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Abstract. Periodic Generalized Autoregressive Conditionally Heteroscedastic (PGARCH) models were
introduced by Bollerslev et Ghysels. These models have gained considerable interest and continued
to attract the attention of researchers. This paper is devoted to extensions of the standard bilinear
threshold GARCH (BLTGARCH) model to periodically time-varying coefficients (PBLTGARCH)
one. In this class of models, the parameters are allowed to switch between different regimes. Moreover,
these models are allowed to integrate asymmetric effects in the volatility. Firstly, we give necessary and
sufficient conditions ensuring the existence of stationary solutions (in periodic sense). Secondly, a quasi
maximum likelihood (QML) estimation approach for estimating PBLTGARCH model is developed.
More precisely, the strong consistency and the asymptotic normality of the estimator are studied given
mild regularity conditions, requiring strict stationarity and the finiteness of moments of some order for
the errors term. The finite-sample properties of QMLE are illustrated by a Monte Carlo study. Finally
our proposed model is applied to model the exchange rates of the Algerian Dinar against the single
European currency (Euro).
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1. Introduction and preliminaries

In recent years, many papers discussed the periodic generalized autoregressive conditionally
heteroskedastic models (PGARCHs) process introduced by Bollerslev and Ghysels [10]. This
process has been proved to be a power tool for modeling and forecasting many non stationary
time series, which makes a distinctive by a stochastic conditional variance with periodic dy-
namics. Generally, by PGARCHs process we mean a discrete-time strictly stationary process
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(εt, t ∈ Z),Z = {0,±1,±2, . . . , } defined on some probability space (Ω,F , P ) and satisfying the
factorization

εt = htet, (1.1)

Here, the innovation process (et, t ∈ Z) is independent and identically distributed sequence with
zero mean and unit variance (i.i.d (0, 1)) defined on the same probability space (Ω,F , P ) and
time-varying coefficients ”volatility” process (ht, t ∈ Z) satisfy the recursion

h2
t = α0 (t) +

q∑
i=1

αi (t) ε
2
t−i +

p∑
j=1

βj (t)h
2
t−j , (1.2)

where (αi (t) , 0 6 i 6 q) and (βj (t) , 0 6 j 6 p) are non negative periodic functions with period s
with α0 (t) > 0. PGARCHs model is potentially more efficient than the standard one. It becomes
increasingly important and an efficient tool to model seasonal asset returns of stocks, exchange
rates and other financial time series and continues to gain a growing interest of researchers (see
Ghezal [1] and Lescheb [4]). This interest is due to its multiple advantages; for instance, among
others, it is able to capture the stylized facts, e.g., volatility clustering, leptokurticity, depen-
dency without correlation and tail heaviness. However, in some asymmetric financial datasets
exhibiting the so-called leverage effect characterized by Cov

(
et−k, h

2
t

)
< 0, for some k > 0, the

PGARCHs models are unable to model such data without further extensions. This finding led
Rodriguez and Ruiz [6] to study five of the most popular specifications of the time-invariant
asymmetric volatility process (ht, t ∈ Z) with leverage effect, namely, the generalized quadratic
ARCH(GQARCH), the threshold GARCH (TGARCH), the GJR−GARCH(GJR), the expo-
nential GARCH(EGARCH) and the asymmetric power GARCH(APGARCH) models. These
models are important in modelling, forecasting and capturing the asymmetry of the volatility
and hence are purported to be able to capture the leverage. Beside the above mentioned models,
Choi et al [7] have recently introduced the so-called bilinear threshold GARCH (BLTGARCH)
model defined by Equation (1.1) with time-invariant coefficients volatility process, i.e.,

h2
t = α0 +

q∑
i=1

(
αiε

+2
t−i + βiε

−2
t−i

)
+

d∑
k=1

(
bkε

+
t−k + ωkε

−
t−k

)
ht−k +

p∑
j=1

γjh
2
t−j , (1.3)

where ε+n = max (εn, 0) , ε
−
n = min (εn, 0) , ε

+2
n = (ε+n )

2
, ε−2

n = (ε−n )
2 and d = p∧ q. This paper

is fundamentally interested with non-stationary BLTGARCH models in which the parameters
are periodic in t with period s. As a result, we will provide a periodic BLTGARCH(q, d, p)
model (PBLTGARCHs) defined by (1.1) and

h2
t = α0 (t) +

q∑
i=1

(
αi (t) ε

+2
t−i + βi (t) ε

−2
t−i

)
+

d∑
k=1

(
bk (t) ε

+
t−k + ωk (t) ε

−
t−k

)
ht−k

+

p∑
j=1

γj (t)h
2
t−j .

