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Abstract. Bilayer convective flows of liquid and gas-vapor mixture in an inclined channel are modeled
taking into account the heat and mass transfer at the thermocapillary interface. Mathematical modeling
is based on the exact solutions of special type of the Navier-Stokes equations in the Oberbeck-Boussinesq
approximation, with consideration of the Soret and Dufour effects in the gas-vapor layer. Inclined or
horizontal position of the channel and direction of the boundary thermal load determine a form of the
exact solution and an algorithm of its construction. Examples of the velocity profiles, temperature
and vapor concentration distributions in the «ethanol — nitrogen» system are demonstrated. Results of
comparative analysis of the two-layer flows in the system positioned horizontally and by small inclination
from the horizontal level are presented. The influence of the thermal load intensity on the flow and mass
transfer characteristics is studied.
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Introduction

Convective flows of liquids are often observed in the natural and technological processes. One
of the main mechanisms determining the character of such flows is the heat and mass transfer. In
addition, the reciprocal effects of the diffusive thermal conductivity and thermodiffusion influence
on the fluid flows induced both by temperature and concentration inhomogeneities [1].

The interest in construction of the exact solutions describing convective flows with interfaces
is provoked due to a possibility of promt analyzing the influence of various parameters of the
problem on the processes. This allows one to identify the dominant mechanisms influencing the
flow topology, to improve experimental techniques, and to predict the results of experimental
study of dynamics of the liquids and co-current gases [2]. Due to the fact that the models of the
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convective heat and mass transfer are generally nonlinear, construction of their exact solutions
can be a rather interesting problem from the mathematical point of view.

Nowadays, there are quite many works devoted to the construction of exact solutions describ-
ing the flows of thermally conductive fluids. In [3, 4] special solutions modeling one-directional
flows are proposed. The group nature of the solutions obtained in [4] is revealed in [5]. The arti-
cle [6] is devoted to generalization of the proposed solutions for the non-stationary case in a plane
layer and a rotating tube. The example of exact solution describing flows of an one-directional
binary fluid is proposed in the work [7].

Due to nonlinearity of the system of the Oberbeck-Bussinesq equations, the introducing
additional effects or parameters complicates the process of problem solving. Construction of
exact solutions in such case is connected with generalization of known solutions. The work [8]
is devoted to construction of exact solutions describing the two-layer flows in a «liquid-liquid»
system taking into account the mass transfer in a horizontal channel. The process of liquid
vaporization into the gas-vapor layer under closed flow conditions is considered in [9]. Modeling
of the bilayer flows with respect to a given gas flow rate in the upper layer is carried out in
[10]. In [11] paper, in addition to the diffusive thermal conductivity effect in the gas-vapor layer,
the thermodiffusion process is also taken into account. The stability issues of the presented
exact solutions were studied in [12, 13]. Comparison of analytical results concerning the liquid
evaporation into the gas-vapor layer with experimental data is presented in [11].

An additional parameter complicating the construction of exact solutions of the Navier-
Stokes equations in the Oberbeck–Boussinesq approximation is also geometry of a flow domain.
Mathematical modeling in the horizontal, vertical and inclined layers is carried out in [14]. In
[15], a variant of such solution is proposed for the problem of fluid flow in an inclined channel
with moving solid boundaries on which a longitudinal temperature gradient is given. Bilayer
«liquid-gas» systems with consideration of evaporation at the thermocapillary interface and
given inclination angle of the channel are considered in [16]. Here, the condition of total vapor
absorption was assumed to be satisfied on the upper channel wall.

This paper presents exact solutions of special type of the Navier–Stokes equations in the
Boussinesq approximation describing flows in an inclined channel filled by liquid and gas-vapor
mixture. The thermocapillary interface is assumed to be non-deformable (see [12, 17]). In the
upper layer of the system, the Soret and Dufour effects are taken into account and the gas flow
rate is given. As a condition for the vapor concentration function on the upper channel wall the
condition of zero vapor flux is chosen. The obtained solution is compared with the one presented
in [11, 18] for the horizontal layer. The impact of physical and geometrical parameters of the
problem on the flow patterns is studied.

