhibiting the so-called leverage effect characterized by Cov (et ks P ) < 0, for some k > 0, the
PG ARC H s models are unable to model such data without further extensions. This finding led
Rodriguez and Ruiz [6] to study five of the most popular specifications of the time-invariant
asymmetric volatility process (ht,t € Z) with leverage effect, namely, the generalized quadratic
ARCH(GQARCH), the threshold GARCH (TGARCH), the GTJR—GARCH (GJR), the expo-
nential GARCH(EGARCH) and the asymmetric power GARCH(APGARC H) models. These
models are important in modelling, forecasting and capturing the asymmetry of the volatility
and hence are purported to be able to capture the leverage. Beside the above mentioned models,
Choi et al [7] have recently introduced the so-called bilinear threshold GARCH (BLTGARCH)
model defined by Equation (1.1) with time-invariant coefficients volatility process, i.e.,

q

hf:a0+Z(azst -+ Bier % +Z bre )+ wiey ) hee k+ZWJ P (1.3)

i=1 k=1 j=1

where ;7 = max (,,0) , &5 = min (,,0), &2 = (1), £;2 = (¢;)° and d = p A q. This paper

is fundamentally interested with non-stationary BLT GARCH models in which the parameters
are periodic in ¢ with period s. As a result, we will provide a periodic BLTGARCH (q,d,p)
model (PBLTGARCH;) defined by (1.1) and

q d
h? = ag (t)—f—Z(ai( Et Z+ﬁl &:t ’ —|—Z &:t_k—i—wk (t)s;_k) hi_p
, il k=1 (1.4)

+ Z%‘ (t) b7

In (1.4), the functions (o;(t),0<i<q), (Bi({),1<i<q), be(t),1<k<d),
(wi (t),1<k<d) and (y;(¢),1<j<p) are periodic with period s > 1. Moreover,
(i (1),0<i<q), (Bi(t),1<i<q), (1;(),1<j<p) are non negative sequences with
ap(.) > 0, whereas the functions (b (t),1 <k <d), (wg(t),1 <k<d) have values in
(—00,400) . So, by transforming ¢ into st + v and setting e; (V) = €540, At (V) = hgtyo and
et (V) = esptv, then (1. 4) may be equivalently written in periodic version as

hi (v) = +Z a; ( —i)+ B (v)er* (v —1))
d (1.5)
—I—Z(bk(v)gt (v—Fk)+wp (v)ey (V—FK))h(v—k —l—nyj v)h? (v —7j).
k=1
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In (1.5), the notation e; (v) refers to £, during the v — th "season” v € S = {1,..., s} of cycle ¢,
and, for convenience, we set &, (v) = ;1 (V+ ), hy (V) = hy—1 (v +s) and e, (v) =e—1 (V+ 5)
if v < 0. The non-peroidic notations (&), (e;) and (h;) will be used interchangeably with the
periodic one (e¢ (v)) , (ex (v)) and (k¢ (v)) whenever emphasis on seasonality is not needed. It is
worth noting that, since h? is the conditional variance of ¢; given the past information up to time
t — 1, the positivity of the functions (o (¢) ,0 < i< q), (5 (¢),1<i<q) and (y; (t),1<j<p)
ensures the positivity of h? in PTGARC H, model. This is not the case in PBLTGARCH, even
when by (.) = 0, wy, () = 0 and due to the penultimate term in (1.5), so the positivity of h? can
be studied case by case and hence we shall assume throughout this paper that h? > 0, almost
surely (a.s).

Some algebraic notation and definitions are used throughout this paper. O, ,,) denotes the
matrix of order n x m whose entries are zeros, for simplicity we set O, = O, ) and
Oy = Om,1)- I(n) is the n x n identity matrix and In denotes the indicator function of the

~(n)

set A. If (M (i), € I) is n X n matrices sequence, we shall denote for any integer | and j,
J
[IM@)=MU)M(I+1)...M(j) if | <j and I,y otherwise. For any real random variable X,
i=l

we denote Xt = max(X,0), X~ = max(—X,0)so X = XT — X~ and |[X| =Xt - X". |||
refers to the induced norm in the space M (n,m) of n x m—matrices. For instance, the norm of
matrix M = (m; ;) is defined by | M| = |m .