(1.4)

In (1.4), the functions (αi (t) , 0 6 i 6 q) , (βi (t) , 1 6 i 6 q) , (bk (t) , 1 6 k 6 d) ,
(ωk (t) , 1 6 k 6 d) and (γj (t) , 1 6 j 6 p) are periodic with period s > 1. Moreover,
(αi (t) , 0 6 i 6 q) , (βi (t) , 1 6 i 6 q), (γj (t) , 1 6 j 6 p) are non negative sequences with
α0(.) > 0, whereas the functions (bk (t) , 1 6 k 6 d), (ωk (t) , 1 6 k 6 d) have values in
(−∞,+∞) . So, by transforming t into st + υ and setting εt (υ) = εst+υ, ht (υ) = hst+υ and
et (υ) = est+υ, then (1.4) may be equivalently written in periodic version as

h2
t (υ) = α0 (υ) +

q∑
i=1

(
αi (υ) ε

+2
t (υ − i) + βi (υ) ε

−2
t (υ − i)

)
+

d∑
k=1

(
bk (υ) ε

+
t (υ − k) + ωk (υ) ε

−
t (υ − k)

)
ht (υ − k) +

p∑
j=1

γj (υ)h
2
t (υ − j) .

(1.5)
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In (1.5), the notation εt (υ) refers to εt during the υ − th ”season” υ ∈ S = {1, . . . , s} of cycle t,
and, for convenience, we set εt (υ) = εt−1 (υ + s) , ht (υ) = ht−1 (υ + s) and et (υ) = et−1 (υ + s)
if υ < 0. The non-peroidic notations (ϵt) , (et) and (ht) will be used interchangeably with the
periodic one (εt (υ)) , (et (υ)) and (ht (υ)) whenever emphasis on seasonality is not needed. It is
worth noting that, since h2

t is the conditional variance of ϵt given the past information up to time
t− 1, the positivity of the functions (αi (t) , 0 6 i 6 q) , (βi (t) , 1 6 i 6 q) and (γj (t) , 1 6 j 6 p)
ensures the positivity of h2

t in PTGARCHs model. This is not the case in PBLTGARCHs even
when bk (.) > 0, ωk (.) > 0 and due to the penultimate term in (1.5), so the positivity of h2

t can
be studied case by case and hence we shall assume throughout this paper that h2

t > 0, almost
surely (a.s).
Some algebraic notation and definitions are used throughout this paper. O(n,m) denotes the
matrix of order n × m whose entries are zeros, for simplicity we set O(n) := O(n,n) and
O(n) := O(n,1). I(n) is the n × n identity matrix and I∆ denotes the indicator function of the
set ∆. If (M(i), i ∈ I) is n × n matrices sequence, we shall denote for any integer l and j,
j∏

i=l

M(i) = M(l)M(l + 1) . . .M(j) if l 6 j and I(n) otherwise. For any real random variable X,

we denote X+ = max(X, 0), X− = max(−X, 0) so X = X+ − X− and |X| = X+ − X−. ||.||
refers to the induced norm in the space M (n,m) of n×m−matrices. For instance, the norm of
matrix M = (mi j) is defined by ∥M∥ =

∑
|mi j |.

The main contributions of this paper can be summarized as follows. In Section 2, the Marko-
vian representation of PTBLGARCHs model is given and conditions for the existence of a strict
periodic stationary (SPS) solution of (1.1)–(1.5) are established. In Section 3, the strong consis-
tency and asymptotic normality of the QMLE are studied. Numerical illustrations are given in
Section 4 and an empirical application to the daily series of exchange rate of the Algerian Dinar
against the single European currency is provided in Section 5.

2. Probabilistic properties of PBLTGARCHs(p,q,d)
As for many time series models, it is useful to write Equations (1.1)–(1.4) in an equiva-

lent Markovian representation in order to facilitate their study. For this purpose, introduce the
r = (p+ 2q + 2d)-vector
ε′t :=

(
h2
t , . . . , h

2
t−p+1, ε

+2
t , ε−2

t , . . . , ε+2
t−q+1, ε

−2
t−q+1, hte

+
t , hte

−
t , ..., ht−d+1e

+
t−d+1, ht−d+1e

−
t−d+1

)
and H ′

0 :=
(
1, O′

(r−1)

)
, H ′

1 :=
(
O′

(p), 1,−1, O′
(r−p−2)

)
and η

t
(et) := α0,p+1 (t) e

+2
t +

α0,p+2 (t) e
−2
t + α0,r−2d+1 (t) e

+
t + α0,r−2d+2 (t) e

−
t + α0,1 (t) in which the j − th entry of α0,j(t)

is α0 (t) and all other elements are 0. With these notations, we obtain the following state-space
representation ε2t = H ′

