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Abstract. We investigates non-transitive temporal logic with the "tomorrow" operator. In this logic,
the operator "necessary" 2 coincides with the operator “possible” 3 (or almost coincides in reflexive
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Introduction
The concept of a (structural) admissible inference rule was first introduced by Lorenzen [1]

in 1955. For arbitrary logic, admissible rules of inference are those that do not change the set
of provable theorems of a given logic. Any inferred rule is valid in the given logic; the reverse is
not true in the general case.

Directly from the definition we can conclude that the set of all inference rules admissible in
logic forms the largest class of inference rules with which we can expand the axiomatic system
of a given logic without changing the set of provable theorems. In addition, admissible rules
significantly strengthen the deductive system of a given logic. It is known that the derived
inference rules can replace a certain reduce the proof linearly. Admissible rules that are not
inferred by this logic can shorten the proof more significantly.

The beginning of the history of studying admissible rules can be dated back to 1975 since
the appearance of H. Friedman’s problem [2] on the existence of an algorithmic criterion for the
admissibility of rules in the intuitionistic logic Int. In classical logic, the question of admissibility
was resolved trivially — only deducible, provable rules are admissible. In the case of non-classical
logics, the examples of Harrop, Mintz, and Post showed that there are admissible, but not
provable rules of inference. In the mid-70s G.Mintz [3] obtained sufficient conditions for the
deductibility of rules of a special form. A positive solution to Friedman’s problem about the
existence of an algorithm that recognizes the admissibility of inference rules in the intuitionistic
logic Int was obtained by V.Rybakov in 1984 [4]. For a wide class of modal and superintuitionistic
logics, the criterion for the admissibility of inference rules was later formulated in [5].

Another way of describing all admissible rules of logic goes back to the problem of
A.Kuznetsov (1973) about the existence of a finite basis for admissible rules of inference of
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logic Int. Having a basis for admissible rules, all others are derived from it as consequences.
The first positive result in the study of bases for admissible inference rules was obtained by
A. Tsitkin [6], who found a basis for all quasi-characteristic inference rules admissible in Int.

In general, Kuznetsov’s problem on the existence of a finite basis for admissible inference
rules was solved negatively not only for Int (Rybakov, [7] ), but also for most other basic logics.
V. Rybakov (Chapter 4, [5]) showed that the logics Int,KC,K4, S4, Grz and many other basic,
individual logics do not have a finite basis for admissible rules from a finite number variables.
Therefore, the problem of an explicit description of an easily observable basis for all admissible
inference rules, at least for the main basic logics, becomes relevant.

One of the first results in this direction was obtained in 2000: in the paper [8] a recursive basis
was constructed for admissible rules of intuitionistic logic Int, consisting of rules in semi-reduced
form. Later, R. Iemhoff [9] obtained an explicit basis for the admissible rules of Int logic. In
the article [10] V. Rybakov constructed an exact basis for all admissible rules of logic S4. This
approach was further developed, for example, in [11,12].

In the case of temporal (multimodal) or intransitive modal logics, relatively few results are
known regarding admissible rules and their bases. The previously developed technique makes
significant use of the transitivity of the reachability relation. In this work we make an attempt to
fill the gap and explore the admissible rules of intransitive temporal logic L0 with the "tomorrow"
operators and its extensions.

1. Definitions, preliminary facts

It is assumed that the reader is familiar with algebraic and Kripke semantics for modal logics,
as well as some initial basic information about the rules of inference and their admissibility
(although we briefly recall all the necessary facts below).

As a source on the subject as a whole, we can recommend Rybakov [5] among modern
literature for a more developed technique for studying modal logics and rules of inference. In
accordance with the modern interpretation, by logic we understand the set of all theorems that
can be proven in a given axiomatic system.

In the definition, by propositional logic we mean algebraic propositional logic (see [5]), al-
though the reader may consider λ to be modal logic, which is sufficient for our purposes.
Initial information and all necessary statements used further, can be found for example
in [5, ch. 2.2-2.5; 4.1].