1. Problem statement of convection in an inclined channel
in the case of a non-deformable interface

1.1. Governing equations

The stationary flow in the «liquid–gas» system in an inclined layer with solid impermeable
walls is studied. A viscous incompressible liquid and a bicomponent mixture of gas and vapor
occupy an infinite channel. The thicknesses of the layers are fixed and equal to l and h, re-
spectively (see Fig. 1). The Cartesian coordinate system is positioned such that the interface,
which remains non-deformable, is determined by the equation y = 0. The mass force vector g
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is directed at the angle φ with respect to the substrate (g = (g cosφ,−g sinφ)). Note, that the
inclination angle from the horizontal plane is defined as (π/2− φ). Vapor is a passive impurity
in the gas phase, i.e. it does not affect the properties of the gas.

x

0

h

gas - vapor mixture

liquid

-l

y

g

φ 

Fig. 1. Flow area geometry

Mathematical modeling of the liquid and gas-vapor mixture flows is carried out by using the
Navier–Stokes equations in the Oberbeck–Boussinesq approximation. The vapor concentration
function Φ satisfies the diffusion equation. The Soret and Dufour effects are taken into account
in the upper layer.

The exact solutions of the governing equations will be constructed in the special Ostroumov-
Birikh form [3, 4] (see [8]):

ui = ui(y), vi = 0, Ti = Ax+ ϑi(y), Φ = −Bx+ ψ(y), p′i = p′i(x, y), (1)

where ui and vi are projections of the velocity vector on the Cartesian coordinate system axes,
p′i is modified pressure or deviation from the hydrostatic pressure (p′i = pi − ρi g · x, x = (x, y),
pi — pressure, ρi — density), Ti — temperature, Φ — vapor concentration in the gas, A, B
— parameters defining longitudinal gradients of temperature and vapor concentration, ϑi, ψ —
terms included in the definition of the functions Ti and Φ and depending only on the longitudinal
coordinate. Hereinafter, i defines the number of the system layer: functions and parameters
describing the fluid flow are marked by the index i = 1, gas-vapor mixture by i = 2. It should be
noted that the Birikh solution, which is a special case of the solution (1) received experimental
and numerical confirmation (see, for example, [19]). In addition, the results obtained using the
solution (1) are confirmed by experimental data in [2, 11].

The system of equations describing flows in the lower layer filled with one-component fluid is
written as follows according to (1):

1

ρ1
p′1 x = ν1u1 yy − g cosφβ1T1,

1

ρ1
p′1 y = g sinφβ1T1, u1T1x = χ1T1 yy. (2)

In the upper layer containing gas and vapor mixture, the system of governing equations should
be supplemented by the diffusion equation for the vapor concentration function:

1

ρ2
p′2 x = ν2u2 yy − g cosφ(β2T2 + γΦ),

1

ρ2
p′2 y = g sinφ(β2T2 + γΦ),

u2T2x = χ2T2 yy + χ2δΦyy, u2Φx = DΦyy + αDT2 yy.
(3)

In equations (2), (3) the following notations are used: νi — kinematic viscosity coefficients,
βi — thermal expansion coefficients, χi — heat diffusivity coefficients, γ — concentration density
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coefficient, D — vapor diffusion coefficient in the gas, coefficients α and δ characterize the Soret
and Dufour effects, respectively.

1.2. Boundary conditions

Let us formulate the conditions on the boundaries of the system. The no-slip condition for
velocity should be fulfilled on the solid walls of the channel:

u1|y=−l = 0, u2|y=h = 0. (4)

The linear thermal regime is set on the channel walls:

T1|y=−l = Ax+ ϑ−, T2|y=h = Ax+ ϑ+. (5)

Here ϑ− and ϑ+ are some fixed constants.
At the boundary y = h, the vapor concentration function Φ satisfies the condition of zero

vapor flux:
(Φy + αT2 y)|y=h = 0. (6)

At the thermocapillary interface y = 0, the conditions of continuity of the velocity and
temperature functions are satisfied:

u1|y=0 = u2|y=0, T1|y=0 = T2|y=0. (7)

The kinematic condition (v1 = 0 and v2 = 0) is satisfied automatically by virtue of the type
of the exact solution (1). The projection of the dynamic condition onto the tangent vector to
the interface is written as follows:

ρ1ν1u1 y = ρ2ν2u2 y + σTT1 x|y=0, (8)

where σT is the temperature coefficient of surface tension σ. The linear dependence of surface
tension on temperature is assumed: σ = σ0 + σT (T - T0), σ0 — surface tension at some reference
temperature T0, σT = const, σT < 0. The dynamic condition expresses the tangential stress
balance at the interface.

