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Abstract. The flow in the far axisymmetric momentumless turbulent wake is described with the use of
a mathematical model based on k — £ semi-empirical model of turbulence. A group-theoretical analysis
of the mathematical model of the wake is performed. The similarity reduction of the model to a system
of ordinary differential equations is obtained. Asymptotic expansion of the solution in the vicinity of a
singular point is used to construct approximate solution of corresponding boundary value problem.
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Introduction

Turbulent momentumless wake behind body of revolution was considered in many publica-
tions (see, e.g., [1-17] and references therein). The turbulent axisymmetric wake has been studied
experimentally [1-6]. These experiments showed that wake asymptotically tends to self-similarity
at a relatively small distance from the body.

Theoretical analysis of the self-similarity of the wake was performed in [7-12]. In these works
asymptotic behaviour of the far wake was investigated. The non-linear eigenvalue problem for
turbulent energy, its dissipation rate and velocity deficit was solved numerically Hassid [10]. Ex-
ponents in the power law were also obtained. The asymptotic behaviour of the wake was analysed
[12] using the theory of self-similar solutions of the second kind [18]. The similarity solution of
the second-order turbulence model was obtained analytically and the process of transition to
self-similarity was studied numerically. It was found that a single-point spectrum of solutions of
corresponding eigenvalue problem for turbulent energy and dissipation rate exists. Moreover, it
was shown that wake parameters is weakly dependent on empirical constant Ces.

Numerical modelling of the axisymmetric momentumless turbulent wake was carried out using
different semi-empirical turbulence models [13-17].

Mathematical model based on k—e semi-empirical model of axisymmetric momentumless wake
was used to tackle the problem of degeneration of the far turbulent wake behind a self-propelled
body in a passively stratified medium [19-22]. The model was reduced [20-22] to a system of
ordinary differential equations using group-theoretical analysis [23] and the B—determining equa-
tions method [24]. The boundary-value problem for the reduced system was solved numerically
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using shooting method. Self-similarity index was determined during calculation process. An
approach to determine self-similarity index has been suggested [25] where approximate solution
to a model of the far plane momentumless turbulent wake was constructed using asymptotic
expansion of the solution in a vicinity of the singular point.

This work is a continuation of studies presented in [20-22, 25]. In this paper an approximate
solution was constructed to describe flow in the far axisymmetric momentumless turbulent wake.

1. Similarity reduction

The following semi-empirical model of turbulence is used to describe flow in the far axisym-
metric momentumless turbulent wake
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Here U; = U — Uy is the deficit of the mean longitudinal velocity component, k is the kinetic
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energy of turbulence, and ¢ is the kinetic energy dissipation rate. It is assumed that fluid is
incompressible and the flow is steady. Moreover, in what follows the undisturbed flow velocity
Uy is taken to be unity.

The empirical constants are as follows

C,=0.136, 0 = 1.3, Cey = 1.92.

The empirical constant C), has a modified value of 0.136 because model (1)-(3) was constructed
as a simplification of more complicated algebraic model of Reynolds stresses [26-29].

The consequences of equation (1) is the following law of conservation of total excess momen-
tum

J= / rUvdr = 0. (4)
0

A theoretical-group analysis [23] is used to construct self-similar solution. The Lie algebra
basis of equations (1)—(3) consists of the following infinitesimal generators
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Using linear combination of operators X3, X, and X5 it is not difficult to obtain the following
representation for solution of (1)—(3)

Uy = 2PUs(t), e=2?*"2K(t), e = 2**3E(t), t =r/z", (5)

here t is the self-similar variable, a and g are arbitrary constants appearing in the linear combi-
nation of operators X3, X, and Xs.

Using representation (5) the initial mathematical model (1)—(3) can be reduced to the fol-
lowing system of ordinary differential equations

KUY K KE' K
Cumg? + (C“E <2K’— = +t) +at) U — BU2 =0, (6)
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Solution of reduced system (6)—(8) has to satisfy the following conditions

U3(0) = K'(0) = E'(0) = 0, 9)

Us(a) = K(a) = E(a) = 0. (10)

The first group of conditions take into account that flow is symmetric with respect to the Ox
axis. The second group of conditions follow from the requirement that flow is undisturbed outside
the turbulent wake domain. The value of a is related to the turbulent wake semi-width and it
can be set equal to unity in the following calculations by virtue of the invariance of equations of
reduced system (6)—(8) with respect to the scaling transformation. It should also be noted that
coefficients of system (6)—(8) have singularities in the boundary conditions.

