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Abstract. A new model of a Kirchhoff–Love plate which is in contact with a rigid obstacle of a certain
given configuration is proposed in the paper. The plate is in contact either on the side edge or on
the bottom surface. A corresponding variational problem is formulated as a minimization problem
for an energy functional over a non-convex set of admissible displacements subject to a non-penetration
condition. The inequality type non-penetration condition is given as a system of inequalities that describe
two cases of possible contacts of the plate and the rigid obstacle. Namely, these two cases correspond
to different types of contacts by the plate side edge and by the plate bottom. The solvability of the
problem is established. In particular case, when contact zone is known equivalent differential statement
is obtained under the assumption of additional regularity for the solution of the variational problem.
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Introduction

Contact problems for solids with inequality type constraints have attracted attention of scien-
tists since 1933s [1–3]. Problems of this kind are associated with the use of boundary conditions
that describe non-penetration constraints on the contact surfaces or curves. For this Signorini
problem it is assumed that some properties of displacements for points where a solid is in con-
tact with a rigid obstacle [4, 5] or with another deformable body [6–9] are know in advance.
It was established with the use of the fictitious domain method that a certain class of contact
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problems are connected with crack problems subject to non-penetration conditions on crack
faces [10–12]. Point-wise contact problems were considered [13,14] where minimization problems
over non-convex sets were studied.

In contrast to previous studies (see [4, 11]), a certain initial configuration of Kirchhoff–Love
plate and an obstacle with a given geometrical shape are considered. The plate is in contact
interaction with a rigid obstacle by its side edge or by its given front surface which is located
below with respect to the selected coordinate system. In this case two types of restrictions are
imposed. Namely, the first type is described by inequality for deflection functions (vertical dis-
placements). The second type is described by inequalities for deflection functions and horizontal
displacements. The main problem is formulated as a minimization of an energy functional over a
non-convex set of admissible displacements. The solvability of the non-linear equilibrium prob-
lem is established. In particular case, when types of contact zones are known in advance an
equivalent differential statement is obtained under the assumption of additional regularity for
the solution of the variational problem.

1. The variational problem

Let Ω ⊂ R2 be a bounded with a smooth boundary Γ which consists of two continuous curves
Γ = Γ0 ∪ Γ1, mes(Γ0) > 0. For convenience, it is supposed that

Γ1 = {(x1, x2) ∈ R2 |x1 = ψ(x2), x2 ∈ [a, b]},

where ψ is a given function, a < b, a, b ∈ R. Let us denote the unit normal vector to Γ by
ν = (ν1, ν2). For simplicity, suppose that plate has uniform thickness 2h. Let us assign three-
dimensional Cartesian space {x1, x2, z} with the set {Ω}×{0} ⊂ R3 corresponding to the middle
plane of the plate.

Let us denote the displacement vector of the mid-surface points (x ∈ Ω) by χ = χ(x) =

(W,w), displacements in the plane {x1, x2} by W = (w1, w2) and displacements along the axis
z (deflections) by w. The strain and integrated stress tensors are denoted by εij = εij(W ) and
σij = σij(W ), respectively [5]:

εij(W ) =
1

2

(
∂wj

∂xi
+
∂wi

∂xj

)
, σij(W ) = aijklεkl(W ), i, j = 1, 2,

where {aijkl} is the given elasticity tensor that is assumed to be symmetric and positive definite:

aijkl = aklij = ajikl, i, j, k, l = 1, 2, aijkl ∈ L∞(Ω),

aijklξijξkl > c0|ξ|2 ∀ξ, ξij = ξji, i, j = 1, 2, c0 = const > 0.