The heat flux balance, taking into account the diffusion mass flux of the vaporizing liquid at
the interface M and the diffusive thermal conductivity effect, is [10, 11, 20]:

κ1T1 y − κ2T2 y − δκ2Φy|y=0 = −LM, M = −Dρ2(Φy|y=0 + αT2 y|y=0). (9)

Here the following notations are accepted: L is the latent heat of evaporation, M is the mass
velocity of liquid evaporating from a unit surface area per unit time (M = const), κ1 and κ2 are
thermal conductivity coefficients of liquid and gas-vapor mixture, respectively.

The saturated vapor concentration at the interface is determined according to the following
relation (see [11]):

Φ|y=0 = Φ∗(1 + ε(T2|y=0 − T0)), (10)

where ε is a parameter depending on the characteristic temperature and physical and chemical
properties of the medium, Φ∗ is the concentration of saturated vapor at T2 = T0.

The problem is solved under the condition of given liquid flow rate Q1 and gas flow rate Q2.

Q1 =

∫ 0

−l

ρ1u1(y)dy, Q2 =

∫ h

0

ρ2u2(y)dy. (11)
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2. Constructing the exact solution of a special type

The exact solution of the problem is constructed by substituting formulas (1) into the differ-
ential equations (2), (3). The functions p′i are eliminated by cross differentiation of the first two
relations in (2), (3). Performing further subsequent differentiation of the obtained expressions
on the variable y we have u(4)1 y + λ1u1 = 0 and u

(4)
2 y + λ2u2 = 0. The solutions of obtained

equations are the functions u1 and u2, which determine the longitudinal velocities in each of the
layers of the system. The coefficients λ1 and λ2 depend on the geometric and physical and chem-
ical parameters of the working media and have the following form: λ1 = −Ag cosφβ1/(χ1ν1),
λ2 = −Ag cosφE, where E = [D(β2−αγ)−χ2C∗ε(δβ2−γ)]/[χ2ν2D(1−αδ)]. The function ϑ1 is
found by integration from the heat transfer equation (see the third expression in (2)). Similarly,
the functions ϑ2 and ψ are recovered from the heat transfer and diffusion equations (see the third
and fourth expressions in (3)). The inequalities λ1 < 0 and λ2 > 0 when A > 0, and λ1 > 0,
λ2 < 0 when A < 0 are true for systems of the «ethanol — nitrogen» type. In the first case, the
desired functions are represented as the following analytic expressions [22] (see also [21]):

u1 = C1 sin(k1y) + C2 cos(k1y) + C3 sh(k1y) + C4 ch(k1y),

u2 = C1 sin(m1y) sh(m1y) + C2 cos(m1y) sh(m1y) + C3 sin(m1y) ch(m1y)+

+ C4 cos(m1y) ch(m1y),

T1(x, y) = Ax+
F1

k21

(
− C1 sin(k1y)− C2 cos(k1y) + C3 sh(k1y) + C4 ch(k1y)

)
+ C5y + C6,

T2(x, y) = Ax+
F2

2m2
1

(
− C1 cos(m1y) ch(m1y) + C2 sin(m1y) ch(m1y)−

− C3 cos(m1y) sh(m1y) + C4 sin(m1y) sh(m1y)
)
+ C5y + C6,

Φ(x, y) = −Bx+
G

2m2
1

(
− C1 cos(m1y) ch(m1y) + C2 sin(m1y) ch(m1y)−

− C3 cos(m1y) sh(m1y) + C4 sin(m1y) sh(m1y)
)
+ C7y + C8.

(12)

At negative value of the parameter A determining the longitudinal temperature gradient, the
functions describing the flow patterns take the form presented in details in [22]:

u1(y) = C1 sin(k2y) sh(k2y) + C2 cos(k2y) sh(k2y)+

+ C3 sin(k2y) ch(k2y) + C4 cos(k2y) ch(k2y),

u2(y) = C1 sin(m2y) + C2 cos(m2y) + C3 sh(m2y) + C4 ch(m2y),

T1(x, y) = Ax+
F1

2k22

(
− C1 cos(k2y) ch(k2y) + C2 sin(k2y) ch(k2y)−

− C3 cos(k2y) sh(k2y) + C4 sin(k2y) sh(k2y)
)
+ C5y + C6,

T2(x, y) = Ax+
F2

m2
2

(
− C1 sin(m2y)− C2 cos(m2y) + C3 sh(m2y) + C4 ch(m2y)

)
+

+ C5y + C6,

Φ(x, y) = −Bx+
G

m2
2

(
− C1 sin(m2y)− C2 cos(m2y) + C3 sh(m2y) + C4 ch(m2y)

)
+

+ C7y + C8.

