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Abstract. In this paper, a method is obtained for calculating the bipolar type of endomorphism of
an arbitrary groupoid. For groupoids with pairwise distinct left translations of elements, the described
method for calculating the bipolar type of an endomorphism leads to a criterion for the fixed point of
a given endomorphism. In particular, such groupoids include groupoids with a right neutral element,
monoids, loops and groups. It turned out that the bipolar type of endomorphisms of a groupoid with
pairwise distinct left translations ones contains all the information about the fixed points of endomor-
phisms of this type. A basic set of endomorphisms of a group is established, containing all regular
automorphisms. A method is found for calculating the bipolar type of an inner automorphism of a
monoid. We obtain upper bounds for the order of the monoid of all endomorphisms (and the group of
all automorphisms) of an algebraic system with finite support that has a binary algebraic operation.
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Introduction
The work is devoted to the study of the properties of a groupoid that follow directly from the

bipolar classification of endomorphisms of an arbitrary groupoid, introduced in [1] (the bipolar
classification of antiendomorphisms is considered in [2]). The introduction of this classification of
endomorphisms was due to the interest of various researchers in the following general problems.

Problem 1. For a fixed groupoid G, list the elements of the monoid of all endomorphisms
of this groupoid.

Problem 2. For a fixed groupoid G, list the elements describing the group of all automor-
phisms of this groupoid.

Problem 3. For a fixed groupoid G, give qualitative properties of all endomorphisms and all
automorphisms.

An element-by-element description of endomorphisms is a description of the elements of the
monoid of all endomorphisms (similarly to the group of automorphisms) as transformations of
the support set of the groupoid. The papers aimed at solving problems 1 and 2 include the
papers [3–6], in which endomorphisms of matrix semigroups of a special form are studied; papers
[7,8], which describe the group of all automorphisms of unipotent subgroups of Chevalley groups
(see also works [9–13]). In [14], automorphisms of finitely presented quasigroups are studied.
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Endomorphisms of commutative (but generally not associative) finite groupoids associated with
a multilayer neural network of forward signal propagation were studied in [15, 16]. Problem 1
remains open for some groupoids from [15] (see Problem 2 from [15]). Thus, Problems 1 and 2
are studied for various groupoids, semigroups, quasigroups, and groups.

By a qualitative description of endomorphisms we mean finding the properties that endo-
morphisms (or automorphisms) of various groupoids have. The results of such studies may be
useful for solving Problems 1 and 2, or be of independent value. Examples of such studies can be
found in [17,18]. There are many examples of studies closely related to endomorphisms (in par-
ticular, automorphisms) of various groupoids. For example, the investigations [19, 20] in which
finite groupoids are classified that have automorphism groups of a special form. Automorphism
groups of finite groupoids are studied in [21]. Endomorphism semigroups for some semigroups
of a special kind are studied in [22]. The concept of endomorphism (the ring of endomorphisms
of an Abelian group) is intensively used in the study of Abelian groups. This extensive direction
is presented, for instance, in [23].

Main results of the paper include the Theorem 2.1. According to it, for any groupoid G,
any element g ∈ G and any endomorphism ϕ of the groupoid G the following equivalences hold:

Γϕ(g) = 1 ⇔ ϕ(g) ∈ Mg, Γϕ(g) = 2 ⇔ ϕ(g) ∈ G \Mg,

where Mg := {m ∈ G | hm = hg}. This theorem leads to a method for calculating the bipolar
type of a fixed endomorphism of an arbitrary groupoid.

An important consequence of Theorem 2.1 is Theorem 2.2. This theorem for a groupoid G

with different left translations gives a criterion that g ∈ G is a fixed point of an endomorphism ϕ

of the groupoid G. For any g ∈ G and ϕ ∈ End(G) the equality Γϕ(g) = 1 holds iff the equality
ϕ(g) = g holds. The results of this theorem extend to all groups, monoids, loops and groupoids
with a right neutral element. In particular, see Corollary 2.1 for monoids of all endomorphisms of
an arbitrary groupoid. On the other hand, the Theorem 2.2 gives a practical way to calculate the
bipolar type of a endomorphism of groupoid with pairwise distinct left translations. This method
extends to loops, monoids, and groups. The bipolar type of endomorphism of a groupoid with
different left translations is completely characterized by all fixed points of this endomorphism.