1εt and h2
t = H ′

0εt

εt = At (et) εt−1 + η
t
(et) , t ∈ Z, (2.1)

with At (et) := A1 (t) e
+2
t + A2 (t) e

−2
t + A3 (t) e

+
t + A4 (t) e

−
t + A5 (t). Here (Aj(t), 1 6 j 6 5)

are appropriate (r × r)-periodic matrices easily obtained and uniquely determined by
{αi (t) , βi (t) , bk (t) , ωk (t) , γj (t) , 1 6 i, k, j 6 q ∨ p}. Now, by iterating (2.1) s times we get
the following:

ε(t+1)s = H (et) εts + η (et) , t ∈ Z, (2.2)
where

et+1 =
(
e(t+1)s, ..., est+1

)′
,H (et) =

{
s−1∏
j=0

A(t+1)s−j

(
e(t+1)s−j

)}
, η (et) =

=

s−1∑
k=0

{
s−1∏
j=0

A(t+1)s−j

(
e(t+1)s−j

)}
η
(t+1)s−k

(
e(t+1)s−k

)
.

– 336 –



Walid Slimani . . . On Periodic Bilinear Threshold GARCH models

Set εts = ε (t) (if there is no confusion). Then,(2.2) may be rewritten as

ε (t) = H
(
et−1

)
ε (t− 1) + η

(
et−1

)
, t ∈ Z. (2.3)

Note here that H (et) is a sequence of i.i.d. random matrices independent of ε (k) , k 6 t and η (et)
is a sequence of i.i.d. vectors. So, the existence of the so-called strictly periodically stationary
(SPS) and periodic ergodic (PE) solutions to (1.1)–(1.5) is now equivalent to the existence of
a strict stationary and ergodic solution to (2.3). Hence, equation similar to Equation (2.3) was
examined by Bougerol and Picard [8] who established that the series

ε (t) =
∑
k>1

{
k−1∏
i=0

H
(
et−i−1

)}
η
(
et−k−1

)
+ η

(
et−1

)
, (2.4)

constitute the unique, strictly stationary and ergodic solution of (2.3) if and only if, the top-
Lyapunov exponent γ (H) associated with the strictly stationary and ergodic sequence of random
matrices H = (H (et) , t ∈ Z) defined by

γ (H) := inf
t >0

{
1

t
E

{
log

∥∥∥∥∥
t−1∏
j=0

H
(
et−j−1

) ∥∥∥∥∥
}}

a.s.
= lim

t→∞

{
1

t
log

∥∥∥∥∥
t−1∏
j=0

H
(
et−j−1

)
,

∥∥∥∥∥
}

(2.5)

is such that γ (H) < 0. However, the existence of γ (H) is guaranteed by the fact that
E{log+ ∥H(et)∥} 6 E{∥H(et)∥} < ∞, where log+(x) = max(log x, 0) and the right-hand mem-
ber in (2.5) can be justified using Kingman’s [5] subadditive ergodic theorem. We summarize
the above discussion in the following theorem due to Bougerol and Picard [8].

Theorem 2.1. If γ (H) corresponding to PBLTGARCHs(q, d, p) models is strictly negative,
then
1. Equation (2.3) admits a unique, strictly stationary, causal and ergodic solution given by the
series (2.4).
2. Equation (1.5) and, hence (1.1), admits a unique, SPS, causal and PE solution given by
h2
t = H ′

0εt or εt = et
{
H ′

1εt
} 1

2 where εt is given by the series (2.4).

Proof. The proof follows essentially the same arguments as Bougerol and Picard [8].

Corollary 2.1. If γ (H) < 0 and E{|e0|2δ} < ∞ for some δ > 0, then there is δ∗ ∈]0, 1] such
that E(hδ∗

t ) < ∞ and E(εt
δ∗) < ∞.

Remark 2.1. Aknouche and Guerbyenne [2] have studied the conditions ensuring the existence
and uniqueness of a SPS and PE solution of (1.1) and (1.5) using directly the (2.1) by showing
that

inf
t >0

{
1

t
E

{
log

∥∥∥∥∥
ts−1∏
j=0

Ats−j (ets−j)

∥∥∥∥∥
}}

(2.6)

is a sufficient condition for that (2.1) to have a unique, causal, SPS and PE solution given by

εt =
∑
k>1

{
k−1∏
i=0

At−i (et−i)

}
η
t−k

(et−k) + η
t
(et) . (2.7)