(13)

The coefficients ks,ms, F1, F2, G are calculated through the problem parameters as fol-
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lows: k1 = 4
√
Ag cosφβ1/(χ1ν1), k2 = 4

√
−Ag cosφβ1/(4χ1ν1), m1 = 4

√
Ag cosφE/4, m2 =

= 4
√
Ag cosφE, F1 = A/χ1, F2 = A(D−δχ2C∗ε)/[χ2D(1−αδ)], G = A(αD−χ2C∗ε)/[χ2D(αδ−

1)]. The index s defines the solutions for A > 0 (s = 1) and A < 0 (s = 2). The coefficients
Ci and Ci (i = 1, . . . , 8) are different integration constants for each of the systems (12), (13).
These constants satisfies the systems of algebraic equations resulting from the conditions on the
solid walls and interface (4)–(10) and the expressions (11) that determine the gas and liquid flow
rates (see [22]). The resulting systems is nonclosed. For closure, the constants C6 and C6, which
are included as free terms in the temperature function, can be assumed, for instance, to be zero.
The pressure functions p′i are recovered by their partial derivatives from the first two equations
of the systems (2), (3). Note, that the expression defining the saturated vapor concentration at
the interface (10) dictates the condition of compatibility of the problem parameters defining the
longitudinal gradients of temperature and vapor concentration: B = −Φ∗εA.

Let us consider a special case when the angle value φ = 90◦, i.e. the channel position becomes
horizontal (see Fig. 1). Then the components of the mass force vector take the form (0, -g). In
[10, 11, 18], exact solutions of special type are proposed, where the temperature and vapor
concentration functions are written as follows: Ti = (A+ Āy)x+ϑi(y), Φ = −(B+ B̄y)x+ψ(y).
In this paper, the solutions given in the [10, 11, 18] taking into account the formulas (1) with
Ā = B̄ = 0 are written in the following simplified form:

u1 =
gβ1
ν1

y3

6
A+

y2

2
c1 + yc2 + c3, u2 =

g

ν2

y3

6
(β2A+ γB) + c1

y2

2
+ c2y + c3,

T1 = Ax+
y5

120

gβ1(A)
2

ν1χ1
+
y4

24

c1A

χ1
+
y3

6

c2A

χ1
+
y2

2

c3A

χ1
+ yc4 + c5,

T2 = Ax++
y5

120

g

ν2

( A
χ2

− δ
B

D

)
(β2A+ γB) +

y4

24

( A
χ2

− δ
B

D

)
c1+

+
y3

6

( A
χ2

− δ
B

D

)
c2 +

y2

2

( A
χ2

− δ
B

D

)
c3 + yc4 + c5, (14)

Φ = Bx+
y5

120

g

ν2

B

D
(β2A+ γB) +

y4

24

B

D
c1 +

y3

6

B

D
c2 +

y2

2

B

D
c3 + yc6 + c7,

where ci, ci are integration constants determined by conditions at the boundaries of the system.
The first relation (7) entails the equality c3 = c3. The relationship between the constants
c2 and c2 is determined from the dynamic condition (8): c2 = (ρ2ν2)/(ρ1ν1) + (σTA)/(ρ1ν1).
The unknowns c1, c1, c2, c3 are found using the system of linear algebraic equations that is
a consequence of the formulas (4), (11). The equality of constants c5, c5 follows from the
second relation in formula (7). The expression c7 = Φ∗ + Φ∗ε(c5 − T0) is obtained using the
condition (10). The mass of liquid evaporating from the interface is calculated using the relation
M = −Dρ2(c6 + αc4) (see mass balance equation (9)). The constant c4 is determined from the
condition (9) as follows: c4 = (LDρ2/κ1 + δκ2)c6 + (LDρ2α/κ1 + κ2/κ1)c4. The unknowns c4,
c5, c6 are found using the system of linear algebraic equations that is a consequence of conditions
(5) and (6).