The main contributions of this paper can be summarized as follows. In Section 2, the Marko-
vian representation of PTBLGARCHs model is given and conditions for the existence of a strict
periodic stationary (SPS) solution of (1.1)—(1.5) are established. In Section 3, the strong consis-
tency and asymptotic normality of the QM LE are studied. Numerical illustrations are given in
Section 4 and an empirical application to the daily series of exchange rate of the Algerian Dinar
against the single European currency is provided in Section 5.

2. Probabilistic properties of PBLTGARCHs(p,q,d)

As for many time series models, it is useful to write Equations (1.1)—(1.4) in an equiva-
lent Markovian representation in order to facilitate their study. For this purpose, introduce the
r = (p+ 2q + 2d)-vector

2 -2 2 -2 - -
gy = (hf, ... k] el e % ,Ej_q+1,5t_q+1, heef  huer s ha—ayiey g, he—arie;_ i)
2

and ﬁ() = (LQl(r—l)) 7ﬁ/1 = (f/(p)? 13 _17f/(r—p—2)> and ﬂt (et) = gO,p-|-1 (t) ewj_ +
Qg2 (D) er? + g, sai1 (t) € + Qg _oqq2 (t) e +agy (t) in which the j — th entry of ag ;(t)
is ag (t) and all other elements are 0. With these notations, we obtain the following state-space
representation €7 = H' e, and h? = He,

g =Ai(er)g_1+n,(er), tEZL, (2.1)

with Ay (e;) = Ay () ef? + A (1) e, + Az (t) e + Ay (t) ey + A5 (t). Here (A;(t),1 <5 <5)
are appropriate (r X r)-periodic matrices easily obtained and uniquely determined by
{ai (t), Bi(t), b (t), wi(t), v;(t),1 <4,k,j<qVp}. Now, by iterating (2.1) s times we get
the following:

Eurns = H(e) e +1ley), tEZ, (2.2)

where

s—1
€1 = (e(ts1)ss nesirn) S H (e) = {HA(t+1)s—j (et+1)s—7) }ﬂ?(et) =
7=0

s—1 (s—1
Z{ Aferns—i (Et1)s—5) }ﬂ(t+1)sk (ec+1ys—r) -

k=0 \j=0

- 336 —



Walid Slimani. .. On Periodic Bilinear Threshold GARC H models

Set g, = e (t) (if there is no confusion). Then,(2.2) may be rewritten as
e(t)=H (e 1)et—1)+n(e ), t€Z (2.3)

Note here that H (e, ) is a sequence of i.i.d. random matrices independent of £ (k) , k < t and 7 (e;)
is a sequence of i.i.d. vectors. So, the existence of the so-called strictly periodically stationary
(SPS) and periodic ergodic (PE) solutions to (1.1)—(1.5) is now equivalent to the existence of
a strict stationary and ergodic solution to (2.3). Hence, equation similar to Equation (2.3) was
examined by Bougerol and Picard [8] who established that the series

k—1
)=y { H (e ;1) } n(ep1) +1n(e ), (2.4)
k21 \i=0

constitute the unique, strictly stationary and ergodic solution of (2.3) if and only if, the top-
Lyapunov exponent « (H) associated with the strictly stationary and ergodic sequence of random
matrices H = (H (e;) ,t € Z) defined by

t—1 t—1
v (H):= th;fo {1E{ log HH (e j 1) ‘}} as. tlggo{i log HH (e—j1) ‘} (2.5)
=0 =0

is such that v(H) < 0. However, the existence of v (H) is guaranteed by the fact that
E{log™ ||H(e,)||} < E{||H(e;)||} < 0o, where log™ (z) = max(logz,0) and the right-hand mem-
ber in (2.5) can be justified using Kingman’s [5] subadditive ergodic theorem. We summarize
the above discussion in the following theorem due to Bougerol and Picard [8].

Theorem 2.1. If v (H) corresponding to PBLTGARCHs(q,d,p) models is strictly negative,
then

1. Equation (2.8) admits a unique, strictly stationary, causal and ergodic solution given by the
series (2.4).

2. Equation (1.5) and, hence (1.1), admits a unique, SPS, causal and PE solution given by

h? = H{g, ore, = e; {ﬂ'lgt}é where g, is given by the series (2.4).
Proof. The proof follows essentially the same arguments as Bougerol and Picard [§]. O

Corollary 2.1. If v (H) < 0 and E{|eo|*’} < 0o for some & > 0, then there is 6* €]0,1] such
that BE(hY") < oo and E(g,°") < oc.