Remark 2.2. It is worth noting that the condition γ
(s)
L (H) < 0 provides a cer-

tain global stability of model (2.1). However, when γ
(s)
L (H) < 0, the model (2.1) is

said to be unstable and hence doesn’t have a SPS solution. As an example, consider
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the PBLAARCHs(1.1) model defined by εt (υ) = ht (υ) et (υ) and h2
t (υ) = α0 (υ) +

α1 (υ)
∣∣e2t (υ − 1)

∣∣h2
t (υ − 1) + b1 (υ) |et (υ − 1)|ht (υ − 1). It is not difficult to show that

γ
(s)
L (H) = E

(
log

(
s−1∏
υ=0

(∣∣α1 (υ)
∣∣e20∣∣+ b1 (υ) |e0|

∣∣))) > 0. Hence, the existence of some (not

all) "stable regimes" (i.e., E
{
log

(∣∣α1 (υ)
∣∣e20∣∣+ b1 (υ) |e0|

∣∣)} < 0) does not guarantee the exis-
tence of a SPS solution. More generally, we have the following convergence of the volatility to
infinity for PBLAARCHs(1, 1) process encompassing (2.2).

Example 2.1. In PBLTGARCHs(1; 1; 1) models, the necessary and sufficient condition ensur-
ing the existence of strictly periodically stationary solution is that :

s∑
υ=1

E
{
log

{∣∣α1 (υ) e
+2
0 + β1 (υ) e

−2
0 + b1 (υ) e

+
0 + ω1 (υ) e

−
0 + γ(υ)|

}}
< 0.

In particular, for standard BLTARCH(1, 1, 1) and for PBLTARCH2(1, 1, 1) with α1(1) = a,
ω1(1) = b, α1(2) = 0.25a, ω1(2) = 0.25b, β1(1) = β1(2) = b1(1) = b1 (2) = 0 and et  N (0, 1),
the stationarity zone is showed in Fig. 1.

Fig. 1. Stationarity zones for standard (solid line) and periodic BLTARCH(1, 1) (dashed line)

It is clearly observed that the corresponding zone to the standard model is less restrictive than
that corresponding to the periodic model.

2.1. Quasi-maximum likelihood estimator

In this subsection , we consider the quasi-maximum likelihood estimator (QMLE) for estimat-
ing the parameters of PBLTGARCHs model gathered in vector θ′ =

(
θ1, . . . , θs(1+2q+2d+p)

)
:=(

α′, β′, b′, ω′, γ′) ∈ Θ ⊂ Rs(1+2q+2d+p), where α′ :=
(
α′
0, α

′
1, . . . , α

′
q

)
, β′ :=

(
β′
1
, . . . , β′

q

)
,

b′ :=
(
b′1, . . . , b

′
d

)
, ω′ := (ω′

1, . . . , ω
′
d) , γ′ :=

(
γ′
1
, . . . , γ′

p

)
with α′

i := (αi (1) , . . . , αi (s)) ,

β′
i
:= (βi (1) , . . . , βi (s)) , b′k := (bk (1) , . . . , bk (s)) and ω′

k := (ωk (1) , . . . , ωk (s)), γ′
j

:=

(γj (1) , . . . , γj (s)) for all 0 6 i 6 q, 1 6 k 6 d and 1 6 j 6 p. The true parameter value
denoted by θ0 ∈ Θ ⊂ Rs(1+2q+2d+p) is unknown and, therefore, it must be estimated. For
this purpose, consider a realization {ε1, . . . , εn;n = sN} from the unique, causal, SPS and
PE solution of (1.1) and (1.5) and let h2

t (θ) be the conditional variance of εt given Ft−1,
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where Ft := σ(ετ ; τ 6 t) . The Gaussian log−likelihood function of θ ∈ Θ conditional on
some initial values ε0, . . . , ε1−q, h0, . . . , h1−p, which are generated by (1.1)–(1.5), is given up to

an additive constant by L̃Ns (θ) = − (Ns)
−1

N∑
t=1

s−1∑
υ=0

l̃st+υ (θ) with l̃t (θ) =
ε2t

h̃2
t (θ)

+ log h̃2
t (θ).

Here h̃2
t (θ) is recursively defined, for t > 1 by h̃2

t (θ) = α0 (t) +
q∑

i=1

(
αi (t) ε

+2
t−i + βi (t) ε

−2
t−i

)
+

d∑
k=1

(
bk (t) ε

+
t−k + ωk (t) ε

−
t−k

)
h̃t−k (θ)+

p∑
j=1

γj (t) h̃
2
t−j (θ) . A QMLE of θ is defined as any measur-

able solution θ̂Ns of θ̂Ns = Argmax
θ∈Θ

L̃Ns (θ) = Argmin
θ∈Θ

(
−L̃Ns (θ)

)
. In view of the strong depen-

dency of h̃2
t (θ) on initial values ε0, . . . , ε1−q, h0, . . . , h1−p ,

(
l̃t (θ)

)
t >1

is neither a SPS nor a pe-

riodically ergodic (PE) process Therefore, it will be more convenient to work with an unobserved

SPS and PE version. So, we work with an approximate version L̃Ns = − (NS)
−1

N∑
t=1

s−1∑
v=0

lst+υ (θ)

of the likelihood L̃Ns (θ) with lt (θ) =
ε2t

h2
t (θ)

+ log h2
t (θ) .