A summation convention over repeated indices is assumed. Bending moments are [5]

mij(w) = −dijklw,kl , i, j = 1, 2,

(
w,kl =

∂2w

∂xk∂xl

)
where tensor {dijkl} has the same symmetry, boundedness, and positive definiteness character-
istics as tensor {aijkl}. Let B(· , ·) be a bilinear form defined by the equality

B(χ, χ̄) =

∫
Ω

{
σij(W ) εij(W̄ )−mij(w)w̄,ij

}
dx, (1)

where χ = (W,w), χ̄ = (W̄ , w̄).
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Let us introduce Sobolev spaces

H1,0
Γ0

(Ω) =
{
v ∈ H1(Ω)

∣∣∣ v = 0 on Γ0

}
,

H2,0
Γ0

(Ω) =

{
v ∈ H2(Ω)

∣∣∣ v =
∂v

∂ν
= 0 on Γ0

}
,

H(Ω) = H1,0
Γ0

(Ω)2 ×H2,0
Γ0

(Ω).

It is well known that standard expression for potential energy functional of a Kirchhoff–Love
plate has the following representation

Π(χ) =
1

2
B(χ, χ)−

∫
Ω

F χdx, χ = (W,w),

where vector F = (f1, f2, f3) ∈ L2(Ω)
3 describes the body forces [5]. Note that the following

inequality providing coercivity of functional Π(χ)

B(χ, χ) > c∥χ∥2 ∀ χ ∈ H(Ω), (∥χ∥ = ∥χ∥H(Ω)) (2)

with a constant c > 0 that is independent of χ holds for bilinear form B(·, ·) [5].
An obstacle is described by the following part of the cylindrical surface

{(x1, x2, z) | (x1, x2) ∈ Γ1, z ∈ (−∞,−h]}.

It restricts displacements on the side edge of the plate. Deflections are restricted by the following
part of the plane

{(x1, x2, z) | x1 6 ψ(x2), x2 ∈ [a, b], z = −h }.

It is assumed that for the initial state the elastic plate touches a rigid obstacle with a given shape
by its side edge corresponding to the points of curve Γ1 as shown in Fig. 1:

Fig. 1. a) cross section of the plate and the obstacle O; b) midsurface of the plate

At the part Γ1 of the boundary the condition describing non-penetration of the plate points into
the rigid obstacle is considered

w > 0 on Γ1 or if this is not the case w 6 0 and Wν + h
∂w

∂ν
6 0 on Γ1. (3)

It is worth to mention that according to (3) function χ = (W,w) satisfies either w > 0 on Γ1 or
two last inequalities (3). Now one can introduce the following set of admissible functions

K = {χ = (W,w) ∈ H(Ω) |χ satisfies (3)}.
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Note that K is not convex set since for some α > 0 one can construct functions χ̃ = (W̃ , w̃) ∈ K

and χ̂ = (Ŵ , ŵ) ∈ K with properties

w̃ < −α, −α
2
< W̃ν+h

∂w̃

∂ν
6 0,

α

2
> ŵ > 0, Ŵ ν+h

∂ŵ

∂ν
> α on γ ⊂ Γ1, mes(γ) > 0.

Obviously, function χs =
1

2
(χ̃+ χ̂), χs = (Ws, ws) does not belong to K because of

ws 6 0 and Wsν + h
∂ws

∂ν
> 0 on γ.

Let us formulate a variational statement of an equilibrium problem. It is required to find a
function ξ = (U, u) ∈ K such that

Π(ξ) = inf
χ∈K

Π(χ). (4)

Theorem 1.1. Problem (4) has a solution.

Proof. The existence of a solution of the problem is established in accordance with the Weierstrass
theorem [15]. It is well known that energy functional has properties of coercivity and weak lower
semicontinuity on H(Ω) [16]. First, it is proved that set K is weakly closed. Let an arbitrary
sequence {χn} ⊂ K be given with the property χn → χ in space H(Ω). By virtue of embedding
theorems, this implies that there is a subsequence {χn}, still denoted in the same way, that
converges almost everywhere on Γ to χ. Let us prove that limit function χ also belongs to K.
Indeed, there are the following relations for χn = (Wn, wn)

wn > 0 or wn 6 0 and Wnν + h
∂wn

∂ν
6 0 on Γ1\B

That are satified for each point of Γ1\B, mes(B) = 0 and for all n ∈ N. Therefore, for every
fixed x ∈ Γ1\B one can obtain that

wn(x) > 0 or wn(x) 6 0 and Wn(x)ν + h
∂wn(x)

∂ν
6 0.