Remark 2.1. Aknouche and Guerbyenne [2] have studied the conditions ensuring the existence
and uniqueness of a SPS and PE solution of (1.1) and (1.5) using directly the (2.1) by showing

that
) 1
tn;fo {tE{ log ‘ } } (2.6)

is a sufficient condition for that (2.1) to have a unique, causal, SPS and PE solution given by

ts—1

T Atej (ersy)

Jj=0

k—1
& = Z { Ag—i (et—i)} n, , (er—r) +m, (). (2.7)

k>1 Li=

Remark 2.2. It is worth noting that the condition ’y(Ls) (H) < 0 provides a cer-

tain global stability of model (2.1). However, when ’yés) (H) < 0, the model (2.1) is
said to be unstable and hence doesn’t have a SPS solution. As an example, consider
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the PBLAARCH (1.1) model defined by &;(v) = hy(v)es(v) and h? (v) = agp(v) +
v) |e? (v—1) ’hQ v— 1) + by (v)|es(v=1)|he(v—=1). It is not difficult to show that

(8)( = E(log ag (v) |e3] + b1 (v) |eo > 0. Hence, the existence of some (not
0

all) "stable regimes v (z e, E {log (|ax (v) |€] + b1 (v) |eol|) } < 0) does not guarantee the exis-
tence of a SPS solution. Mm"e generally, we have the following convergence of the volatility to
infinity for PBLAARC H,(1,1) process encompassing (2.2).

Example 2.1. In PBLTGARCHs(1; 1; 1) models, the necessary and sufficient condition ensur-
ing the existence of strictly periodically stationary solution is that :

ZE{log“al(v)ea'Q—Fﬁl(v)ea2+b1(v)ea'—|—w1( Yeg +(v)|}} <o.
v=1

In particular, for standard BLTARCH (1,1,1) and for PBLTARCH5(1,1,1) with a;(1) = a
wl(l) = b, O[l(?) = O.25a, w1(2) = 025b, 51(1) = 51(2) = bl(].) = b1 (2) =0 and €t N(O, 1),
the stationarity zone is showed in Fig. 1.

standard and periodic BLTARCH(1,1)

20
15+
© 10
5 L
stationary zone
0 1 L L J
-10 -5 0 5 10

b

Fig. 1. Stationarity zones for standard (solid line) and periodic BLTARCH (1,1) (dashed line)

It is clearly observed that the corresponding zone to the standard model is less restrictive than
that corresponding to the periodic model.

2.1. Quasi-maximum likelihood estimator

In this subsection , we consider the quasi-maximum likelihood estimator (QM LE) for estimat-

ing the parameters of PBLTGARC H, model gathered in vector §' = (Ql, o Bs(ih2gr2dep) ) ¢

(«,8,0,u,7) € © C REHF20H2D) - where of = (af,a),..., ), f = ( : ,5')
b= (b, b)), W o= (W W) (’1 . ) with o = (o (1),...,; (s)),
B = (Bi(1),....Bi(s)), by = (bk() (s)) and Wk = (wp(D)swk (9), 2 =

(v Q),...,7(s)) forall 0<i<gq 1< k < d and 1 < j < p. The true parameter value
denoted by 0, € © C Rs(1+2¢+2d+P) is unknown and, therefore7 it must be estimated. For
this purpose, consider a realization {e1,...,e,;n = sN} from the unique, causal, SPS and
PE solution of (1.1) and (1.5) and let h? (§) be the conditional variance of &, given JF;_1,
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where F; := o(e;;7 < t) . The Gaussian log—Ilikelihood function of § € © conditional on
some initial values €g,...,€1-¢, ho, - - ., R1—_p, Which are generated by (1.1)—(1.5), is given up to
~ N s—1_ - 2 -
an additive constant by Ly, () = —(Ns)™" 32 S lapw (0) with Iy (8) = B;E@) + log h? ().
t=1v=0 t \L