Theorem 2.3 describes the basic sets of endomorphisms of a monoid, consisting of endomor-
phisms of a monoid. An endomorphism of a monoid is an endomorphism of a groupoid such
that the neutral element of the monoid is a fixed point of this endomorphism. The Theorem 2.4
gives a description of the basic set of endomorphisms of the group, which contains all the regular
automorphisms of the group. For groups, such a base set is unique. The Theorem 2.5 gives a
way to calculate the bipolar type of a inner automorphism of a monoid.

Theorem 3.1 establishes upper bounds for the order of the group of all automorphisms and
the monoid of all endomorphisms of an algebraic system with finite support that has a binary
algebraic operation. The resulting estimates are called conservative estimates of the order of the
monoid of all endomorphisms and the order of the group of all automorphisms. This theorem
can be used to study endomorphisms and automorphisms of such algebraic objects as rings and
semifields (see [24]). The Theorem 3.1 can be used to investigate the question (D) from [25].

1. Basic concepts and definitions

The symmetric semigroup of all transformations of the set G will be denoted by I(G). The
composition of transformations α1, α2 from I(G) will be denoted by (·) and defined by the
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equality
(α1 · α2)(g) = α1(α2(g)) (g ∈ G).

Endomorphisms and their compositions will be considered in the notation of a symmetric semi-
group. For an arbitrary groupoid G = (G, ∗) the inner left translation of an element x ∈ G will
be denoted by hx (for any x, y ∈ G the equality hx(y) = x ∗ y holds).

Below is Definition 1 from [1].

Definition 1.1. By Bte(G) we denote the set of all possible mappings of the set G into the set
{1, 2}. Mappings from this set will be called bipolar types of endomorphism of the groupoid G
(or simply types). If γ ∈ Bte(G) and γ(g) = 1 for any g ∈ G (similarly, γ(g) = 2), then the
mapping γ will be called first type (similarly, second type). In this paper, the first type will be
denoted by A, and the second type by Ω. If the mapping γ ∈ Bte(G) is not constant on elements
of G, then γ will be called mixed type.

The centralizer of the transformation α in the symmetric semigroup I(G) will be denoted by
the symbols

C(α) := {β ∈ I(X) | α · β = β · α}.

Definition 2 of [1] for each g ∈ G introduces the sets L(1)(g) and L(2)(g) (further, type-
generating sets). Definition 3 of [1] for any type γ ∈ Bte(G) introduces the set D(γ), which is
called the base set of endomorphisms of type γ of the groupoid G. We present the sets L(1)(g),
L(2)(g) and D(γ) below:

L(1)(g) := {α ∈ C(hg) | hα(g) = hg}; L(2)(g) := {α ∈ I(G) | hα(g) ̸= hg, α · hg = hα(g) · α};

D(γ) :=
∩
s∈G

L(γ(s))(s); D(A) :=
∩
s∈G

L(1)(s), D(Ω) :=
∩
s∈G

L(2)(s).

We present Theorem 1 from [1].

Theorem 1.1. For any groupoid G the equality holds

End(G) =
∪

γ∈Bte(G)

D(γ). (1)

Moreover, if τ and ω are two different types from Bte(G), then the intersection of D(τ) and
D(ω) is empty.

An endomorphism ϕ has bipolar type γ from Bte(G) if ϕ ∈ D(γ) (see Definition 5 from [1]).
In particular, the following terminology applies:
1) an endomorphism ϕ has the first type if ϕ ∈ D(A);
2) an endomorphism ϕ has second type if ϕ ∈ D(Ω);
3) an endomorphism ϕ is of mixed type in other cases.

The above assignment of types to endomorphisms of a groupoid leads to a bipolar classification
of endomorphisms.