3. Monte Carlo experiment

In this section, we describe the performance of the finite sample properties of the QMLE of
the unknown parameters in BLTGARCHs(1, 1, 1) model based on Monte Carlo experiments. To
this end, we simulate T = 500 replications for different moderate sample sizes n ∈ {2000, 4000}
with standard N (0, 1) and student t(5) as innovations distributions. The vector θ of parameters
is described in the bottom of each table below and is chosen to satisfy the strictly periodically
stationary condition. All empirical results were obtained via implementation of our own scripts
in Matlab computing language. In the tables below, the columns correspond to the average of
the parameters estimates over the N simulations. In order to show the performance of QMLE,
the roots mean square error (RMSE) of the each θ̂n(i), i = 1, . . . , s, (results between bracket),
are reported in each table. Finally, the asymptotic distributions of θ̂n (υ) , υ = 1, . . . , s over N
simulations, followed by their boxplots summary, are plotted after each appropriate table.

3.1. Periodic BLTGARCH model

The example of our Monte Carlo experiment here is devoted to estimate the pe-
riodic BLTGARCHs(1, 1, 1) model with s = 2 according to standard N (0, 1) and
student t(5) as innovations distributions. The vector of parameters to be estimated
is thus θ = (α′

0, α
′
1, β

′
1
, b′1, ω

′
1, γ

′
1
)′ where α′

0 = (α0(1), α0(2)), α′
1=(α1(1), α1(2))

′, etc. . .
are subjected to two models Model (1) and Model (2) described as: Model(1):
The parameters are chosen to ensure the locally strictly stationarity condition i.e.,
for each υ=1, 2, E

{
log

∣∣α1 (υ) e
+2
0 + β1 (υ) e

−2
0 + b1 (υ) e

+
0 + ω1 (υ) e

−
0 + γ1 (υ)

∣∣} < 0, so
(
h2
t

)
t

is strict periodic stationary. Model (2): The parameters are chosen such that

E
{
log

∣∣α1 (1) e
+2
0 + β1 (1) e

−2
0 + b1 (1) e

+
0 + ω1 (1) e

−
0 + γ1 (1)

∣∣ }
¯
> 0, but

2∑
υ=1

E
{
log

∣∣α1 (υ) e
+2
0 +

β1 (υ) e
−2
0 + b1 (υ) e

+
0 + ω1 (υ) e

−
0 + γ1 (υ)

∣∣ } < 0, to ensure the strict periodic stationarity con-
dition of

(
h2
t

)
t
. The results of simulation according to both models (1) and (2) are given in

Tab. 1.
The asymptotic distribution of the sequence

(√
n
(
θ̂n(i)− θ(i)

))
n>1

, i = 1, . . . , 12 followed

by their boxplot summary according to model(1) of Tab. 1 are shown in Fig. 2.
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Table 1. Average and RMSE of 500 simulations of QMLE for PBLTGARCH2(1, 1, 1)

N (0, 1) t(5)

n υ 2000 4000 2000 4000
α̂0 1 0.9888 (0.0264) 0.9953 (0.0133) 0.9561 (0.0739) 0.9921 (0.0280)

2 0.9944 (0.0286) 0.9928 (0.0134) 0.9515 (0.0728) 0.9721 (0.0343)
α̂1 1 0.4999 (0.0335) 0.4947 (0.0162) 0.5048 (0.0918) 0.4971 (0.0427)

2 0.5008 (0.0414) 0.4973 (0.0203) 0.4905 (0.0944) 0.5038 (0.0598)

β̂
1

1 0.3631 (0.0468) 0.3562 (0.0242) 0.3661 (0.1020) 0.3596 (0.0608)

2 0.3359 (0.0324) 0.3411 (0.0154) 0.3464 (0.0725) 0.3468 (0.0352)

b̂1 1 −0.2607 (0.0688) −0.2473 (0.0333) −0.2760 (0.1567) −0.2482 (0.0940)
2 −0.0027 (0.0805) 0.0058 (0.0392) 0.0084 (0.1868) −0.0054 (0.1054)