Frame F := ⟨F,R⟩ is a pair, where F is a non-empty set and R is a binary relation on F .
The basic set and the frame itself will be further denoted by the same letter. A non-empty set
C ⊆ F is called a cluster if: 1) for any x, y from C, xRy holds; 2) for any x ∈ C and y inW ,
((xRy&yRx) =⇒ y ∈ C) is true. A cluster is called proper if |C| > 1; otherwise singleton or
degenerate. For an element a ∈ F , let C(a) denote the cluster (i.e., the set of elements mutually
comparable with respect to R with a given element a) generated by the element a.

A sequence of elements {a0; a1; . . . ; an} of an intransitive frame is called a chain of length
n+1 if, for all i < n, element ai+1 is R-achievable from element ai and there are no other frame
elements between them.

The depth of element x of the model (frame) F is the maximum number of clusters in chains
of clusters starting with the cluster C(x) containing x. The set of all elements in the frame
(models) F of depth no more than n will be denoted by S6n(F ), and the set of elements of depth
n will be denoted by Sn(F ).

Inference rule
α1(x1, . . . , xn), . . . , αk(x1, . . . , xn)

β(x1, . . . , xn)
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is called admissible in logic λ if for any formulas δ1, . . . , δn from (∀j αj(δ1, . . . , δn) ∈ λ) it follows
β(δ1, . . . , δn) ∈ λ).

The rule r is called a consequence of the rules R := {r1; . . . ; rk} in logic λ (notation R ⊢λ r), if
the conclusion r is deducible from the premises r using theorems, rules {r1; . . . ; rk} and postulated
rules of inference of λ. Inference rule r = {α1, . . . , αk/β} is true on the algebra A ∈ V ar(λ) if
and only if for any value of the variables r on A as soon as ∀ j A |=V αj , then A |=V β. Rule r
is called a semantic consequence of the system of rules R in logic λ (notation R |= r), if for any
algebra A ∈ V ar(λ), as soon as all rules from R and all postulated rules of logic are true on the
algebra A, then the rule r is also true on A. We say that modal logic is structurally complete if
any admissible in the inference rule is deducible in .

Theorem 1.1 (Th. 1.4.11 [5]). Let a set of inference rules R ∪ {r} be given in the language
algebraic logic λ. Then R ⊢ r ⇐⇒ R |= r. In particular, if R ̸|= r, then there is an algebra
A ∈ V ar(λ), on which all the rules from R and all postulated rules of logic λ are true, but A ̸|= r.

For further presentation we will need n-characteristic Kripke models, with the help of which
we will describe free algebras of finite ranks from the variety V ar(λ). Kripke model ⟨F,R, V ⟩,
where V : {p1, p2, . . . , pn} → 2F , is called n-characteristic for logic λ if and only if for any formula
in variables p1, . . . , pn, α ∈ λ ⇐⇒ ⟨F,R, V ⟩ |= α.

Theorem 1.2 ([5]). For any finitely approximable modal logic λ, the inference rule r is admissible
in λ if and only if r is true on the frame Cn(λ) for any n and for any formulaic valuation of the
variables r.

2. Логики L0 и Lr

In the article [13] a temporal nontransitive logic L0 with the “tomorrow” operator was in-
troduced. Let L0 = L(F∞), where frame F∞ = ⟨N,R⟩, N – set of natural numbers; and the
relation R is defined as follows: mRn ⇐⇒ n = m+1. This logic is convenient in that from each
element of the L0-frame only one element is reachable with respect to the relation R, i.e. in this
logic the operator 2 coincides with the operator 3. We also introduce the frame class Fn. Let’s
define Fn = ⟨{1, . . . , n}, R⟩, n ∈ N,n > 0, где ∀i ∈ {1, . . . , n− 1}(iRj ⇐⇒ j = i+ 1) ∧ (nRn)

We also define a nontransitive reflexive temporal logic Lr. Let Lr = L(F r
∞), where F r

∞ =
⟨N,R⟩, N is the set of natural numbers, and the relation R is defined as follows: mRn ⇐⇒ n =
m+1∨n = m. In this logic, from each element of the Lr-frame, only one element different from the
given one is reachable. We also introduce the class of frames F r

n = ⟨{1, . . . , n}, R⟩, n ∈ N,n > 0,
where ∀i, j ∈ {1, . . . , n−1}(iRj ⇐⇒ j = i+1∨ i = j)∧ (nRn). Let us define tabular extensions
of logics L0 and Lr. Let L0 и Lr. Let Ln = L(Fn), where Fn = ⟨{1, . . . , n}, R⟩. Analogically,
Lr
n = L(F r

n), where F r
n = ⟨{1, . . . , n}, R⟩.