2. Approximate solution

According to the results presented in [25] to construct approximate solution of boundary-
value problem (6)—(10) asymptotic expansion of a solution of equations (6)—(8) near the singular

point t =1

U2 = ul(l — t)10/7 —+ UQ(l — t)17/7 + Ug(]. — t)20/7 + U4(1 — t)24/7 -+ U5(1 — t)27/7+

31/7 (11)
Fug(1 — )37 4 ur (1 —t)3Y7 4 o(J1 — 77,
K = kl(l _ t)10/7 + k2(1 _ t)17/7 + k3(1 _ 25)20/7 + k’4(1 _ t)24/7 + k5(1 _ t)27/7—|- ( )
12
o (L= 87 4 k(1= )*M/7 4 o] — 2T),
E = 61(1 _ t)13/7 + 62(1 _ t)20/7 + 63(1 _ t)23/7 + 64(1 _ t)27/7 + 65(1 _ t)30/7+ (
13)
teg(1— )33/ 4 er(1— )37 4 o(|1 — t**/7)
is patched at the point t = 0 with an expansion of the solution near t = 0
Us =Uy+ Oézt2 + O(4t4 + Oé6t6 + Ozstg + 0(158)7 (14)
K = Ko + Bot® + Bat* + Bt® + Bst® + o(t®), (15)
E = Eo + 72t + yat* + 76t® + 7st® + o(2%), (16)
where
12580 Ey 1258U0E3 [ 124E,
= = — 600 125 25
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46 = T 45278208K8 K2 Ko

— 418500002 + 107500003 — 625008% — 868750c — 500008 + 1344375),
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Representing (11)—(13) as a power series at t = 0

Us = Qo + ant + aot® + ast® + aut® + ast® + aet’® + art’ + ast® + o(t?), (17)
K = Bo + But + Bat? 4 Bat® + Bat® + Bst® + Bet® + Brt™ + Bst® + o(t%), (18)
E = + Fut + Fot® + 3t + Fut? + F5t° + F6t® + 7t + 3st® + o(t%), (19)

where

1
Qg =u1+ ug+ uz+ ug+ us+ ug + u7, @y :—?(10u1+ 1Tug+ 20us + 24us+ 27us+ 30ug+ 3lur),

1
Q2 :@(15U+85U2 + 130us3 + 204uy + 270us + 345ug + 372uz),
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1
Q3 = (2OU1 85U2 — 260’113 — 6SOU4 — 117OU5 — 184Ou6 — 2108’[1,7),

343
1
Qy = 2401 ——(55uy — 85uy — 65u3 + 510uyg + 1755us + 4140ug + 5270u7),
1
as = 16807(198u1 187us — 104ug + 408uy + 351us — 1656ug — 3162u7),
1
Qg = 117619 (825u1 — 561us — 260uz + 748uy + 468us — 1380ug — 2108uy),
o7 =m(26400u1 — 14025uy — 5720u3 + 13464uy 4+ 7020us — 16560us — 23188ur),
Gs = To353g07 (| 28700u1 — 6100us — 20735u; + 42075y + 19305us — 39330us — 52173u7),

Bo =ki+ ko+ ks+ ka+ ks+ ket7, Pr1 = 7;(1Ok1+ 17ka+ 20k3+ 24ky+ 27ks+ 30ke+ 31k7),
B2 =
B3 =
B1=
Bs =

@(15k1 + 85ky + 130k3 + 204ky + 270ks + 345ke + 372k7),

1
313 ——(20k; — 85ke — 260k — 680ks — 1170k5 — 1840ks — 2108k7),

2101 ——(55k1 — 85ke — 65k3 + 510ks + 1755k5 + 1840ks — 2108k7),

16807(198]€1 187ky — 104ks + 408k, 4 351ks — 1656kg — 3162k7),
BG :m(825k‘1 — 561ky — 260k3 + 748ky4 + 468ks — 1380kg — 2108k7),
57 Zm(26400k’1 — 14025k — 5720k3 + 13464k, + 7020ks — 16560ks — 23188]@’7),