ω̂1 1 0.3240 (0.0977) 0.3412 (0.0500) 0.3198 (0.2002) 0.3459 (0.1247)
2 0.0126 (0.0720) 0.0087 (0.0348) −0.0030 (0.1636) −0.0093 (0.0814)

γ̂
1

1 0.1598 (0.0093) 0.1527 (0.0043) 0.1793 (0.0280) 0.1549 (0.0110)

2 0.1578 (0.0090) 0.1530 (0.0044) 0.1807 (0.0284) 0.1680 (0.0124)

Model(1) : θ = (1.00, 1.00, 0.50, 0.50, 0.35, 0.35,−0.25, 0.00, 0.35, 0.00, 0.15, 0.15)′

α̂0 1 0.9844 (0.0554) 0.9935 (0.0242) 0.9821 (0.1133) 0.9933 (0.0586)
2 1.0391 (0.1631) 1.0152 (0.0764) 0.9648 (0.3207) 0.9962 (0.1817)

α̂1 1 0.5023 (0.0231) 0.4959 (0.0119) 0.5112 (0.0662) 0.5023 (0.0350)
2 0.4819 (0.0640) 0.4870 (0.0327) 0.5140 (0.1545) 0.5203 (0.0872)

β̂
1

1 0.2571 (0.0108) 0.2541 (0.0055) 0.2757 (0.0321) 0.2512 (0.0148)

2 0.4179 (0.0600) 0.4324 (0.0305) 0.4290 (0.1037) 0.4434 (0.0883)

b̂1 1 0.2459 (0.0324) 0.2550 (0.0166) 0.2316 (0.0893) 0.2544 (0.0496)
2 0.1794 (0.1533) 0.1748 (0.0765) 0.1381 (0.3424) 0.1219 (0.1929)

ω̂1 1 0.1404 (0.0204) 0.1470 (0.0103) 0.1175 (0.0569) 0.1495 (0.0261)
2 0.1905 (0.1395) 0.1739 (0.0759) 0.1477 (0.2891) 0.1490 (0.1913)

γ̂
1

1 0.1532 (0.0018) 0.1502 (0.0008) 0.1587 (0.0061) 0.1518 (0.0032)

2 0.7415 (0.0185) 0.7419 (0.0098) 0.7734 (0.0532) 0.7584 (0.0315)

Model(2) : θ = (1.00, 1.00, 0.50, 0.50, 0.25, 0.45, 0.25, 0.15, 0.15, 0.15, 0.15, 0.75)′

Comments: A quick glance to the results of Monte Carlo experiment shows that the re-
sults of Tab. 1 provide the parameters estimates of PBLTGARCHs(1, 1, 1), with s = 2
fitted on Model (1) and Model (2) generated by standard N (0, 1) and student t(5) in-
novations through 500 independent simulations. First, it is clear that the results of
QML associated with t(5) innovations have a poor performance compared with those as-
sociated to N (0, 1). In general, it can be observed that the parameters associated to
these models are quite well estimated with non significant deviations in estimated values
for two innovations errors N (0, 1) and t(5). It is worth noting that some values of es-
timates have a moderate standard deviation. In Tab. 1 where two models was simu-
lated following a PBLTGARCHs(1, 1, 1) model in which the parameters of the two regimes
in Model(1) are such that E

{
log

∣∣α1 (υ) e
+2
0 + β1 (υ) e

−2
0 + b1 (υ) e

+
0 + ω1 (υ) e

−
0 + γ1 (υ)

∣∣}<0,
υ = 1, . . . , 2, whereas, in Model(2) the second regime is explosive in the sense that
E
{
log

∣∣α1 (2) e
+2
0 + β1 (2) e

−2
0 + b1 (2) e

+
0 + ω1 (2) e

−
0 + γ1 (2)

∣∣} > 0, but the SPS of the model
is ensured. Also, one can see that the results reveal in general quite satisfactory in accordance
with the asymptotic theory results.
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Fig. 2. Top panels: the asymptotic distribution of
√
n(θ̂n(i) −θ(i)) (full line for Normal and

dashed line for Student). Bottom panels: Box plot summary of θ̂n(i), i = 1, . . . , 12 (1 for Normal
and 2 for Student) according to Model(1) of Tab. 1