Let α be a modal formula. The modal degree deg(α) of the formula α is determined
as follows: deg(p) = deg(⊤) = deg(⊥) = 0, deg(α ∧ β) = deg(α → β) = deg(α ∨ β) =
max{deg(α), deg(β)}, deg(¬α) = deg(α), deg(2α) = deg(3α) = deg(α) + 1.

It is easy to prove the following statement by induction on the length of the formula:

Theorem 2.1 ( [13]). Let deg(α) = n. Then the truth of the formula α on element x of
frame F∞ (F r

∞) is uniquely determined by the values of all propositional variables included in
the formula on elements x; x+ 1; x+ n of frame F∞ (F r

∞).

This implies :

Theorem 2.2 ([13]). The frame class {Fn|n ∈ N}[{F r
n |n ∈ N}] is characteristic of logic L0 [Lr].

In particular, if deg(α) = n, n > 0, and F∞ ̸|= α, then Fn+1 ̸|= α [similarly if deg(α) = n, n > 0,
and F r

∞ ̸|= α, then F r
n+1 ̸|= α].
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From the received statement 2.2 should also

Theorem 2.3 ( [13]). Logics L0 and Lr are finitely approximable and decidable.

Let us construct an n-characteristic model ChL0(n) by slices as follows. The first slice of
the model consists of 2n reflective elements, on which all possible valuations of propositional
variables p1, p2, . . . , pn. To construct the second slice of this model, on each element of the first
slice c1 we hang from below 2n−1 irreflexive elements with all sorts of different valuations of the
propositional variables p1, p2, . . . , pn, different from the valuation of element c1. We will construct
the third slice of this model as follows. To each element of the second slice we assign from below
2n irreflexive elements with all possible different valuations of the variables p1, p2, . . . , pn. We
build all subsequent slices similarly to the third layer. Continuing the described process, as a
result of construction we obtain the model ChL0(n).

The n-characteristic model ChLm(n) for tabular logic Lm is constructed in a similar way,
with the only difference that the construction process continues until step (depth) m and ends at
this step m. The model ChLr (n) of reflexive logic is constructed in a similar way, with the only
difference that at each construction step for each element c1 we hang from below 2n− 1 reflexive
elements with all possible different values of propositional variables p1, p2, . . . , pn, different from
the valuation of element c1.

Note that the frame generated by an arbitrary element of a given n-characteristic model is
isomorphic to the frame Fk for some k. In the tabular case, the n-characteristic model ChLm(n)
is the p-morphic image of the direct union of a sufficient number of frames Fm.

Theorem 2.4. The model ChL0(n) (ChLm(n), ChLr (n)) is n-characteristic for the logic L0

(Lm, Lr) respectively.

Proof. In all three cases, the statement is proved in a similar way, so we will prove it only for
logic L0. Let the formula α depend on n propositional variables. By construction, the frame of
the model L0 is an L0-frame. This means that if α ∈ L0, then it is true for all elements of this
model.

If formula α ̸∈ L0, then due to the finite approximability of logic, there is a finite L0-frame
Fm such that Fm ̸|=V α for some valuation V of the variables of the formula. Let’s consider all
possible cases:

1) All elements of Fm have different valuations of variables, i.e. an arbitrary element j and
its predecessor j − 1 are designated differently. In this case, the model is ⟨Fm, V ⟩is an open
submodel of the model ChL0(n) (by construction of the latter). Therefore, ChL0(n) ̸|=V α.