—1

~ - a
Here h? (6) is recursively defined, for ¢t > 1 by h? (6) = aq (t) + > (o () 2+ Bi(t) 5;_%) +
i=1
d - P -
> (bk () &)y +wr (8) ;1) heei (0)+ Yo (£) hi_; (8) . A QM LE of § is defined as any measur-
k=1 j=1
able solution 0, of 8, = Arg max Ly (0) = Arg min (—LNS (Q)) . In view of the strong depen-

dency of B? (0) on initial values €q, ..., €1-¢, R0, ---sh1—p , (Zt (Q)) >1is neither a SPS nor a pe-
t =

riodically ergodic (PFE) process Therefore, it will be more convenient to work with an unobserved

1
lst-i—’u (Q)
0

- N s—
SPS and PE version. So, we work with an approximate version Ly, = — (NS)_1 >

t=1v=
2
_St

of the likelihood Ly (8) with I; (0) = 1 0)
t L

+log 7 (6) .

3. Monte Carlo experiment

In this section, we describe the performance of the finite sample properties of the QM LE of
the unknown parameters in BLTGARCH,(1,1,1) model based on Monte Carlo experiments. To
this end, we simulate T' = 500 replications for different moderate sample sizes n € {2000,4000}
with standard NV(0,1) and student ts) as innovations distributions. The vector § of parameters
is described in the bottom of each table below and is chosen to satisfy the strictly periodically
stationary condition. All empirical results were obtained via implementation of our own scripts
in Matlab computing language. In the tables below, the columns correspond to the average of
the parameters estimates over the N simulations. In order to show the performance of QM LE,
the roots mean square error (RMSE) of the each 6,,(i), i = 1,...,s, (results between bracket),
are reported in each table. Finally, the asymptotic distributions of 0, (v),v=1,...,sover N
simulations, followed by their boxplots summary, are plotted after each appropriate table.

3.1. Periodic BLTGARCH model

The example of our Monte Carlo experiment here is devoted to estimate the pe-
riodic BLTGARCH,(1,1,1) model with s = 2 according to standard AN(0,1) and
student 1) as innovations distributions. The vector of parameters to be estimated
is thus 6 = (gé,g’l,éll,bll,g'l,l’l)’ where of = (ap(1),a0(2)), af=(a1(1),a1(2)), etc...
are subjected to two models Model (1) and Model (2) described as:  Model(1):
The parameters are chosen to ensure the locally strictly stationarity condition i.e.,
for each v=1,2, E {log | (v) ed?+ 81 (v)eg? 4+ b1 (V) ed +wi (v)eg +m (v)|} <0, so (h?),
is strict periodic stationary. Model (2): The parameters are chosen such that

2
E{log |y (Wef? +B1(Meg? +br (Ded +wi()eg +m ()|} >0, but - E{log | (v)ed*+
v=1

Bi(v)eg? +by (v)ed +wi(v)eg +m (v)| } < 0, to ensure the strict periodic stationarity con-
dition of (h?) ;- The results of simulation according to both models (1) and (2) are given in
Tab. 1.

The asymptotic distribution of the sequence <\/ﬁ (én (i) — Q(z))) oy i=1,...,12 followed

by their boxplot summary according to model(1) of Tab. 1 are shown in Fig. 2.
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Table 1. Average and RMSE of 500 simulations of QM LE for PBLTGARCH»(1,1,1)