Bs = (128700k1 — 56100ky — 20735k3 + 42075k, + 19305ks — 39330ks — 52173k7),

40353607
1
Yo =€1 +e3+e3+eqs+es+egt+er, Y= —?(1361—% 20es+ 23e3+ 27e4+ 30es5+ 33eg+ 3467),

Yo = (3961 + 130e2 + 184e3 + 270e4 + 345e5 + 429¢6 + 459¢e7),

49
s = 34113 (131 — 260e3 — 552e3 — 1170e4 — 1840e5 — 2717eg + 3060e7),

T =3 4101 (26e1 — 65e2 + 2763 + 1755e4 + 4140e5 + 8151eg + 9945e7),

¥ =1 6;07(7861 104es + 276e3 + 351eq — 1656e5 — 8151eq — 11934e7),

Y6 :ﬁ(z%el — 260e3 + 552e3 + 468¢4 — 1380e5 — 2717 — 1989¢7),

V1 Zm(&%el — 5720e3 + 10488e5 + 7020es — 16560e5 — 24453 — 15912¢7),

s =m(37323e1 — 20735ez + 34086¢;3 + 19305e4 — 39330e5 — 48906e5 — 29835¢7),

and equating like powers of ¢ in (14)—(16) and (17)—(19), the system of 27 algebraic equations
with 20 unknowns «, 3, Uy, Ko, Eo, u;, ks, €5, i = 1,...,7 is obtained. The equation for E at t®
is omitted. This system of algebraic equations is solved numerically. The solution of this system
is facilitated because (6) is split off from (7) and (8). The described procedure is initially applied
to equations (7) and (8) to find

a = 0.2208287460, Ky = 0.7998977201, FEy = 0.9205281496, k; = 4.111142059,
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ko = —22.05686118, k3 =40.76497218, k4 = —49.00284702, ks = 43.42154950,

ke = —31.82206053, k7 = 15.38400271, ey = 10.09175704, e = —85.15426605,

e3 = 173.9330323, e4 = —224.1225187, es = 205.3920322, es = —154.4430672,
er = 75.22355867.

a 0.9 b
0.7 0.8
0.6 0.74
0.5 0.67
0.5
K 0.41 B
0.4
0.3
0.3
0.2
0.2
0.1 ol
0 |
0 0.2 0.4 0.6 0.8 I 0 0.2 0.4 0.6 0.8 I

Fig. 1. Profiles of approximate and numerical solutions: a — the kinetic energy of turbulence;
b — the kinetic energy dissipation rate; ¢ — the deficit of the longitudinal averaged velocity
component; solid lines — numerical solution, dotted lines — approximate solution
Obtained values are unique, taking into account (9), (10) and conditions
a, Ko, Eg >0; K'(t),E'(t) <0, te(0,1).

Further, equation (6) is considered in a similar way and the following values are determined:

Up=1, B=-1.698508059, u; =—10.17461628, wus = 101.0215753, wus = —191.1549873,
ug = 238.1557643, wus = —197.6563167, ue = 79.67680195, wuy; = —18.86822130.
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In order to increase accuracy one of the algebraic equations for determining coefficients of asymp-
totic expansion (11) is replaced by integral relation (4).

The obtained values a, Ky, and Fy are used to solve boundary value problem (6)—(10) by the
shooting method. As a result of numerical calculations the following values were found: Ky =
0.79617, Ey = 0.92053, and 8 = —1.822. The difference between approximate and numerical
solutions does not exceed 5% (see Fig. 1).

Thus, at large distance behind the body the flow in an axisymmetric momentumless turbu-
lent wake is characterized by the following laws of similarity degeneration: Uj(x,0) ~ z~1-822,
e(z,0) ~ 271558 g(z,0) ~ 272558 | ~ 20221 (] is the width of the wake). The established laws

are consistent with those presented in [12,17,21,22,].