2) The reflexive element m and its R-predecessor (m − 1) have the same valuation for the
variables of the formula α. In this case, if the elements m, (m−1), (m−2), . . . , (m−k), k 6 m
have the same variable valuation, then we glue them slice by slice with the element m. In the
resulting p-morphic image of the model, the reflexive element of the first slice and its predecessor
are designated differently, and therefore is an open submodel of the n-characteristic model, i.e.
ChL0(n) ̸|=V α is true.

For the model ChLm(n) or ChLr (n) the proof is similar. The statement has been proven. 2

Since in all cases the various elements of the first slice of the n-characteristic model do
not have a common R-predecessor, this model is a direct union of component Mi, i 6 2n, i.e.
ChL(n) = ⊔Mi, L ∈ {L0, Lm, Lr}. Each component Mi has the following structure: the first
slice consists of a single reflective element. The second slice consists of 2n−1 irreflexive (reflexive
in the case of logic ChLr (n)) elements, the valuation of which is different from the valuation of
the variables on the element of the first slice. Each element of the second and all subsequent
slices has 2n irreflexive (2n − 1 reflexive in the case of logic ChLr (n)) immediate R-predecessor,
etc. It is easy to show that in the tabular case the model ChLm(n) is a p-morphic image of a
finite direct union combining Fm frames. Accordingly, any L-frame, where L ∈ {L0, Lm, Lr},
is also a direct union of the components Mi.
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Lemma 2.5. Each element of the n-characteristic model ChLr (n) is formulaic.

Proof. Let the model ChLr (n) have valuation V variables p1, . . . , pn. According to the
construction of this model, any two different elements i, j ∈ ChLr (n) : iRj have different
valuations of the variables. For each x ∈ ChLr (n) of arbitrary depth m, we define the formulas:

α(x) :=
∧

{pj |x |=V pj} ∧
∧

{¬pi |x ̸|=V pi};

f(x) := α(x) ∧3α(x) ∧3α(x+ 1) ∧32α(x+ 2) ∧ · · · ∧3m−1α(m) ∧3m−12α(m).

It is easy to see that x |=V f(x). Let us assume that the formula f(x) is true on an element
i ∈ ChLr (n) under valuation V , other than x, and consider all possible cases of the location of
this element.

1) If x < i (i is located above x), then after m− i < m− 1 steps in relation R, stabilization
occurs: α(m− i) = α(m− i+1) = · · · = α(m− 1) = α(m), which impossible, because according
to the construction of the model, α(m− 1) ̸= α(m) should be fulfilled.

2) Let now x > i (i is located below x). Then, after m− 1 steps in relation R, stabilization
should occur. Due to i |=V 3m−1α(m) ∧ 3m−12α(m), elements reachable from element i in
m−1 and m steps in relation R must have the same valuation. But this is not possible according
to the construction of the model ChLr (n).

3) If x = i, then after m steps with respect to R from both elements the same final element
m is reachable by R. Consequently, elements x and i belong to the same component Mi of the
n-characteristic model. Reasoning in a similar way, we find that all elements that are reachable
from x and i are designated identically, i.e. according to the construction of the model, these
elements ChLr (n) elements coincide. 2

This implies :

Lemma 2.6. Each element of the n-characteristic model ChLm(n)(ChLr
m
(n)) is formulaic.

3. About structural completeness

Theorem 3.1. Any finitely generated algebra generated by some Lr-frame belongs to the quasi-
variety FQ

w (Lr). In particular, the variety V ar(Lr) and the quasivariety FQ
w (Lr) coincide.

Proof. Let A = G+ be a finitely generated Lr-algebra. Hence, A ∈ HS
∏

FQ
w (Lr), i.e. this

algebra is a homomorphic image of a subalgebra of the direct product of a certain number of
free algebras of countable rank from the variety V ar(Lr). Due to the local finiteness of the logic
Lr (which is easy to verify), the algebra A is finite and generated by a certain finite Lr-frame
G. Consequently, this frame is an open subframe of the p-morphic image of the direct union of
frames of the w-characteristic model ChLr (w) = ⊔Mi. Since the frame G is finite, we can take a
direct union of a finite number of frames of the k-characteristic model ChLr (k) = ⊔Mi for some
suitable k.