I N(0,1) [ L)
n v 2000 4000 2000 4000
G, 1 ‘ 0.9888 (0.0264) 0.9953 (0.0133) 0.9561 (0.0739) 0.9921 (0.0280)
2 0.9944 (0.0286) 0.9928 (0.0134) 0.9515 (0.0728) 0.9721 (0.0343)
a1 ‘ 0.4999 (0.0335) 0.4947(0.0162) 0.5048 (0.0918) 0.4971 (0.0427)
2 0.5008 (0.0414) 0.4973 (0.0203) 0.4905 (0.0944) 0.5038 (0.0598)
él 1 ‘ 0.3631 (0.0468) 0.3562 (0.0242) 0.3661 (0.1020) 0.3596 (0.0608)
2 0.3359 (0.0324) 0.3411(0.0154) 0.3464 (0.0725) 0.3468 (0.0352)
&1 1 ‘ —0.2607 (0.0688)  —0.2473(0.0333) —0.2760 (0.1567) —0.2482 (0.0940)
2 || —0.0027 (0.0805) 0.0058 (0.0392) 0.0084 (0.1868) —0.0054 (0.1054)
w; 1 ‘ 0.3240(0.0977) 0.3412(0.0500) 0.3198 (0.2002) 0.3459 (0.1247)
2 0.0126 (0.0720) 0.0087 (0.0348) —0.0030 (0.1636) —0.0093 (0.0814)
¥, 1 ‘ 0.1598 (0.0093) 0.1527(0.0043) 0.1793 (0.0280) 0.1549 (0.0110)
2 0.1578 (0.0090) 0.1530 (0.0044) 0.1807 (0.0284) 0.1680 (0.0124)
Model(1) : § = (1.00, 1.00, 0.50, 0.50, 0.35, 0.35, —0.25, 0.00, 0.35, 0.00, 0.15, 0.15)’
G, 1 0.9844 (0.0554) 0.9935 (0.0242) 0.9821(0.1133) 0.9933 (0.0586)
2 1.0391 (0.1631) 1.0152 (0.0764) 0.9648 (0.3207) 0.9962 (0.1817)
a1 0.5023 (0.0231) 0.4959 (0.0119) 0.5112(0.0662) 0.5023 (0.0350)
2 0.4819 (0.0640) 0.4870 (0.0327) 0.5140 (0.1545) 0.5203 (0.0872)
51 1 0.2571 (0.0108) 0.2541 (0.0055) 0.2757(0.0321) 0.2512(0.0148)
2 0.4179 (0.0600) 0.4324 (0.0305) 0.4290 (0.1037) 0.4434 (0.0883)
él 1 0.2459 (0.0324) 0.2550 (0.0166) 0.2316 (0.0893) 0.2544 (0.0496)
2 0.1794 (0.1533) 0.1748 (0.0765) 0.1381 (0.3424) 0.1219(0.1929)
w 1 0.1404 (0.0204) 0.1470(0.0103) 0.1175 (0.0569) 0.1495 (0.0261)
2 0.1905 (0.1395) 0.1739 (0.0759) 0.1477(0.2891) 0.1490 (0.1913)
3, 1 0.1532(0.0018) 0.1502 (0.0008) 0.1587 (0.0061) 0.1518 (0.0032)
2 0.7415 (0.0185) 0.7419 (0.0098) 0.7734 (0.0532) 0.7584 (0.0315)
Model(2) : = (1.00, 1.00, 0.50, 0.50, 0.25,0.45,0.25,0.15,0.15,0.15,0.15,0.75)’
Comments: A quick glance to the results of Monte Carlo experiment shows that the re-

sults of Tab. 1 provide the parameters estimates of PBLTGARCH,(1,1,1), with s = 2
fitted on Model (1) and Model (2) generated by standard A(0,1) and student tg) in-
novations through 500 independent simulations.  First, it is clear that the results of
QML associated with (5 innovations have a poor performance compared with those as-
sociated to N(0,1). In general, it can be observed that the parameters associated to
these models are quite well estimated with non significant deviations in estimated values
for two innovations errors N'(0,1) and t(;). It is worth noting that some values of es-
timates have a moderate standard deviation. In Tab. 1 where two models was simu-
lated following a PBLTGARCH(1,1,1) model in which the parameters of the two regimes
in Model(1) are such that E {log|ay (v)ed?+ B1 (v)eg”+ b1 (v)ef +wi (v) eg + 71 (v)|} <0,
v = 1,...,2, whereas, in Model(2) the second regime is explosive in the sense that
E{log|a1 (2)ed® + A1 (2) eg” + b1 (2) ef + w1 (2) ey +71(2)|} > 0, but the SPS of the model
is ensured. Also, one can see that the results reveal in general quite satisfactory in accordance
with the asymptotic theory results.
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Fig. 2. Top panels: the asymptotic distribution of \/n(f,,(i) —0(i)) (full line for Normal and
dashed line for Student). Bottom panels: Box plot summary of 8, (), 7 =1,...,12 (1 for Normal
and 2 for Student) according to Model(1) of Tab. 1

4. Applications on exchange rates

The proposed model is investigated with real financial time series. So, we apply our model for
modelling the foreign exchange rates of Algerian Dinar against the European currency (Euro)
denoted by y; already analyzed by Hamdi and Souam [3] via a mixture periodic GARC H models.
We consider returns series (r; = 100 x (log (y¢/yt-1)));, of daily exchange rates of Algerian Di-
nar against Euro. The observation covers the period from January 3, 2000 to September 29, 2011.
Since some weeks comprise less than five observations (due to legal holidays), we remove the entire
weeks with less than five data available rather than estimating the "pseudo-missing" observa-
tions by an ad-hoc method. Thus, the final length of transformed data is 3055 observations
uniformly distributed on 611 weeks. Fig. 3 displays the plots of the series (y;) and its returns

(r1), squared return (r?) and absolute return (|r|).