The author is grateful to Professor O. V. Kaptsov and Professor G. G. Chernykh for their at-
tention to the work.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation in the framework of the establish-
ment and development of regional Centers for Mathematics Research and Education (Agreement

no. 075-02-2023-912).

References

[1] E.Naudascher, Flow in the wake of self-propelled bodies and related sources of turbulence, J.
Fluid Mech., 22(1965), no. 4, 625-656.

[2] A.S.Ginevskiy, Theory of turbulent wakes and jets (Teoriya turbulentnyh sledov i struy),
Moscow, Mashinostroenie, 1969 (in Russian).

[3] N.V.Alekseenko, V.A.Kostomaha, Experimental research axisymmetric momentumless tur-
bulent jet flow, Prikl. Mekh. i Tekhn. Fiz., (1987), no. 1, 65-69 (in Russian).

[4] H.Higuchi, T.Kubota, Axysymmetric wakes behind a slender body including zeromomentum
configurations, Phys. Fluids, 2(1990), no. 9, 1615-1623.

[5] A.LSirviente, V.Patel, Wake of a self-propelled body. Part 1: Momentumless wake, ATAA J.,
38(2000), no. 4, 613-619. DOI:10.2514/2.1032

[6] J.A.Schetz, Injection and mixing in turbulent flow, Progr. In Astronautics and Aeronautics,
Vol. 68, 1980.

[7] M.L.Finson, Similarity behaviour of momentumless turbulent wakes, J. Fluid Mech.,
71(1975), no. 3, 465-479.

[8] V.A.Sabelnikov, On some features of turbulent flows with zero excess momentum (O neko-
toryh osobennostyah turbulentnyh techeniy s nulevym izbytochnym impulsom), Uch. Zap.
TsAGI, 6(1975), no. 4, 71-74 (in Russian).

[9] V.A.Gorodtsov, Similarity and weak closing relations for symmetric free turbulence, Fluid
Dyn., 14(1979), no. 1, 31-37.

[10] S.Hassid, Similarity and decay laws of momentumless wakes, Phys. Fluids, 23(1980), no. 2,
404-405.

- 235 —



Alexey V.Shmidt Approximate Solution to a Model of the far Momentumless. . .

[11] J.Piquet, Turbulent flows. Models and physics, Berlin, Heidelberg: Springer-Verlag, 1999.

[12] V.Maderich, S.Konstantinov, Asymptotic and numerical analysis of momentumless turbu-
lent wakes, Fluid Dyn. Res., 41(2010), 25. DOI: 10.1088/0169-5983/42/4,/045503

[13] B.A.Kolovandin, N.N.Luchko, Numerical modeling of the turbulent velocity field of an ax-
isymmetric impulse-free wake (Chislennoe modelirovanie turbulentnogo polya skorosti osesim-
metrichnogo bezympulsnogo sleda), Teplomassoobmen-6, Minsk, ITMO AN BSSR, 1(1980),
no. 2, 126-135 (in Russian).

[14] G.G Chernykh, N.N.Fedorova, V.A.Kostomakha, N.V. Lesnova, Experimental and numer-
ical simulation of turbulent axisymmetric momentumless wake behind sphere, Proc. of IC-
MAR 92, Novosibirsk, Inst. of Theor. and Appl. Mech., 1992, no. 1, 30-33.

[15] G.G.Chernykh, A.G.Demenkov, N.N.Fedorova, Numerical models of a plane and axisym-
metric turbulent wakes in homogeneous fluid, Proc. of ICMAR 94, Novosibirsk, 1994, Pt. 2,
76-81.

[16] O.F.Voropaeva, The numerical investigation of momentumless turbulent wakes behind
sphere based on semi-empirical turbulence models of second order, Computational Technol-
ogy, 7(2002), no. 2, 11-23 (in Russian).

[17] O.F.Voropaeva, The numerical modelling of the far momentumless axisymmetric turbulent
wake, Computational Technology, 8(2003), no. 2, 36-52 (in Russian).

[18] G.I.Barenblatt, Similarity, self-similarity and intermediate asymptotics, New York, Plenum,
2003.