As previously noted, any finite Lr-frame is a direct union of the components Gj . Therefore,
the frame G = ⊔Gj is an open subframe of the n-characteristic model frame ChLr (n) = ⊔Mi for
some suitable n. In particular, for all j we can assume without loss of generality that Gj ⊑ Mj .
Let us define a p-morphism g of a component Mj onto Gj for an arbitrary j as follows.

(1) for all elements of components Gj (Gj < Mj), we define a p-morphism g as identical, i.e.
∀ x ∈ Gj g(x) := x. In particular, for the element x0 ∈ S1(Gj) we define g(x0) := x0.

(2) Let us now define g by slices on the entire component Mi < ChLr (n) as follows. Let the
p-morphism not yet be defined on the elements y1, . . . , yk ∈ S2(Mj). Let’s choose an arbitrary
element x1 ∈ S2(Gj) ⊑ S2(Mj). By (1) on such an element the p-morphism is already defined as
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identical. Then we define g(yi) := x1, 1 6 i 6 k. Thus, we define a p-morphism on the entire
second slice S2(Mj), preserving the depth of the elements.

Now let the p-morphism on the element y ∈ S3(Mj) not yet be defined and let yRz&y ̸= z,
where z ∈ S2(Mj)). The image g(z) = e ∈ S2(Gj) is already defined. If e is R-maximal in
Gj , i.e. is not reachable from elements of a strictly greater depth in Gj , then for all elements
{t|∃m ∈ N tRmy} we define g(t) := e (i.e. the entire lower cone of the element y is p-morphically
compressed into the element e).

If a given element e has immediate R-predecessors {e1, . . . , ek} in the component Gj , then
element y is compressible with one of the elements ei, i 6 k. For definiteness, we put g(y) := e1.
With this additional definition of p-morphism, the depth of the element is preserved.

By force of the arbitrariness of the choice of element y, we extend the p-morphism on the
entire third layer of the component S3(Mj). For elements of depth 4 and all subsequent layers
of the component Mj we define a p-morphism in exactly the same way as above. Thus, as a
result, the p-morphism g will be defined on the entire component Mj and g(Mj) = Gj .

(3) For all Mj < ChLr (n) \ G we define g(Mj) := x0, where x0 some fixed element of the
first slice of an arbitrary component Gj < G.

Again, from the arbitrariness of the choice of j, we conclude that the required p-morphism g is
defined on the entire frame of the n-characteristic model ChLr (n) = ⊔Mi. By Theorem 3.3.8 [5],
the algebra generated by an arbitrary Lr-frame G is a subalgebra of the free algebra Fq for some
q, and therefore belongs to the quasivariety FQ

w (Lr).
A similar statement is also true for tabular irreflexive logic. It is easy to show in a similar

way that for an arbitrary Lm-frame there is a p-morphism from the frame of the n-characteristic
model ChLm(n) for a given frame. Taking into account the formulaicity and finiteness of this
model, the following theorem is valid:

Theorem 3.2. The algebra generated by an arbitrary finite Lm-frame belongs to the quasivariety
FQ
w(Lm). In particular, the variety V ar(Lm) and the quasivariety FQ

w(Lm) coincide.

Next, suppose that the rule r := α1, . . . , αn/β not derivable in logic Lm. Then, by Theo-
rem 1.4.11 [5], this rule will be refuted on some finite Lm-algebra A. It follows from the theorem
that the rule will also be refuted on a free algebra of countable rank Fw(Lm). Therefore, rule r
is not admissible in logic Lm. Because any derived rule is also admissible, then the statement is
proven:

Theorem 3.3. The inference rule r is admissible in the logic Lm ⇐⇒ this rule is derivable
in the logic Lm. In particular, the logic Lm is structurally complete.

By virtue of Theorem 3.1, we can prove in exactly the same way

Theorem 3.4. The inference rule r is admissible in the logic Lr
0 ⇐⇒ this rule is derivable in

the logic Lr
0. In particular, the logic Lr

0 is structurally complete.

Note that due to L0 ⊆ Lm, for all natural numbers n;m is executed ChLm(n) ⊑ ChL0(n).
Directly from the definition of logics we conclude L0 =

∩
Lm. This implies:

Theorem 3.5. If for all natural numbers m the inference rule r is admissible in the logic Lm,
then the rule r is admissible in the logic L0.