2. Bipolar types of groupoid endomorphisms

For any element g of the groupoid G we define the set Mg := {m ∈ G | hm = hg}. The
bipolar type of the endomorphism ϕ will be denoted by Γϕ. For any endomorphism ϕ of the
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groupoid G the following alternative holds: either Γϕ(g) = 1 or Γϕ(g) = 2. This is deduced from
the definition of bipolar type and Theorem 1.1. There is an equivalence

Γϕ(g) = i ⇔ ϕ ∈ L(i)(g) (g ∈ G, ϕ ∈ End(G), i ∈ {1, 2}), (2)

which establishes a connection between Γϕ(g) and type-generating sets L(1)(g), L(2)(g). This
equivalence follows from Theorem 1.1, the definition of the basic set of endomorphisms, and
the definition of the type of endomorphism. Note that for any g ∈ G the intersection of the
sets L(1)(g) and L(2)(g) is empty. That’s why for any endomorphism ϕ of the groupoid G the
following alternative holds: either ϕ ∈ L(1)(g) or ϕ ∈ L(2)(g).

Theorem 2.1. Let G be an arbitrary groupoid. Then for an arbitrary g ∈ G and every endo-
morphism ϕ of the groupoid G the following equivalences hold:

Γϕ(g) = 1 ⇔ ϕ(g) ∈ Mg, Γϕ(g) = 2 ⇔ ϕ(g) ∈ G \Mg. (3)

Proof. Let us show that the first equivalence holds. Let the first condition of the first equivalence
be satisfied for some g ∈ G. Then the endomorphism ϕ belongs to the type-generating set L(1)(g).
Hence hϕ(g) = hg. Then, by the definition of the set Mg, we obtain that the element ϕ(g) belongs
to the set Mg.

On the other hand, suppose that the condition ϕ(g) ∈ Mg is satisfied. In this case, we have
the equality hϕ(g) = hg. Therefore, ϕ cannot belong to L(2)(g) (due to the definition of type-
generating sets). Since ϕ is an endomorphism, then for any g ∈ G there is an alternative: either
ϕ ∈ L(1)(g) or ϕ ∈ L(2)(g). Consequently, the set L(1)(g) contains the endomorphism ϕ, hence
we have the equality Γϕ(g) = 1. The first equivalence is shown.

Since for any element g ∈ G and endomorphism ϕ the alternative hold either ϕ ∈ L(1)(g)

or ϕ ∈ L(2)(g) and the first equivalence from (3) is proved, then we get the truth of the second
equivalent from (3). The theorem is proved. 2

We say that G is a groupoid with pairwise distinct left translations if for any x, y ∈ G the
following equivalence holds: hx = hy ⇔ x = y.

Theorem 2.2. Let G be a groupoid with pairwise distinct left translations. Then for an arbitrary
g ∈ G and every endomorphism ϕ of the groupoid G the following equivalences hold:

Γϕ(g) = 1 ⇔ ϕ(g) = g, Γϕ(g) = 2 ⇔ ϕ(g) ̸= g. (4)

Proof. If all left translations of the elements of the groupoid G are pairwise distinct, then for
any g ∈ G the equality of the sets Mg = {g} holds. Therefore, equivalency (4) follows from (3).
The theorem is proved. 2

The theorem above covers all groupoids satisfying the monoid, loop, and group axioms. In
addition, groupoids with pairwise distinct left translations include groupoids with a right neutral
element.

The conjunction will be denoted by the symbol (∧). Because the End(G) is a monoid for any
groupoid G, then

Corollary 2.1. Let G be an arbitrary groupoid and Ψ an arbitrary endomorphism from
End(End(G)) then for any ϕ from End(G) the following equivalences hold:

ΓΨ(ϕ) = 1 ⇔ Ψ(ϕ) = ϕ, ΓΨ(ϕ) = 2 ⇔ Ψ(ϕ) ̸= ϕ.

Moreover, if G is a groupoid with pairwise distinct left translations, then for any g ∈ G the
following implication holds:

(ΓΨ(ϕ) = 1) ∧ (Γϕ(g) = 1) ⇒ [Ψ(ϕ)](g) = g.
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In the last implication, [Ψ(ϕ)](g) denotes the image of the element g under the endomorphism
Ψ(ϕ), which is the image of ϕ under the action of Ψ.

Next, we formulate results on endomorphisms of a monoid, the bipolar type of a regular
automorphism of a group, and the inner automorphism of a monoid with invertible elements.

Monoid endomorphisms. Let M be a monoid with a neutral element e (at the same time
M is a groupoid satisfying the monoid axioms). Then, in terms of universal algebra, M is an
algebra with one binary operation and one nullary operation (the distinguished element is the
neutral element). Therefore, an endomorphism of the monoid M is any endomorphism ϕ of
the groupoid M such that the identity ϕ(e) = e holds. As usual, End(M) is the monoid of all
endomorphisms of the groupoid M and EndM (M) is the monoid of all endomorphisms of the
monoid M .

