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Abstract. The paper presents an analytical model allowing to investigate the electric current distribu-
tion in a three-layer conductive structure. The proposed model takes into account the characteristics of
the three conductive layers and the transient resistances between them. Expressions for the current dis-
tribution and electric potential variation along the structure, as well as its total resistance are obtained.
In addition, quantitative estimates showing the features of the electric current redistribution between
the layers with alteration of the layers parameters are presented.
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The study of the current flow processes in multilayer conductive structures is of great interest
in a number of areas, both in scientific and applied terms. The papers [1–10] present an analysis
of the electric current distribution in two-layer conductive structures as applied to semiconductor
devices based on analytical one-dimensional models using the so-called transmission line method
(TLM). In most of these works, the main objects of analysis are planar metal-semiconductor
contacts and the static current distribution, and the dependence of the contact resistance on
the geometric and electrical parameters of the structure are studied. One of the layers of the
model is a metal, which is usually considered as an ideal conductor having zero resistance. The
second layer is a semiconductor, which conductive properties are described by the specific volume
resistance. These models also take into account the specific contact resistance between metal
and semiconductor layers.

In [2] an attempt is made to take into account in the TLM model the contribution of capaci-
tance between a metal and a semiconductor separated by an interface layer. In [3] a sufficiently
detailed description of TLM models of semiconductor structures is given both in the region of
planar metal-semiconductor contacts and a two-layer silicide-semiconductor structure in the in-
terelectrode region. Model for integrated circuit contacts in [4] is built taking into account the
resistance of the metal layer. In [5–10] a planar contact model taking into account the lon-
gitudinal resistance of the metal-semiconductor transition layer is presented. Accordingly, the
resistance of the metal-transition layer and the transition layer-semiconductor are taken into
account separately.
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Similar problems of constructing models of the electric current flow are also of interest in
the study of processes in the human skin and muscle tissues in relation to electromyography
and electrical stimulation [11–14]. In this case, the human skin is considered as a multilayer
conductive structure. An attempt to build an analytical model of current flow for the skin,
similar to the TLM models described above, is presented in [12, 13]. However, the results of the
distribution of electric current in the human skin in [11–14] were obtained only on the basis of a
numerical model.

In this paper, an analytical model is proposed that describes the flow of electric current in a
three-layer conducting structure. Such analytical formulation has not been discussed previously
and is suitable for solving research problems associated with any of the mentioned applied fields.

1. Problem Formulation

Consider the model of a three-layer structure shown in Fig. 1. Three conductive layers are
highlighted in the figure. The indexes of the variables in the figure are assigned in accordance
with the conditional numbers of the conductive layers: 1 is the top layer; 2 — the second (middle)
layer; 3 — the third (the lowest) layer.

Fig. 1. Three-layer conductive structure

The layers of the structure are characterized by specific volume resistances ρ1, ρ2, ρ3 and
thicknesses h1, h2 and h3 for the first, second and third layers, respectively. Layer parameters do
not alter along the longitudinal coordinate z. The length of the structure is L. In the direction
perpendicular to the plane of the figure, the three-layer structure is also homogeneous and its
width is equal to W .

When considering the structure mentioned above, the following assumptions are used.
a) The length of the three-layer structure L much greater than the thicknesses of the layers

h1, h2 and h3. Taking into account the conditions h1 << L, h2 << L, h3 << L the transverse
current distribution in each of the layers can be assumed to be uniform. Therefore, we will use
a one-dimensional model, where all variables in each of the layers may vary along z axis only.

b) The interfaces between the layers are characterized by specific contact resistivities ρc12
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between the first and second layers, and ρc23 between the second and third layers. In practice,
this assumption corresponds to the case when the thickness of the transition region between the
resistive layers is much less than the values h1, h2 and h3.

Without loss of generality, we assume that a constant voltage U0 is applied to the upper layer
of the structure. At the same time, on the left boundary (at z = 0) the electric potential is equal
to zero, and on the right boundary (at z = L) the potential is positive and equal to U0.

The boundary conditions for the considered model have the form:

I1(z = 0) = I0, I1(z = L) = I0,

I2(z = 0) = 0, I2(z = L) = 0,

I3(z = 0) = 0, I3(z = L) = 0,

(1)

where I1, I2, I3 are the currents in the first, second and third layers, respectively. The total
current I0 flowing through a three-layer structure depends on the parameters of this structure
and the applied voltage U0. Obviously, I0 = I1 + I2 + I3.