Proof. Let the inference rule r := {α1, . . . , αn/β} is not admissible in logic L0. Let us show
that this rule r is not admissible in some tabular logic Lk. In this case, the rule r is refuted
at some formulaic valuation V on the frame of the n-characteristic model ChL0(n) for some n:
the premise of the rule is true on ChL0(n), but there is an element b ∈ ChL0(n), on which the
conclusion of the rule is refuted with a given valuation:
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ChL0(n) |=V αi, 1 6 i 6 n; b ̸|=V β.

Without loss of generality, we can assume that a given element b is R-maximal among all
such elements on which the conclusion of the rule is refuted and has depth k. Then frame

b6R := {x| ∃ l : bRxlRxl−1 . . . Rx},

generated by element b is isomorphic to frame Fk, where k is the depth of element b. Therefore
it is fulfilled

⟨Fk, V ⟩ |=V αi, 1 6 i 6 n; b ̸|=V β.

Let us show that the rule r will be inadmissible in the logic Lk = L(Fk). Indeed, as noted earlier,
the frame of the k-characteristic model ChLk

(n) is the p-morphic image of the direct union of a
sufficient (finite!) number of isomorphic copies of the frame Fk. Consequently, transferring the
valuation V from the model ⟨Fk, V ⟩ with the help of this p-morphism to the model ChLk

(n)
we obtain ChLk

(n) |=V αi, 1 6 i 6 n; ∃ b ∈ ChLk
(n) : b ̸|=V β. Therefore, the inference rule

r := {α1, . . . , αn/β} is not admissible in the logic Lk. 2

Theorem 3.6 ( [14]). Logic L0 is not structurally complete.

Proof. Let’s define the inference rule

R =
(p ∧2¬p) ∨ (¬p ∧2p)

⊥
.

Recall that the first skice of the n-characteristic model contains only reflexive elements. On these
elements, for any value of the variable p, the premise of the rule R is not satisfied, which entails
its admissibility in logic L0.

Let us now assume that this rule is derivable in L0. Then, by the deduction theorem, the
following is true for modal logics:

∃n1, . . . , nk ⊢L0 2n1((p ∧2¬p) ∨ (¬p ∧2p)) ∧ · · · ∧2nk((p ∧2¬p) ∨ (¬p ∧2p)) → ⊥.

At the same time, with the valuation V (p) = {2k | k ∈ N}, the premise of the rule is true on
frame F∞, and the conclusion is false, which entails the falsity of this formula, and therefore the
rule R on frame F∞. Therefore, rule R is not derivable in logic L0. 2

Thus, the question arises about the existence of a finite basis for the admissible rules of logic
L0 and its description, if it exists. Note that if an arbitrary L0-frame does not contain infinitely
increasing chains of elements and R-maximal elements of finite depth (i.e. elements of finite
depth that are not reachable with respect to R from other elements), then similarly to how it
was done earlier, we can prove that the associated algebra belongs to the quasivariety FQ

w(L0).
Consequently, as soon as on some L0-frame a rule admissible in the logic L0 is refuted, then a
given frame contains an infinitely increasing chain of elements, or a chain of irreflexive elements
of finite length. It is clear that in the first case on this frame Rule R is refuted.
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Допустимые правила временной нетранзитивной логики
с оператором "завтра"

Виталий В.Римацкий
Ольга В. Ганчукова

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. В статье исследуется нетранзитивная временная логика с оператором "завтра". В
этой логике оператор "необходимо" 2 совпадает с оператором "возможно" 3 (или почти совпа-
дает в рефлексивном случае). Помимо базовых свойств рефлексивной нетранзитивной логики Lr

(разрешимость, финитная аппроксимируемость) исследуются допустимые правила этой логики.
Основной результат состоит в доказательстве структурной полноты данной логики и ее табличных
расширений.

Ключевые слова: модальная логика, фрейм и модель Крипке, допустимое правило вывода, гло-
бально допустимые правила вывода.
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