In the set of all bipolar types Bte(M) of an arbitrary monoid M , select the set MBte(M) of
bipolar types γ such that γ(e) = 1.

Theorem 2.3. If M is a monoid, then the sets are equal:

EndM (M) =
∪

γ∈MBte(M)

D(γ).

Proof. Indeed, by the theorem 2.2 the endomorphism ϕ of the groupoid M satisfies the condition
ϕ(e) = e iff Γϕ(e) = 1. Therefore, the endomorphism ϕ of the monoid M belongs to the base set
D(γ), where γ belongs to set MBte(M). The theorem is proved. 2

Regular automorphisms of a group. An automorphism ϕ of a group G with a neutral
element e will be called a regular automorphism if for any g ∈ G different from e the condition
ϕ(g) ̸= g holds. The set of all regular automorphisms is denoted by RAut(G) (the identity auto-
morphism is not contained in the constructed set). The automorphism group H of the group G

will be called the group of regular automorphisms if H consists of regular automorphisms (that is,
automorphisms occurring in RAut(G)) and the identity automorphism. Identity automorphism
we denote by ε.

In the set of all bipolar types Bte(G) of an arbitrary group G with neutral element e, we fix
a bipolar type Λ such that

Λ(g) :=

{
1, g = e

2, g ̸= e.

Theorem 2.4. Let G be a group. Then the set RAut(G) is a subset of the base set of endomor-
phisms D(Λ). Moreover, if H is the group of regular automorphisms of the group G, then the
inclusion H ⊆ D(Λ) ∪D(A) holds.

Proof. By Theorem 2.2 and the definition of the set RAut(G), every regular automorphism has
a bipolar type γ such that γ(e) = 1 and γ(g) = 2 for any g ∈ G different from e. Therefore
γ = Λ, hence the inclusion RAut(G) ⊆ D(Λ) hold. The group of regular automorphisms contains
the identity automorphism ε, which by virtue of the Theorem 2.2 belongs to D(A), hence the
inclusion H ⊆ D(Λ) ∪D(A) holds. The theorem is proved. 2

The inclusion of the element ε in the set D(A) was given in Remark 1 of [1].

Inner automorphisms of a monoid. Let G = (G, ∗) be a monoid with the set of all
invertible elements G∗. For each g ∈ G∗, the permutation

ϕg(m) = g−1 ∗m ∗ g (m ∈ G)
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we will call the inner automorphism of the monoid G. For any element g ∈ G∗, the permutation
ϕg is an automorphism of the monoid G (the proof of automorphism is similar to the proof for
the case of groups). If G∗ = G, then G is a group and the above definition coincides with the
definition of an inner automorphism of a group.

Theorem 2.5. Let G be a monoid. Then for any g ∈ G∗ and any d ∈ G the following equiva-
lences hold:

Γϕg (d) = 1 ⇔ g ∗ d = d ∗ g, Γϕg (d) = 2 ⇔ g ∗ d ̸= d ∗ g.

Proof. Consider the first equivalence. Let Γϕg (d) = 1. Since G is a monoid, by virtue of the
Theorem 2.2 we have the relation Γϕg (d) = 1 ⇔ ϕg(d) = d. In this case, ϕg(d) = g−1∗d∗g. Since
g is an invertible element of the monoid, we obtain that the equality Γϕg (d) = 1 is equivalent to
the condition g ∗ d = d ∗ g. The first equivalence is proved. The second equivalence is derived
from the truth of the first equivalence and the alternative: either Γϕg (d) = 1 or Γϕg (d) = 2. The
theorem is proved. 2

3. Conservative estimates for the monoid order
of all endomorphisms

As usual, |X| is the cardinality of the set X and S(X) is the symmetric permutation group
of X. An algebraic system will be denoted by V = (V, F, P ), where F is the set of operations
of the system and P is the set of relations. The definition of a homomorphism of an algebraic
system into an algebraic system of the same type can be found in [26] (see p. 49). The concept of
endomorphism of an algebraic system V can be formulated as a homomorphism of an algebraic
system V into itself. From the definition of an endomorphism it follows

Proposition 3.1. Let V = (V, F, P ) be an algebraic system and the set F contains the binary
algebraic operation (∗). Then the inclusions hold

End(V ) ⊆ End(V(∗)), Aut(V ) ⊆ Aut(V(∗)),

where End(V(∗)) and Aut(V(∗)) are the set of all endomorphisms and the set of all automorphisms
of the groupoid V(∗) := (V, ∗), respectively.