3. Examples of flows

We consider ethanol as the liquid filling the lower layer and nitrogen as the gas. The chemical
parameters of the working media are given in the order {ethanol, nitrogen} (or only ethanol)
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according to [23]: ρ = {7.89 · 102, 1.2} kg/m3; ν = {2 · 10−6, 0.15 · 10−4} m2/s; β = {1.079 ·
10−3, 3.67 · 10−3} K−1; χ = {8.9 · 10−8, 0.3 · 10−4} m2/s; κ = {0.1705, 0.02717} W/(m·K);
σT = −0.8 · 10−2 N/(m·K); D = 1.02 · 10−4 m2/s; L = 217 W·s/kg; Φ∗ = 0.1 (corresponding
to the equilibrium temperature T0 = 293.15 K); γ = −0.62; ε∗ = 0.06 K−1. The thicknesses
of liquid and gas-vapor layers are assumed to be 5 mm, the value of gas flow rate in the upper
layer of the system is 3.6 · 10−5 kg/(m·s). The Soret and Dufour coefficients are assumed to be
10−4 K−1 and 10−4 K, respectively. The value Q1, determining the liquid flow rate in the lower
layer, is assumed equal to zero. This corresponds to the condition of the closed flow in the lower
layer, which is physically correct for small values of the inclination angle (π/2 − φ) relative to
the horizontal position of the channel.

3.1. The impact of channel inclination angle on the flow patterns

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Fig. 2. Velocity profiles (a, d, g), temperature (b, e, h) and vapor concentration (c) dis-
tributions in the system: A = 10 K/m, ϑ− = 24 ◦C, ϑ+ = 17 ◦C, α = 10−4 K−1,
δ = 10−4 K, g = 9.81 m/s2: (a,b,c) — φ = 80◦ M = 2.124 · 10−6 kg/(m2·c), (d,e,f) — φ = 85◦

M = 2.124 · 10−6 kg/(m2·c), (g,h) — φ = 90◦ M = 2.124 · 10−6 kg/(m2·c)

Let us consider the impact of angle φ on the character of flow in the system, as well as on the
intensity of the liquid evaporation process into the gas-vapor layer under conditions of normal
gravity. The profiles of longitudinal velocity (a, d), temperature distribution (b, e), and vapor
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concentration (c, f) are presented in Fig. 2 for the cases when solutions of the form (12) were
used as a calculation model. For the case of horizontal layer the flow characteristics are based on
formulas (14) (g, h, k). As the value of angle φ increases from 80◦ to 90◦, which corresponds to a
decrease in the channel inclination angle with respect to the horizontal plane, the intensity of the
return flow near the interface decreases. The temperature distributions change both qualitatively
and quantitatively. In the case when the angle φ is 80◦, the formation of a thermocline near
the interface is observed. In the case of decreasing (π/2 − φ) angle, the zone of the highest
temperature moves to the lower wall of the channel, which is caused by its additional heating
(ϑ− = 24 ◦C). The vapor concentration distribution at changing values of the parameter φ
qualitatively remains constant, but there are some quantitative changes. As φ increases, the
values of the function Φ decrease. Note, that at the same time the liquid evaporation intensity
does not depend on the channel inclination angle.

(a) (b) (c)

Fig. 3. Velocity profile (a), temperature (b) and vapor concentration (c) distributions in the
system: A = 10 K/m, ϑ− = 24 ◦C, ϑ+ = 17 ◦C, g = 9.81 · 10−2 m/s2: (a,b,c) – φ = 80◦ M =
2.124 · 10−7 kg/(m2·c)

There is an extremely weak dependence of the functions characterizing liquid and gas flows
on the channel inclination angle under microgravity conditions. The flow patterns both qualita-
tively and quantitatively remain close to those obtained using the formulas (14) (see Fig. 3 and
Fig. 2 (g, h, k)) when velocity profiles and temperature and vapor concentration distributions are
plotted using the exact solutions (12) describing flows in the inclined layer. However, the mass
flow rate of evaporation also decreases in the case of decreasing gravity.

3.2. The impact of thermal load on the flow patterns

Figs. 4 and 5 show the results illustrating the impact of the longitudinal temperature gra-
dient on the velocity profiles, temperature and vapor concentration distributions, as well as the
processes of liquid evaporation and condensation in an inclined channel. The angle φ here is 70◦.
Let us consider the case when A > 0 (Fig. 4). The growth of the parameter A value has only a
quantitative effect on the longitudinal velocity in the system, while the qualitative character of
the flow remains unchanged (Fig. 4 (a, d, g)). The temperature distribution changes significantly
both qualitatively and quantitatively. In the case of small values of the longitudinal gradient A,
the highest temperature values are observed at the lower wall of the channel, which is a conse-
quence of its heating. As the parameter A increases, the value ϑ− = 27 ◦C has less influence on
the character of temperature distributions; the highest values of the temperature functions are
near the interface. This effect is accompanied by a more intensive evaporation of the lower liquid
and by the increasing of values of the vapor concentration function. The character of distribution
of the Φ function remains unchanged.
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(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Fig. 4. Velocity profiles (a,d,g), temperature (b,e,h), and vapor concentration (c) distribu-
tions in the system: ϑ− = 27 ◦C, ϑ+ = 20 ◦C, g = 9.81 m/s2, (a,b,c) — A = 1 K/m,
M = 0.212 · 10−6 kg/(m2·c), (d,e,f) — A = 2.5 K/m, M = 0.531 · 10−6 kg/(m2·s), (g,h) —
A = 5 K/m, M = 1.062 · 10−6 kg/(m2·s))