By quickly examining the plots in Fig. 3, we can see that the original series are non stationary
(since these do not fluctuate around a constant mean) and non-linear contrary to their returns
that appear to be stationry. Moreover, there is no clear discernible behavior pattern in the
returns, but some persistence is indicated in the plots of the squared and absolute returns.
Additionally, some elementary statistics of the series (yi),», and its returns (r¢),,, squared

return (r7),., and absolute return (Ir¢]);>, are displeyed in Tab. 2

t>1
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Fig. 3. The plots of the series(y:), squared r; and absolute (r)

Table 2. Elementary statistics of the series (yt);51, (rt)>1: (rf)t>1 and (|r¢]);,

]Series H Means Std.Dev Median Skewness Kurtosis‘

Yt 88.6118 11.5755 91.0995 —0.5181 2.1330
Tt 0.0118 0.5043  0.0123 0.3536 8.9678
r? 0.2543 0.7193  0.0652 16.1027  464.3694
7| 0.3575 0.3557  0.2554 2.6956 18.4307

2

Tab. 2 presents statistical summary of the series (yt);51, (7t);515 (r} and (|r¢]);>, with

)21
summary measures of normality test results. The return (r¢),, exhibits non-zero skewness and
=

leptokurtic, while (r7),_ . and (I7¢]);>, exhibit significant skewness and kurtosis, indicating that

their distribution is motrilpeaked with a thicker tails than the normal distribution. Fig. 4 displays
the sample autocorrelations functions (ACF) of the series (1¢),,, (r?),-, and (Ir¢])¢>, computed
at 40 lags.

In Fig. 4, we can see that the log returns (r¢),, show no evidence of serial correlation, but the
squared and absolute returns are positively autocorrelated. Also, the decay rates of the sample

autocorrelations of (r7),_, and (Ir¢]);>; appear to be violated compared with the correlation

t>1

t>1
associated to an ARM A process suggesting possibly a non linear behavior for modelling purpose.

4.1. Modeling with standard BLTGARCH model
The first attempt will be modeling the series (r);>1 by a standard BLTGARCH(1,1,1)

model. The parameters estimates of volatility (h§5))t>1 to BLTGARCH(1,1,1) with their
RMSE are given in Tab. 3.
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Fig. 4. The ACF of the returns and of their squred and absolute series

Table 3. Parameters estimates and their RMSE of the volatilities (ﬁgs))t%

’ Parameters ‘ Qg Q1 51 b1 w1 1 ‘

(izﬁ“’)) . 0.0007 0.0304 0.0591 0.0276 0.0283 0.9540
t=

(0.0005)  (0.0176)  (0.0224)  (0.0439)  (0.0430)  (0.0175)

The plot of the estimated volatility (Bﬁs))m is shown later in the left side of Fig. 5.

4.2. Modeling with PBLTGARCH model

The second attempt is to look for a model able to cover the day-of -week seasonality in return
(r¢) (see for instance Franses and Raap [9]). So, in order to analyze the seasonality, we fitted
the following simple PBLTGARCH5(1,1,1) model for each series or equivalently. Hence, we
estimate its volatility process (hf)t>1 through five periodic effects, r; = hse; and

hi =ao(t)+ (cn (1) + B () ) + (br () +wr () ) heek + 0 () hi,. (14)

The parameters estimates of five-regimes (intra-day) of (ﬁgp ))t>1 and their RM SE according to
model (14) are reported in Tab. 4.

The plots of estimated volatilities and the squared returns associated to (Furo) are showed in
Fig. 5.