There must exists either a subsequence {χnk
} ⊂ χn for which

wnk
(x) > 0 (5)

or a subsequence {χnm} with the following property

wnm(x) 6 0 and Wnm(x)ν + h
∂wnm(x)

∂ν
6 0. (6)

In both cases one can take the limit in corresponding inequalities, namely, for {χnk
} in (5), and

for {χnm} in (6). As a result, the following relations are obtained for limiting function χ

w(x) > 0

for the case of subsequence {χnk
} and

w(x) 6 0 and W (x)ν + h
∂w(x)

∂ν
6 0.
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for the case of subsequence {χnm
}. Note that if both subsequences {χnm

} and {χnk
} with the

mentioned properties exist then it means that

w(x) = 0 and W (x)ν + h
∂w(x)

∂ν
6 0.

Since point x ∈ Γ1\B is arbitrary, condition (3) is fulfilled for limiting function χ. Therefore,
set K is weakly closed in H(Ω). Finally, for problem (4) conditions of the Weierstrass theorem
for both functional Π(χ) and set of admissible functions K are satisfied. Then problem (4) has
at least one solution. The theorem is proved.

2. Differential statement for the case of known contact zones

In this section the case when types of contact zones are known is considered. Let us assume
that curve Γ1 consists of disjoint curves Γe

1 and Γb
1. Namely, it is supposed that inequalities

w 6 0 and Wν + h
∂w

∂ν
6 0 on Γe

1, (7)

describing a contact of the plate side edge are fulfilled on Γe
1. There is the following condition

on the rest part Γb
1 of curve Γ1

w > 0 on Γb
1 (8)

which corresponds to a contact of the plate bottom with the rigid obstacle. A new set of
admissible functions is introduced as follows

K2 = {χ = (W,w) ∈ H(Ω) |χ satisfies (7), (8)}.

One can see that set K2 is convex and closed. The convexity of set K2 allow us to represent the
following minimization problem

Π(ξ) = inf
χ∈K2

Π(χ) (9)

as variational inequality [5]

ξ ∈ K2, B(ξ, χ− ξ) >
∫
Ω

F (χ− ξ)dx ∀χ ∈ K2. (10)

Suppose that solution ξ = (U, u) ∈ K is sufficiently smooth. Next, let us apply the following
Green’s formulas for functions χ = (W,w) ∈ K [5]∫

Ω

σij(U) εij(W )dx = −
∫
Ω

σij,j(U)wi dx+

∫
Γ

(
σν(U)Wν + στ (U)Wτ

)
dΓ, (11)

∫
Ω

mij(u)w,ij dx =

∫
Ω

mij,ij(u)w dx+

∫
Γ

(
tν(u)w −mν(u)

∂w

∂ν

)
dΓ, (12)

where
σν(U) = σij(U)νiνj , mν(u) = −mijνiνj ,

στ (U) = (σ1
τ (U), σ2

τ (U)) = (σ1j(U)νj , σ2j(U)νj)− σν(U)ν,

tν(u) = −mij,kτkτjνi −mij,jνi, τ = (−ν2, ν1),

Wν = wiνi, Wτ = (W 1
τ ,W

2
τ ), wi = (Wν)νi +W i

τ , i = 1, 2.