2. Mathematical model
Equations for the currents flowing in the layers can be expressed as follows:

I1(z) =
Wh1

ρ1

dU1(z)

dz
, (2.1)

I2(z) =
Wh2

ρ2

dU2(z)

dz
, (2.2)

I3(z) =
Wh3

ρ3

dU3(z)

dz
, (2.3)

where dU1, dU2 and dU3 are the voltage drops in the elementary sections dz in the first, second
and third layers, respectively.

Part of the current I1(z) flowing in the upper layer of the structure branches off into the
adjacent (second) layer, so that the current I1(z) in the section dz decreases by dIc12(z), where
dIc12(z) is the current flowing through the interface between the layers. In this case, the cur-
rent I2(z) in the second layer increases correspondingly by dIc12(z). Similarly, the current is
redistributed between the second and third layers.

Therefore, it is correct to write the current balance ratios in the form:

I1(z + dz)− I1(z) = −dIc12(z), (3.1)

I2(z + dz)− I2(z) = dIc12(z)− dIc23(z), (3.2)

I3(z + dz)− I3(z) = dIc23(z). (3.3)

On the other hand, the currents dIc12(z) and dIc23(z) flowing through the interface between
the layers depend on the difference in electric potentials in adjacent layers

Uc12(z) = U2(z)− U1(z), (4.1)
Uc23(z) = U3(z)− U2(z), (4.2)

so

dIc12(z) =
W

ρc12
Uc12(z)dz or

dIc12(z)

dz
=

W

ρc12
Uc12(z), (5.1)

dIc23(z) =
W

ρc23
Uc23(z)dz or

dIc23(z)

dz
=

W

ρc23
Uc23(z). (5.2)
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To find the currents flowing in the layers in the cross section (z + dz), we write down the
equations obtained by expanding expressions (2.1), (2.2) and (2.3) in a Taylor series, keeping the
first two terms of the series:

I1(z + dz) ≈ Wh1

ρ1

[
dU1(z)

dz
+

d2U1(z)

dz2
dz

]
, (6.1)

I2(z + dz) ≈ Wh2

ρ2

[
dU2(z)

dz
+

d2U2(z)

dz2
dz

]
, (6.2)

I3(z + dz) ≈ Wh3

ρ3

[
dU3(z)

dz
+

d2U3(z)

dz2
dz

]
. (6.3)

Let’s get the equation for distribution U1(z) in the first layer. To do this we substitute the
right side of (6.1) in (3.1) instead of the first term I1(z + dz), and replace the second term I1(z)
by (2.1), and the right side — dIc12(z) by (5.1) :

Wh1

ρ1

[
dU1(z)

dz
+

d2U1(z)

dz2
dz

]
− Wh1

ρ1

dU1(z)

dz
= − W

ρc12
Uc12(z)dz or

d2U1(z)

dz2
= −ρ1

h1

Uc12(z)

ρc12
.

Similarly, we obtain expressions for the second and third layers. Then the system of equations
for all three layers has the form:

d2U1(z)

dz2
= −ρ1

h1

Uc12(z)

ρc12
, (7.1)

d2U2(z)

dz2
=

ρ2
h2

[
Uc12(z)

ρc12
− Uc23(z)

ρc23

]
, (7.2)

d2U13z)

dz2
=

ρ3
h3

Uc23(z)

ρc23
. (7.3)

Let us take into account that Uc12(z) = U1(z) − U2(z), whence, using (7.1) and (7.2), we
obtain

d2Uc12(z)

dz2
=

d2U2(z)

dz2
− d2U1(z)

dz2
=

ρ2
h2

[
Uc12(z)

ρc12
− Uc23(z)

ρc23

]
+

ρ1
h1

Uc12(z)

ρc12
.

Combining this relation with a similar expression for Uc23(z), we write down the general
system of equations

d2Uc12(z)

dz2
=

1

ρc12

[
ρ1
h1

+
ρ2
h2

]
Uc12(z)−

1

ρc23

ρ2
h2

Uc23(z),

d2Uc23(z)

dz2
= − 1

ρc12

ρ2
h2

Uc12(z) +
1

ρc23

[
ρ2
h2

+
ρ3
h3

]
Uc23(z).