4. Applications on exchange rates

The proposed model is investigated with real financial time series. So, we apply our model for
modelling the foreign exchange rates of Algerian Dinar against the European currency (Euro)
denoted by yt already analyzed by Hamdi and Souam [3] via a mixture periodic GARCH models.
We consider returns series (rt = 100× (log (yt/yt−1)))t>1 of daily exchange rates of Algerian Di-
nar against Euro. The observation covers the period from January 3, 2000 to September 29, 2011.
Since some weeks comprise less than five observations (due to legal holidays), we remove the entire
weeks with less than five data available rather than estimating the "pseudo-missing" observa-
tions by an ad-hoc method. Thus, the final length of transformed data is 3055 observations
uniformly distributed on 611 weeks. Fig. 3 displays the plots of the series (yt) and its returns
(rt), squared return

(
r2t
)

and absolute return (|rt|).
By quickly examining the plots in Fig. 3, we can see that the original series are non stationary

(since these do not fluctuate around a constant mean) and non-linear contrary to their returns
that appear to be stationry. Moreover, there is no clear discernible behavior pattern in the
returns, but some persistence is indicated in the plots of the squared and absolute returns.
Additionally, some elementary statistics of the series (yt)t>1 and its returns (rt)t>1, squared
return

(
r2t
)
t>1

and absolute return (|rt|)t>1 are displeyed in Tab. 2
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Fig. 3. The plots of the series(yt) , squared rt and absolute (rt)

Table 2. Elementary statistics of the series (yt)t>1, (rt)t>1,
(
r2t
)
t>1

and (|rt|)t>1

Series Means Std.Dev Median Skewness Kurtosis
yt 88.6118 11.5755 91.0995 −0.5181 2.1330
rt 0.0118 0.5043 0.0123 0.3536 8.9678
r2t 0.2543 0.7193 0.0652 16.1027 464.3694
|rt| 0.3575 0.3557 0.2554 2.6956 18.4307

Tab. 2 presents statistical summary of the series (yt)t>1, (rt)t>1,
(
r2t
)
t>1

and (|rt|)t>1 with
summary measures of normality test results. The return (rt)t>1 exhibits non-zero skewness and
leptokurtic, while

(
r2t
)
t>1

and (|rt|)t>1 exhibit significant skewness and kurtosis, indicating that
their distribution is more peaked with a thicker tails than the normal distribution. Fig. 4 displays
the sample autocorrelations functions (ACF ) of the series (rt)t>1,

(
r2t
)
t>1

and (|rt|)t>1 computed
at 40 lags.

In Fig. 4, we can see that the log returns (rt)t>1 show no evidence of serial correlation, but the
squared and absolute returns are positively autocorrelated. Also, the decay rates of the sample
autocorrelations of

(
r2t
)
t>1

and (|rt|)t>1 appear to be violated compared with the correlation
associated to an ARMA process suggesting possibly a non linear behavior for modelling purpose.

4.1. Modeling with standard BLTGARCH model

The first attempt will be modeling the series (rt)t>1 by a standard BLTGARCH(1, 1, 1)

model. The parameters estimates of volatility (ĥ
(s)
t )t>1 to BLTGARCH(1, 1, 1) with their

RMSE are given in Tab. 3.
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Fig. 4. The ACF of the returns and of their squred and absolute series

Table 3. Parameters estimates and their RMSE of the volatilities (ĥ
(s)
t )t>1

Parameters α̂0 α̂1 β̂1 b̂1 ω̂1 γ̂1(
ĥ
(s)
t

)
t>1

0.0007 0.0304 0.0591 0.0276 0.0283 0.9540

(0.0005) (0.0176) (0.0224) (0.0439) (0.0430) (0.0175)

The plot of the estimated volatility (ĥ
(s)
t )t>1 is shown later in the left side of Fig. 5.

4.2. Modeling with PBLTGARCH model

The second attempt is to look for a model able to cover the day-of -week seasonality in return
(rt) (see for instance Franses and Raap [9]). So, in order to analyze the seasonality, we fitted
the following simple PBLTGARCH5(1, 1, 1) model for each series or equivalently. Hence, we
estimate its volatility process (h2

t )t>1 through five periodic effects, rt = htet and

h2
t = α0 (t) +

(
α1 (t) r

+2
t−1 + β1 (t) r

−2
t−1

)
+

(
b1 (t) r

+
t−1 + ω1 (t) r

−
t−1

)
ht−k + γ1 (t)h

2
t−1. (14)

The parameters estimates of five-regimes (intra-day) of (ĥ(p)
t )t>1 and their RMSE according to

model (14) are reported in Tab. 4.
The plots of estimated volatilities and the squared returns associated to (Euro) are showed in
Fig. 5.