Along with variational statement (9), one can deal with corresponding differential statement.
Namely, the following theorem holds.
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Theorem 2.1. Supposing that solution ξ = (U, u) is sufficiently smooth, variational problem (9)
is equivalent to the following boundary value problem

−mij,ij(u) = f3 in Ω, (13)

−σij,j(U) = fi in Ω, i = 1, 2, (14)

tν(u) 6 0, u 6 0, σν(U) 6 0, σν(U)− 1

h
mν(u) = 0 on Γe

1, (15)

στ (U) = (0, 0), Uν + h
∂u

∂ν
6 0 on Γe

1, (16)

στ (U) = (0, 0), σν(U) = mν(u) = 0, tν(u) > 0, u > 0 on Γb
1, (17)

σν(U)Uν − tν(u)u+mν(u)
∂u

∂ν
= 0 on Γe

1, tν(u)u = 0 on Γb
1, (18)

U = u =
∂u

∂ν
= 0 on Γ0. (19)

Proof. Substituting χ̄ = ξ ± χ̃, where χ̃ ∈ C∞
0 (Ω)3, as a test function into (10), one can obtain

the following relation ∫
Ω

(σij(U) εij(W̃ )−mij(u)w̃,ij )dx =

∫
Ω

Fχ̃dx

, that is, equilibrium equations
−mij,ij(u) = f3 in Ω, (20)

−σij,j(U) = fi in Ω, i = 1, 2, (21)

hold in terms of distribution.
Applying Green’s formulas to (10) and using (20), (21), one can show that∫

Γ

(
σν(U)(W − U)ν + στ (U)(W − U)τ−

−tν(u)(w − u) +mν(u)

(
∂w

∂ν
− ∂u

∂ν

))
dΓ > 0 ∀χ = (W,w) ∈ K. (22)

Since K is convex cone in H(Ω), one can substitute χ = λξ in (22) and deduce∫
Γ

(
σν(U)Uν + στ (U)Ūτ − tν(u)u+mν(u)

∂u

∂ν

)
dΓ = 0, (23)

∫
Γ

(
σν(U)Wν + στ (U)Wτ − tν(u)w +mν(u)

∂w

∂ν

)
dΓ > 0, (24)

for all χ = (W,w) ∈ K. Let us suppose that χ = (W,w) ∈ K and χ = 0 on Γb
1. In this case one

can rewrite (24) as follows∫
Γe
1

(
σν(U)Wν + στ (U)Wτ − tν(u)w +mν(u)

∂w

∂ν

)
dΓ > 0. (25)

Since Wτ is not included in inequalities (7), due to arbitrariness of Wτ on Γe
1 one can conclude

that
στ (U) = 0 on Γe

1.
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Therefore, inequality (25) can be reduced to∫
Γe
1

(
σν(U)Wν − tν(u)w +mν(u)

∂w

∂ν

)
dΓ > 0. (26)

By choosing functions χ = (W,w) such that W = 0,
∂w

∂ν
= 0 on Γe

1, one can obtain in (26) that

tν(u) > 0 on Γe
1.

Now one can substitute test functions with properties w = 0, Wν + h
∂w

∂ν
= 0 and obtain∫

Γe
1

(
σν(U)Wν − 1

h
mν(u)Wν

)
dΓ > 0. (27)

Then
σν(U)− 1

h
mν(u) = 0 on Γe

1.

since the value of Wν can be arbitrary. The last equality allow us to represent (27) in the form∫
Γe
1

σν(U)
(
Wν + h

∂w

∂ν

)
dΓ > 0,

Then, it follows that
σν(U) 6 0 on Γe

1.

Let us assume that χ ∈ K, χ = 0 on Γe
1. Then one can obtain on Γb

1 that w > 0 and∫
Γb
1

(
σν(U)Wν + στ (U)Wτ − tν(u)w +mν(u)

∂w

∂ν

)
dΓ > 0. (28)

Due to arbitrariness of W ,
∂w

∂ν
on Γb

1 there are following equalities

στ (U) = (0, 0), σν(U) = mν(u) = 0 on Γb
1.