(8)

The solution of this system of equations makes it possible to determine the distribution of
electric currents in a three-layer structure.

3. Analytical solution
To simplify the notations, we represent the system (8) in the following form:

d2Uc12(z)

dz2
= AUc12 +BUc23,

d2Uc23(z)

dz2
= CUc12 +DUc23.

(9)
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whereA=[(ρ1/h1)+(ρ2/h2)]/ρc12, B=−ρ2/(ρc23h2), C=−ρ2/(ρc12h2), D=[(ρ2/h2)+(ρ3/h3)]/ρc23.
For the resulting system, the characteristic equation with respect to the parameterλ describing

its particular solutions, has the form

λ4 − (A+D)λ2 + (AD −BC) = 0. (10)

This biquadratic equation has four roots λ1, λ2, λ3, λ4. Since the characteristic equation has
two pairs of roots λ that differ in sign, and they are real simple, the solution of the system for
Uc12 can be written in the following form:

Uc12 = C1 exp(λ1z) + C2 exp(λ2z) + C3 exp(λ3z) + C4 exp(λ4z), (11)

where C1, C2, C3, C4 are constants, which values are determined by the boundary conditions (1).
It is obvious that the terms containing λ > 0 make an increasing contribution to (11) along the
z axis, while the terms with λ < 0 make a decreasing one.

Accordingly, the solution for Uc23 (including B = −ρ2/(ρc23h2) ̸= 0) will also contain four
constants of integration:

Uc23 =
1

B

(
d2Uc23(z)

dz2
−AUc12

)
=

1

B

4∑
i=1

Ciλ
2
i exp(λiz)−

A

B

4∑
i=1

Ci exp(λiz). (12)

To determine the constants C1, C2, C3 and C4 we use the boundary conditions. Using (1)
and expressions (2.1), (2.2) and (2.3), we relate I1(z), I2(z), I3(z) and Uc12(z), Uc23(z) on the
boundaries of the structure z = 0 and z = L through U1(z), U2(z), U3(z) using the formulas

dUc12

dz
=

dU2

dz
− dU1

dz
, (13.1)

dUc23

dz
=

dU3

dz
− dU2

dz
. (13.2)

The derivatives of U1, U2, and U3 on the right-hand sides of (13.1) and (13.2) are expressed
using the boundary conditions (1).

On the left boundary of the structure at z = 0, taking into account (2.1), (2.2), and (2.3), we
have the relations

I1(z = 0) =
Wh1

ρ1

dU1(z = 0)

dz
= I0 or

dU1(z = 0)

dz
= I0

ρ1
Wh1

, (14.1)

I2(z = 0) =
Wh2

ρ2

dU2(z = 0)

dz
= 0 or

dU2(z = 0)

dz
= 0, (14.2)

I3(z = 0) =
Wh3

ρ3

dU3(z = 0)

dz
= I0 or

dU3(z = 0)

dz
= 0. (14.3)

Similarly, for the right boundary at z = L we get :

I1(z = L) =
Wh1

ρ1

dU1(z = L)

dz
= I0 or

dU1(z = L)

dz
= I0

ρ1
Wh1

, (15.1)

I2(z = L) =
Wh2

ρ2

dU2(z = L)

dz
= 0 or

dU2(z = L)

dz
= 0, (15.2)

I3(z = L) =
Wh3

ρ3

dU3(z = L)

dz
= I0 or

dU3(z = L)

dz
= 0. (15.3)

Using the obtained relations (14.1)–(14.3) and (15.1)–(15.3), we form a system of equations
allowing us to find the constants Ci included in the solutions (11) and (12) for Uc12(z) and
Uc23(z).
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First equation of the system for Uc12 at z = 0 (and, accordingly, taking into account eλ,0 ≡ 0)
we obtain by substituting (14.1), (14.2) and dUc12/dz, obtained by differentiation of (11), into
(13.1). Similarly, we obtain the second equaton for Uc23 at z = 0 by substituting (14.2), (14.3)
and dUc12/dz, obtained by differentiation of (12), into (13.2). Following the same logic, we get the
third equation for Uc12 at z = L by substituting (15.1), (15.2) and dUc12/dz into (13.1). Finally,
the forth equation for Uc23 at z = L we obtain by substituting (15.2), (15.3) and dUc12/dz
into (13.2). Resulting four relations allow us to form a system of equations for the unknowns
C1, C2, C3, C4:

C1λ1 + C2λ2 + C3λ3 + C4λ4 = − I0ρ1
Wh1

,

C1

(
λ3
1 −Aλ1

)
+ C2

(
λ3
2 −Aλ2

)
+ C3

(
λ3
3 −Aλ3

)
+ C4

(
λ3
4 −Aλ4

)
= 0,

C1λ1 exp(λ1z) + C2λ2 exp(λ2z) + C3λ3 exp(λ3z) + C4λ4 exp(λ4z) = − I0ρ1
Wh1

,

C1λ1

(
λ3
1 −Aλ1

)
+ C2λ2

(
λ3
2 −Aλ2

)
+ C3λ3

(
λ3
3 −Aλ3

)
+ C4λ4

(
λ3
4 −Aλ4

)
= 0.

(16)

Solving this system, one can find the constants C1, C2, C3, C4. Such a solution can be imple-
mented analytically by any of the direct methods or numerically using built-in computational
procedures of mathematical software systems.

So, from (10) and (16) one can find all λi and all Ci. This allows, using (11) and (12), to
determine the dependences Uc12(z) and Uc23(z), and on their basis it is possible to calculate the
distributions I1(z), I2(z), I3(z).

To determine the dependence I1(z), we use (2.1)–(2.3) and (7.1), (7.2), (7.3), pairwise con-
necting I1 and U1, I2 and U2, and also I3 and U3.

For the current I1 on the basis of (2.1) we write d2U1(z)/dz
2 = (ρ1/Wh1)/[dI1(z)/dz]. By

replacing the U1(z) in this relation with the right side of (7.1), we obtain an expression relating
Uc12(z) and the first derivative I1(z):

ρ1
Wh1

dI1(z)

dz
= −ρ1

h1

Uc12(z)

ρc12
or

dI1(z)

dz
= − W

ρc12
Uc12(z).

Integrating the last relation and taking into account I1(0) = I0, we determine the current
variation in the first layer I1(z):

I1(z) = I0 −
W

ρc12

∫ z

0

Uc12(z)dz = I0 −
W

ρc12

4∑
i=1

Ci

λi

[
exp(λiz)− 1

]
. (17)

For current I3 on the basis of (2.3) we write d2U3(z)/dz
2 = (ρ3/Wh3)/[dI3(z)/dz]. Based on

equation (7.3), which expresses the second derivative of U3(z) in terms of Uc23(z), we can write

ρ3
Wh3

dI3(z)

dz
=

ρ3
h3

Uc23(z)

ρc23
or

dI3(z)

dz
=

W

ρc23
Uc23(z).

Integrating the last relation, taking into account I3(0) = 0, we determine the current variation
in the third layer I3(z):

I3(z) =
W

ρc23

∫ z

0

Uc23(z)dz =
1

B

W

ρc23

4∑
i=1

Ci

[
exp(λiz)− 1

](
λi −

A

λi

)
. (18)

Using (2.2) for the current I2 we obtain d2U2(z)/dz
2 = (ρ2/Wh2)/[dI2(z)/dz]. On the other

hand, according to (7.2) d2U2(z)/dz
2 = (ρ2/h2)/[(Uc12/ρc12)− (Uc23/ρc23)]. Then
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ρ2
Wh2

dI2(z)

dz
=

ρ2
h2

[
Uc12(z)

ρc12
− Uc23(z)

ρc23

]
or

dI2(z)

dz
= W

[
Uc12(z)

ρc12
− Uc23(z)

ρc23

]
.

Integrating the last relation, one can find I2(z) and, taking into account (17) and (18), obtain:

I2(z) =
W

ρc12

∫ z

0

Uc12(z)dz −
W

ρc23

∫ z

0

Uc23(z)dz = I0 − I1(z)− I3(z). (19)

Relation (19) shows that in any section of the three-layer structure the equality I0 = I1+I2+I3
and the dependence of the current I2(z) for the middle layer can be found if the distributions of
I1(z) and I3(z) are known.