4.3. Comments

Tab. 3 and Tab. 4 display the (ĥt)t>1 estimated by Standard BLTGARCH (1, 1, 1) and
Periodic BLTGARCH5 (1, 1, 1) models and reflect some characteristics of "spurious" GARCH
effects. In particular, the components of α̂0 are close to zeros while the components of γ̂

1
are close

– 343 –



Walid Slimani . . . On Periodic Bilinear Threshold GARCH models

Table 4. Parameters estimates and their RMSE of the volatilities (ĥ
(p)
t )

days α̂0 α̂1 β̂
1

b̂1 ω̂1 γ̂
1

Sunday 0.0001 0.0145 0.0032 0.0165 0.0520 1.1826
(0.0320) (0.0329) (0.0812) (0.0926) (0.1234) (0.1894)

Monday 0.0010 0.0082 0.0419 0.0685 0.0831 1.0009
(0.0296) (0.0563) (0.0588) (0.2913) (0.1429) (0.1326)

Tuesday 0.0001 0.0015 0.0376 0.1162 0.0318 0.8504
(0.0289) (0.0651) (0.0171) (0.0611) (0.0662) (0.1156)

Wednesday 0.0025 0.0869 0.0648 0.0659 0.1768 0.7941
(0.0142) (0.0322) (0.0345) (0.1136) (0.0951) (0.0955)

Thursday 0.0002 0.0082 0.0645 0.0909 0.0229 0.9803
(0.0160) (0.0799) (0.1260) (0.2751) (0.3544) (0.2810)

Fig. 5. Dark blue: squared returns, light red: volatilities estimates according to Standard
BLTGARCH(1, 1, 1) (left) and to Periodic BLTGARCH5(1, 1, 1) (right)

to ones with moderate RMSE. Fig. 5 represents the plots of the volatilities estimates (plots in
red) according to BLTGARCH (1, 1, 1) model (left) and PBLTGARCH5 (1, 1, 1) model (right)
and compared with the appropriate squared returns (plots in blue). It also demonstrates that a
large piece of returns (positive or negative) leads to a high volatility and a small piece of returns
leads to a low volatility, indicating volatility clustering. In particular, the period between 2000
and 2002 is characterized by low volatility levels compared to the period between 2009 and 2010
for both series. In addition, a high volatility cluster beginning in 2005 is observed and is mainly
due to the global financial crisis. After this period of uncertainty, a cluster of low volatility
is observed during 3 years. An other high volatility cluster is detected and could be related
to the devaluation of the Dinar. Finally, the conditional volatility seems to be more stable
after 2010. Our empirical results demonstrate that it is very difficult to distinguish between
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the volatilities (ĥ
(s)
t )t>1 and (ĥ

(p)
t )t>1 in Fig. 5, except perhaps, that the volatilities (ĥ

(p)
t )t>1

is more fluctuated than (ĥ
(s)
t )t>1. This finding may indicate the presence of a certain (hidden)

periodicity in (ĥ
(p)
t )t>1.

Conclusion
Beside the probabilistic structure and the conditions ensuring the existence of a SPS solution,

this paper studies also the asymptotic properties of the quasi-maximum likelihood estimators
of PBLTGARCH(q, d, p) model. Indeed, for the first part, we have given the necessary and
sufficient conditions for the existence of a strictly periodically stationary solution based on the
negativity of the top-Lyapunov exponent. The paper presents for the second part, the theoretical
results, which are illustrated in the third part by a Monte Carlo experiment through some usual
innovations and an application to the exchange rate of the Algerian Dinar against the Euro
showing its performance and its efficiency.
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Аннотация. Периодические обобщенные авторегрессионные условно гетероскедастические моде-
ли (PGARCH) были представлены Bollerslev et Ghysels. Эти модели вызвали значительный инте-
рес и продолжают привлекать внимание исследователей. Данная статья посвящена расширению
стандартной билинейной пороговой модели GARCH (BLTGARCH) до модели с периодически ме-
няющимися во времени коэффициентами (PBLTGARCH). В этом классе моделей допускается
переключение параметров между разными режимами. Более того, эти модели позволяют интегри-
ровать асимметричные эффекты волатильности. Во-первых, мы приводим необходимые и доста-
точные условия, обеспечивающие существование стационарных решений (в периодическом смыс-
ле). Во-вторых, разработан подход оценки квазимаксимального правдоподобия (QML) для оценки
модели PBLTGARCH. Точнее, сильная состоятельность и асимптотическая нормальность оценки
изучаются при мягких условиях регулярности, требующих строгой стационарности и конечности
моментов некоторого порядка для члена ошибки. Свойства QMLE для конечной выборки иллю-
стрируются исследованием Монте-Карло. Наконец, предложенная нами модель применяется для
моделирования обменных курсов алжирского динара по отношению к единой европейской валюте
(Euro).

Ключевые слова: периодические билинейные пороговые модели GARCH, строго периодически
стационарная, гауссовская оценка QML.
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