4.3. Comments

Tab. 3 and Tab. 4 display the (ﬁt)t>1 estimated by Standard BLTGARCH (1,1,1) and
Periodic BLTGARCH5 (1,1,1) models and reflect some characteristics of "spurious" GARCH
effects. In particular, the components of &, are close to zeros while the components of ¥ , are close
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Table 4. Parameters estimates and their RMSE of the volatilities (isz’ ))

days & ay B, by ) o ‘
Sunday 0.0001 0.0145 0.0032 0.0165 0.0520 1.1826
(0.0320) (0.0329) (0.0812) (0.0926) (0.1234) (0.1894)
Monday 0.0010 0.0082 0.0419 0.0685 0.0831 1.0009
(0.0206)  (0.0563) (0.0588) (0.2913) (0.1429) (0.1326)
Tuesday 0.0001 0.0015 0.0376 0.1162 0.0318 0.8504
(0.0289) (0.0651) (0.0171) (0.0611) (0.0662) (0.1156)
Wednesday | 0.0025 0.0869 0.0648 0.0659 0.1768 0.7941
(0.0142)  (0.0322) (0.0345) (0.1136) (0.0951) (0.0955)
Thursday 0.0002 0.0082 0.0645 0.0909 0.0229 0.9803
(0.0160) (0.0799) (0.1260) (0.2751) (0.3544) (0.2810)
5 51 !
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4 4
351 35¢
3 3t
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Fig. 5. Dark blue: squared returns, light red: volatilities estimates according to Standard
BLTGARCH(1,1,1) (left) and to Periodic BLTGARCH;5(1,1,1) (right)

to ones with moderate RMSE. Fig. 5 represents the plots of the volatilities estimates (plots in
red) according to BLTGARCH (1,1,1) model (left) and PBLTGARCH5 (1,1,1) model (right)
and compared with the appropriate squared returns (plots in blue). It also demonstrates that a
large piece of returns (positive or negative) leads to a high volatility and a small piece of returns
leads to a low volatility, indicating volatility clustering. In particular, the period between 2000
and 2002 is characterized by low volatility levels compared to the period between 2009 and 2010
for both series. In addition, a high volatility cluster beginning in 2005 is observed and is mainly
due to the global financial crisis. After this period of uncertainty, a cluster of low volatility
is observed during 3 years. An other high volatility cluster is detected and could be related
to the devaluation of the Dinar. Finally, the conditional volatility seems to be more stable
after 2010. Our empirical results demonstrate that it is very difficult to distinguish between
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the volatilities (EES))M and (E,E”))t>1 in Fig. 5, except perhaps, that the volatilities (i}?’))t;l
is more fluctuated than (ﬁgs))t>1. This finding may indicate the presence of a certain (hidden)

periodicity in (ﬁgp) i1

Conclusion

Beside the probabilistic structure and the conditions ensuring the existence of a SP.S solution,
this paper studies also the asymptotic properties of the quasi-maximum likelihood estimators
of PBLTGARCH (q,d,p) model. Indeed, for the first part, we have given the necessary and
sufficient conditions for the existence of a strictly periodically stationary solution based on the
negativity of the top-Lyapunov exponent. The paper presents for the second part, the theoretical
results, which are illustrated in the third part by a Monte Carlo experiment through some usual
innovations and an application to the exchange rate of the Algerian Dinar against the Euro
showing its performance and its efficiency.

References

[1] A.Ghezal, QMLE for periodic time-varying asymmetric log GARC H models, Communica-
tions in Mathematics and Statistics, 9(2021), no. 3, 273-297.
DOI: 10.1007/s40304-019-00193-4

[2] A.Aknouche, H.Guerbyenne, Periodic stationarity of random coefficient periodic autoregres-
sions, Stat. Prob. Lett, 79(2009), no. 7, 990-996

[3] F.Hamdi, S.Souam, Mixture periodic GARC H models: Applications to exchange rate mod-
eling, Proceeding of the 5-th international conference on modeling, simulation and opti-
mization (ICMSAO), Hammamet, 2013, no. 1-6.

[4] I.Lescheb, Asymptotic inference for periodic ARCH processes, Ran. Oper. Stoch. Equ,
19(2011), no. 3, 283-294.

[5] J.F.C.Kingman, Subadditive ergodic theory, The annals of probability, 1(1973), no. 6,
883-899.