In the case when longitudinal temperature gradients have negative values (the heater is
located on the right side, see Fig. 5), some qualitative changes in the velocity profile appear. The
intensity of return currents near the interface decreases with increasing modulus of A values. The
quantitative characteristics of the temperature distribution change weakly, but the character of
the function itself changes. The highest temperature values are conserved near the lower wall of
the channel for all A, but the heater influence increases. The picture of the vapor concentration
distribution also changes qualitatively with respect to the case when A > 0. As the value of |A|
increases, the drop in the value of the function Φ also increases. Note, that in this case there is
a process of condensation of liquid (M < 0).

Conclusions

The work presents exact solutions of a special type of Navier–Stokes equations in the Boussi-
nesq approximation. Mathematical modeling of stationary bilayer convective flows taking into
account heat and mass transfer at a non-deformable thermocapillary interface is carried out.
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(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Fig. 5. Velocity profiles (a,d,g), temperature (b,e,h), and vapor concentration (c) distributions in
the system: ϑ− = 27 ◦C, ϑ+ = 20 ◦C, g = 9.81 m/s2, (a,b,c) — A = −1 K/m, M = −0.212 ·10−6

kg/(m2·c), (d,e,f) — A = −2.5 K/m, M = −0.531 · 10−6 kg/(m2·c), (g,h) — A = −5 K/m,
M = −1.062 · 10−6 kg/(m2·c)

The effects of thermodiffusion and diffusive thermal conductivity are considered in the gas-vapor
layer. The condition of zero vapor flux is set on the upper wall of the channel. The flows are
modeled for both inclined and horizontal channels. It is shown that in the case of an inclined layer
the location of the heater on the system boundaries (the sign of the longitudinal temperature
gradient) affects the type of the exact solution.

Examples of longitudinal velocity profiles, distributions of temperature and vapor concen-
tration for the «ethanol — nitrogen» system are given. Comparison of the results obtained by
means of exact solutions describing the flow in inclined and horizontal layers is presented. The
impact of the channel inclination angle, gravitation level and thermal load on the character of
the flows has been studied. It is shown that in the case of normal gravity, an increase in the
inclination angle of the system significantly changes the character of the flow, while in conditions
of microgravity such effect is not observed.

The work was supported by the Russian Science Foundation (project no. 22-11-00243,
https://rscf.ru/project/22-11-00243/).
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Влияние угла наклона и тепловой нагрузки на характер
течения в двухслойной системе с учетом массопереноса

Екатерина В.Ласковец
Евгений Е.Макаров

Институт вычислительного моделирования СО РАН
Красноярск, Российская Федерация

Алтайский государственный университет
Барнаул, Российская Федерация

Аннотация. Изучаются двухслойные конвективные течения жидкости и парогазовой смеси в на-
клонном канале с учетом тепло- и массопереноса на термокапиллярной границе раздела. Мате-
матическое моделирование проводится на основе точных решений специального вида уравнений
Навье–Стокса в приближении Обербека-Буссинеска с учетом эффектов Соре и Дюфура в газопа-
ровом слое. Наклонное или горизонтальное положение канала, а также направление граничной теп-
ловой нагрузки определяют вид точного решения и алгоритм его построения. Приведены примеры
профилей скорости, распределения температуры и концентрации пара в системе «этанол — азот».
Представлены результаты сравнительного анализа двухслойных течений в системе, расположен-
ной горизонтально и под небольшим наклоном относительно горизонтального положения. Изучено
влияние интенсивности тепловой нагрузки на характер течения и массоперенос на границе раздела.

Ключевые слова: точное решение, двухслойное течение, термокапиллярная граница раздела,
конвекция, массоперенос, наклонный канал.
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