Theorem 3.1. Let V = (V, F, P ) be an algebraic system with finite support V . If the system of
operations F contains a binary algebraic operation (∗), then the inequalities hold

|End(V )| 6 min
g∈V

(|L(1)
(∗)(g)|+ |L(2)

(∗)(g)|), (5)

|Aut(V )| 6 min
g∈V

(|L(1)
(∗)(g) ∩ S(V )|+ |L(2)

(∗)(g) ∩ S(V )|), (6)

where L
(1)
(∗)(g) and L

(2)
(∗)(g) are type-generating sets of the groupoid V(∗) := (V, ∗).

Proof. For each fixed g ∈ V we introduce the notation

J1(g) := {γ ∈ Bte(V ) | γ(g) = 1}; J2(g) := {γ ∈ Bte(V ) | γ(g) = 2}.

For any g ∈ V , the equality J1(g) ∪ J2(g) = Bte(V ) and the condition J1(g) ∩ J2(g) = ∅ holds.
By virtue of Theorem 1.1, we have the equalities

End(V(∗)) =
∪

γ∈Bte(V )

D(γ) =

 ∪
γ∈J1(g)

D(γ)

∪ ∪
γ∈J2(g)

D(γ)

 . (7)
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Conditions are met

L
(1)
(∗)(g) ∈ {L(γ(s))

(∗) (s) | s ∈ V, γ ∈ J1(g)}, L
(2)
(∗)(g) ∈ {L(γ(s))

(∗) (s) | s ∈ V, γ ∈ J2(g)}.

In this case, the relations hold∪
γ∈J1(g)

D(γ) =
∪

γ∈J1(g)

∩
s∈V

L
(γ(s))
(∗) (s) ⊆ L

(1)
(∗)(g),

∪
γ∈J2(g)

D(γ) =
∪

γ∈J2(g)

∩
s∈V

L
(γ(s))
(∗) (s) ⊆ L

(2)
(∗)(g),

Aut(V(∗)) = End(V(∗)) ∩ S(V ).

These relations, together with the equalities (7), give inclusions

End(V(∗)) ⊆ L
(1)
(∗)(g) ∪ L

(2)
(∗)(g), Aut(V(∗)) ⊆ (L

(1)
(∗)(g) ∩ S(V )) ∪ (L

(2)
(∗)(g) ∩ S(V )). (8)

The type-generating sets L(1)
(∗)(s) and L

(2)
(∗)(s) have an empty intersection for any s ∈ V (follows

trivially from the definition of these sets). By virtue of the Proposition 3.1, the relations (8) and
the arbitrariness of g in the reasoning above, we obtain that for any g ∈ G the inequalities are
satisfied

|End(V )| 6 |L(1)
(∗)(g)|+ |L(2)

(∗)(g)|, |Aut(V )| 6 |L(1)
(∗)(g) ∩ S(V )|+ |L(2)

(∗)(g) ∩ S(V )|.

Therefore, the inequalities (5) and (6) are satisfied. 2

The estimates (5) and (6) will be called conservative estimates of the order of the monoid of all
endomorphisms and the group of all automorphisms of the algebraic system V . Particular cases
of the algebraic system V from the 3.1 theorem are such algebras as groupoids (|F | = 1, |P | = 0),
rings, quasifields, semifields, etc. Note that inclusions (8) hold for non-finitary algebraic systems
with a binary algebraic operation.

Proposition 3.2. There are finite groupoids for which the estimates (5) and (6) are achievable.