Now, it remains to deduce from the reduced inequality

−
∫
Γb
1

tν(u)w dΓ > 0 (29)

the following inequality
tν(u) 6 0 on Γb

1.

Let us consider relation (23). Let us take into account that ξ = (U, u) ∈ K,

σν(U) 6 0, σν(U)− 1

h
mν(u) = 0, tν(u) > 0 on Γe

1,

and
στ (U) = (0, 0), σν(U) = mν(u) = 0, tν(u) 6 0 on Γb

1.

Then corresponding integrand of (23) is non-negative a.e. on Γ. Therefore

σν(U)Uν − tν(u)u+mν(u)
∂u

∂ν
= 0 on Γe

1, tν(u)u = 0 on Γb
1.
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Conversely, in order to obtain variational inequality (10) from (13)–(19) relation (13) is
multiplied by (u−w) and relations (14) are multiplied by (ui−wi), i = 1, 2, where W = (w1, w2)

and w such that χ = (W,w) ∈ K. Then after integrating over Ω and summing, one can obtain

−
∫
Ω

(σij,j(U)(U −W ) +mij,ij(u)(w − u))dx =

∫
Ω

F (χ− ξ)dx.

Now let us use the Green formulas and obtain∫
Ω

(
σij(U) εij(W − U)dx−mij(u)(w − u),ij

)
dx−

−
∫
Γ

(
σν(U)(Wν − Uν) + στ (U)(Wτ − Uτ)

)
dΓ+

+

∫
Γ

(
tν(u)(w − u)−mν(u)(

∂w

∂ν
− ∂u

∂ν
)

)
dΓ =

∫
Ω

F (χ− ξ)dx. (30)

Taking into account that στ (U) = 0 on Γ1, ξ = χ = 0 on Γ0, the sum of integrals over Γ in the
left side of (30) can be represented as follows

I =

∫
Γ1

(
tν(u)(w − u)−mν(u)(

∂w

∂ν
− ∂u

∂ν
)− σν(U)(Wν − Uν)

)
dΓ. (31)

Then bearing in mind the equalities στ (U) = (0, 0), σν(U) = mν(u) = 0 on Γb
1, relation (31) can

be represented as the following sum

I =

∫
Γb
1

tν(u)(w − u)dΓ+

+

∫
Γe
1

(
tν(u)(w − u)−mν(u)(

∂w

∂ν
− ∂u

∂ν
)− σν(U)(Wν − Uν)

)
dΓ. (32)

Finally, relation (32) can be transformed into

I =

∫
Γb
1

tν(u)(w − u)dΓ +

∫
Γe
1

(
tν(u)w − σν(U)

(
Wν + h

∂w

∂ν

))
dΓ−

−
∫
Γe
1

(
tν(u)u− σν(U)Uν −mν(u)

∂u

∂ν

)
dΓ.

Taking into account relations (15)–(18) and χ ∈ K, one can see that each term in the last sum is
non-positive. It remains to note that since I 6 0 equality (30) yields variational inequality (10).
2
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Аннотация. Предложена новая модель пластины Кирхгофа–Лява, которая может соприкасаться
либо по боковой грани, либо по одной из лицевых поверхностей с жестким препятствием опре-
деленной заданной конфигурации. Соответствующая вариационная задача формулируется в виде
задачи минимизации функционала энергии над невыпуклым множеством допустимых перемеще-
ний с условием непроникания. Условие непроникания представлено в виде системы неравенств,
описывающей два случая возможного контакта пластины и жесткого препятствия. А именно эти
два случая соответствуют разным типам контактов: со стороны боковой кромки пластины и со
стороны ее известной лицевой поверхности. Установлена разрешимость задачи. В частном случае,
когда зоны контакта заранее известны, найдена эквивалентная дифференциальная постановка в
предположении дополнительной регулярности решения вариационной задачи.

Ключевые слова: контактная задача, условие непроникания, невыпуклое множество, вариаци-
онная задача.
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