[19] O.F.Voropaeva, Far momentumless turbulent wake in a passively stratified medium, Com-
putational Technology, 8(2003), no. 3, 32-46 (in Russian).

[20] O.V.Kaptsov, A.V.Shmidt, Application of the B-determining equations method to one prob-
lem of free turbulence, SIGMA, 8(2012), 073. DOI: 10.3842/SIGMA.2012.073

[21] O.V.Kaptsov, A.V.Fomina, G.G.Chernykh, et al., Self-similar decay of the momentumless
turbulent wake in a passive stratified medium, Math. Modell., 27(2015), no. 1, 84-98 (in Rus-
sian).

[22] O.V.Kaptsov, A.V.Shmidt, A three-dimensional semi-empirical model of a far turbulent
wake, J. of Appl. Math. and Mech., 79(2015), no. 5, 459-466.
DOL: 10.1016/J.JAPPMATHMECH.2016.03.007

[23] L.V.Ovsyannikov, Group analysis of differential equations, New York, Academic Press, 1982.

[24] O.V.Kaptsov, B-determining equations: applications to nonlinear partial differential equa-
tions, Euro. J. Appl. Math., 6(1995), 265-286. DOI: 10.1017/S0956792500001832

[25] A.V.Shmidt, Approximate solution for a flow in the far flat momentumless turbulent wake,
Prikl. Mekh. i Tekhn. Fiz., 64(2023), 53-59 (in Russian). DOI: 10.15372/PMTF202215204

[26] W.Rodi, Examples of calculation methods for flow and mixing in stratified fluids, J. Geophys.
Res., 92(1987), no. 5, 5305-5328.

- 236 —



Alexey V.Shmidt Approximate Solution to a Model of the far Momentumless. . .

[27] O.F.Voropaeva, Yu.D.Chashechkin, G.G. Chernykh, Diffusion of a passive admixture from
a local source in a turbulent mixing zone, Fluid Dyn., 32(1997), no. 2, 212-218.

[28] G.G.Chernykh., O.F.Voropayeva, Numerical modeling of momentumless turbulent wake dy-
namics in a linearly stratified medium, Computers and Fluids, 28(1999), no. 3, 281-306.

[29] N.P.Moshkin, A.V.Fomina, G.G.Chernykh, Numerical modeling of the dynamics of a turbu-
lent wake behind a towed body in a linearly stratified medium (Chislennoe modelirovanie di-
namiki turbulentnogo sleda za buksiruemym telom v lineino stratifitsirovannoi srede), Matem.
Modelirovanie, 19(2007), no. 1, 29-56.

ITpubamkeHHoe penieHne Moae N JaJdbHero 6e3bIMITYJIbCHOTO
OCECUMMETPUYHOTO TypOYJIEHTHOTO cJjie/ia

Aunekceii B. IIImuar
WMucturyT Braunciureasaoro mogenuposanuss CO PAH
Kpacnosipck, Poccuiickas Peepariust

Awunoranusi. JIns ommcaHus TeYeHUsT B JAJTBHEM OCECUMMETPUYIHOM OE3BIMITYJILCHOM TYpPOYIEHTHOM
cJie/ie TIPUBJIEKAETCA MOJIe/Ib, OCHOBAHHAs Ha Kk — € MOeau TypOyJIEHTHOCTH. BBINIOSHEH TeopeTuKo-
rpyunoBoii ananu3 mojnesu. Ilosydena aBToMo/iesIbHAA PEIyKIIAs yPABHEHNN MO K CHCTEME OOBIKHO-
BEHHBIX rbdepeHITnaIbHbIX ypaBHennii. st mocTpoennst mpub/IMzKEHHOTO PEIEHIsI COOTBETCTBY IOIIEH
KPaeBOil 33/1a4M MUCIIOIB3YEeTCs ACHMITOTHYECKOE PA3JIOKEHIe PEIeHUsI B OKPECTHOCTH 0CO0OH TOYKU.

KiroueBsle cioBa: 1aibHuil 6€3bIMITYIbCHBI OCECHMMETPUYHBIN TYPOYIEHTHBIH CJiell, TPUOIIMIKEeHHOe

penienue, aCUMIITOTUYIECKOEe PA3JIOKEeHUe.
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