[6] M.J.Rodriguez, E.Ruiz, Revisiting several popular GARC H models with leverage effect:
Differences and similarities, Journal of Financial Econometrics, 10(2012), no. 4, 637-668.
DOI: 10.1093/jjfinec/nbs003

[7] M.S.Choi, J.A.Park, S.Y.Hwang, Asymmetric GARCH processes featuring both threshold
effect and bilinear structure, Statistics & Probability Letters, 82(2012), no. 3, 419-426.
DOI: 10.1016/J.SPL.2011.11.023

[8] P.Bougerol, N.Picard, Strict stationarity of generalized autoregressive processes, Annals of
Probability, 20(1992), no. 4, 1714-1730.

[9] P.H.Franses, R.Paap, Modelling day-of-the-week seasonality in the S&P 500 index, Applid
Financial Economics, 10(2000), no. 5, 483-488. DOI: 10.1080/096031000416352

[10] T.Bollerslev, E.Ghysels, Periodic autoregressive conditional heteroscedasticity, Journal of
Business and Economic Statistics, 14(1996), no. 2, 139-151.

- 345 —



Walid Slimani. .. On Periodic Bilinear Threshold GARC H models

O nmepumoamvecKnX OMJIMHENHBIX ITOPOTOBBIX MOJEISIX

GARCH

Banug Caumann
Yuusepcurer Moxamena Xujiepa
07000 Buckpa, Amxup

NMuec Jlewied

Kadenpa maremarrku
Yuusepcurer Koncrantuna 1
25000 Koucranrun, Amxup
Myayn Ilepdayn
Kadenpa maremarukn
Yuuepcurer Buckpsr

07000 Buckpa, Amxup

Anvsorauus. [lepruoguyueckre 0600IIEHHBIE ABTOPEIPECCUOHHbBIE YCJIOBHO I'e€T€POCKEIAaCTHIECKIE MOJIe-
s (PGARCH) 6buin npeacrasiensl Bollerslev et Ghysels. Dtu Mo/esn BbI3BaIU 3HAUNTEBHbLA HHTE-
PeC U MPOJOJIKAIOT IPUBJIEKATH BHUMAHUE HCCaefoBaTesel. /Jannas craTbs MOCBANEHA PACIIADEHUIO
cTaHIapTHO GuinHeiiHoi noporosoit mogenn GARCH (BLTGARCH) 1o MoJesu ¢ IEpUOARIECKH Me-
HAOIMMUC BO BpeMeHn koaddunuentamu (PBLTGARCH). B stoMm kiacce Mozeseil JOIyCKaeTcst
TIEPEKJTI0YEHNE TTaPAMETPOB MEXKIY PA3HBIMU PeKMMaMu. Bojiee TOro, STu MOJIe/N TO3BOJISIIOT WHTETPU-
poBaTh acuMMeTpUYIHbIE 3(DPEKTHI BOJATUIHLHOCTH. BO-TIEPBBIX, MBI IPUBOIUM HEOOXOIUMBIE M JIOCTa-
TOYHBIE YCJIOBUsI, 00ECIIEINBAIONINE CYIIECTBOBAHNE CTAIIOHAPHBIX PeIleHuil (B IE€PHOJIIECKOM CMBIC-
sie). Bo-BTopbIx, pa3paboTan moOmIxo/] ONEHKN KBA3UMAKCUMAIBHOTO npasgonoaobus (QM L) njs oneHkn
mvonenu PBLTGARCH. Tounee, cuibHasi COCTOATEILHOCTD U ACUMIITOTUYECKAS HOPMAJILHOCTD OLEHKHU
M3yYaroTCsl IPU MSTKUX YCJIOBUSIX PEryJISIDHOCTU, TPEOYIOMINX CTPOrO# CTAIMOHAPHOCTH M KOHEYHOCTH
MOMEHTOB HEKOTOPOTO Topsijika s wieHa omubku. CeoiictBa QM LFE st KOHEYIHO! BBIOOPKHU WJLITIO-
crpupytorcsa uccienoBanuem Mounre-Kapiio. Hakoner, npejyioskennast HaMu MOJEJIb TPUMEHSIETCS JIJIst
MOJIETMPOBaHNsI OOMEHHBIX KYPCOB aJ2KUPCKOrO JIMHAPA MO OTHOIIEHWIO K €IMHOI eBPOTECKO BaIIOTe
(Euro).

KuroueBsle ciioBa: nepuoguteckue ousmHeiinbe noporoseie Mojeau GARCH, crporo nepuoaudecku
CTaIMOHAapHAs, TayCCOBCKasl omeHKa QM L.
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