Indeed, such groupoids include finite groupoids in which all left translations are pairwise equal
(as transformations). Let G = (G, ∗) be a finite groupoid with pairwise equal left translations.
Then, by definition, the type-generating set L(2)(g) is an empty set for any g ∈ G and the type
generating sets L(1)(g) pairwise coincide. Therefore, by virtue of the Theorem 1.1, we obtain the
equalities of the sets

End(G) = D(A) =
∩
g∈G

L(1)(g) = L(1)(g∗), Aut(G) = D(A) ∩ S(G) = L(1)(g∗) ∩ S(G),

which hold for any g∗ ∈ G.
Consider examples of constructing estimates (5) for specific finite groupoids. These examples

will show that there exist finite groupoids G for which the estimates (5) are better than the
natural upper bound which is expressed the order of the symmetric semigroup I(G).

Example 3.1. Let G = (G, ∗) be a groupoid with support G = {1, 2, 3, 4} and multiplication
(∗) defined by the Cayley table:

∗ 1 2 3 4
1 1 2 3 4
2 1 2 3 4
3 2 2 3 4
4 2 2 3 4
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In this case |I(G)| = 44 = 256. With any transformation α ∈ I(G) we will associate the
notation:

α =

(
1 2 3 4
a1 a2 a3 a4

)
= (a1, a2, a3, a4) = (α(1), α(2), α(3), α(4)).

Left translations have the form: h1 = (1, 2, 3, 4), h2 = (1, 2, 3, 4), h3 = (2, 2, 3, 4), h4 = (2, 2, 3.4).
Let us introduce the notation Estg =: |L(1)(g)|+ |L(2)(g)| associated with estimates (5) for the
groupoid G. Computer calculations based on the enumeration principle show that the following
relations hold: |End(G)| = 38, Est1 = 182, Est2 = 182, Est3 = 56, Est4 = 56.

These relations show that for any g ∈ G the estimates (5) are better than the natural estimate
|I(G)|.

Example 3.2. Consider the cyclic group C5 of order 5 given by the system of left translations:

h1 = (1, 2, 3, 4, 5), h2 = (2, 3, 4, 5, 1), h3 = (3, 4, 5, 1, 2), h4 = (4, 5, 1, 2, 3), h5 = (5, 1, 2, 3, 4).

In this case |I(G)| = 3125. And computer calculations give the ratios:

|End(G)| = 5, Est1 = 625, Est2 = Est3 = Est4 = Est5 = 5.

In this case, the results of conservative estimates (5) are better than in the previous example,
except for the estimate Est1 = 54.

Example 3.3. Consider the Klein four-group given by the set of left translations:

h1 = (1, 2, 3, 4), h2 = (2, 1, 4, 3), h3 = (3, 4, 1, 2), h4 = (4, 3, 2, 1).

In this case |I(G)| = 256, and computer calculations give the ratios:

|End(G)| = 16, Est1 = 64, Est2 = Est3 = Est4 = Est5 = 16.

The situation is similar to the previous case.

In the context of the examples above, the following is interesting question.

Question 1. When the inequality (5) turns into equality? What the conditions must a finite
groupoid G satisfy for exactness of conservative estimates?

The existence of groupoids from question 1 follows from examples 3.2 and 3.3.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation (Agreement no. 075-02-2023-936).
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О биполярной классификации эндоморфизмов группоида
Андрей В. Литаврин

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. В работе получен способ вычисления биполярного типа эндоморфизма произвольного
группоида. Для группоидов с попарно различными левыми сдвигами элементов (в частности, груп-
поидов с правым нейтральным элементом, моноидов, луп и групп) описанный способ вычисления
биполярного типа эндоморфизма приводит к критерию неподвижной точки данного эндоморфиз-
ма. Выяснилось, что биполярный тип эндоморфизмов группоида с попарно различными левыми
сдвигами содержит всю информацию о неподвижных точках эндоморфизмов этого типа. Уста-
новлено базовое множество эндоморфизмов группы, содержащее все регулярные автоморфизмы.
Найден способ вычисления биполярного типа внутреннего автоморфизма моноида. Получены верх-
ние оценки порядка моноида всех эндоморфизмов (и группы всех автоморфизмов) алгебраической
системы с конечным носителем, которая обладает бинарной алгебраической операцией.

Ключевые слова: группоид, эндоморфизм группоида, автоморфизм группоида, биполярный тип
эндоморфизма группоида, биполярный тип регулярного автоморфизма, биполярный тип внутрен-
него автоморфизма, консервативные оценки.
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