Integration (2.1) allows us to find the distribution U1(z) in the upper layer of the structure:

U1(z)− U1(0) =
ρ1

Wh1

∫ z

0

I1(z)dz. (20)

By substituting in (20) the dependence of I1(z) from (17) and taking into account U1(0) = 0,
we obtain

U1(z) =
ρ1

Wh1

∫ z

0

I1(z)dx− U1(0) =
ρ1I0
Wh1

z − ρ1
ρc12h1

4∑
i=1

Ci

λi

[
exp(λiz)

λi
− z

]
−

4∑
i=1

Ci

λ2
i

. (21)

The total voltage drop over the entire length of the three-layer structure is determined from
(21) as U0 = U1(L). Accordingly, the total resistance of the structure is equal to

R =
[
U1(L)− U1(0)

]
/I0 = U1(L)/I0. (22)

4. Simulation results
The distributions of voltages and currents along the three-layer structure obtained as a result

of the calculations are shown in Fig. 2. Taking into account the fact that the value of I0, as
well as the width of the structure W , does not affect the nature of the distribution of currents
and voltages (this can be seen from the calculated relations (17)–(19), (21)), graphs are given
in a normalized form: for voltages Ũc12 = Uc12/U0, Ũc23 = Uc23/U0, Ũ1 = U1/U0, Ũ2 = U2/U0,
Ũ3 = U3/U0 and currents Ĩ1 = I1/I0, Ĩ2 = I2/I0, Ĩ3 = I3/I0 relative to the reduced coordinate
z̃ = z/L.

Dependences Uc12(z) and Uc23(z) are calculated on the basis of (11) and (12). The dis-
tributions U1(z), U2(z), U3(z) are obtained using (21) and using (4.1) and (4.2): U2(z) =
= U1(z) +Uc12(z); U3(z) = U2(z) +Uc23(z). Dependences I1(z), I2(z) and I3(z) are constructed
in accordance with (17), (18) and (19).

Calculations were made for the following parameters: L = 0.01 m; W = 0.01 m; ρ1 = 2 ·10−6

Ohm·m; ρ2 = 1 · 10−6 Ohm·m; ρ3 = 4 · 10−6 Ohm·m. Specific contact resistivities ρc12 and ρc23
were chosen from the condition: ρc12 = min(ρ1, ρ2)×1 m; ρc23 = min(ρ2, ρ3)×1 m, so that for the
specified layer parameters ρc12 = ρc23 = 1 · 10−6 Ohm·m2 . The layer thicknesses were set equal:
h1 = h2 = h3/2 = L × 10−3 = 10−5 m (Fig. 2, a) and h1 = h2 = h3/2 = L × 10−4 = 10−6 m
(Fig. 2, b). Such thicknesses are typical in works on thin-film microelectronics [1–10].

The intensity of redistribution of the total current I0 between the layers of the structure can
be judged from the gradients of I1(z), I2(z) and I3(z). As can be seen from Fig. 2, this process
is most active in areas near the left and right boundaries. As a result, for z = 0 and z = L
(in Fig. 2 z̃ = 0 and z̃ = 1) voltages Uc12 and Uc23 have maximum absolute values, which is
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(a) (b)

Fig. 2. Voltage and current distributions along a three-layer structure: a) h1 = h2 = h3/2 =
= L× 10−3 = 10µm; b) h1 = h2 = h3/2 = L× 10−4 = 1µm

consistent with (5.1) and (5.2), from which it follows that Uc12 ∼ dIc12 and Uc23 ∼ dIc23. The
slope of the curves U1(z), U2(z) and U3(z) also changes along the coordinate z, and near the left
and right boundaries of the structure, the gradient U1(z) is maximum, and the gradients U2(z)
and U3(z) are minimal as Uc12 and Uc23 increase .

Dependencies in Fig. 2, a, corresponding to the ratio hi/L ∼ 10−3, show that the redistri-
bution of the current and the variation in voltages are observed over the entire length of the
structure. In the middle part of the structure, the current I1 has a minimum value, while the
currents I2 and I3, on the contrary, reach maximum values due to the branching of a part of
the total current I0 into the lower layers. In this case, in any section, z̃ the relation is fulfilled
Ĩ1 + Ĩ2 + Ĩ3 = 1, which is similar to the condition I1 + I2 + I3 = I0.

Current and voltage distributions presented in Fig. 2, b are obtained for thinner conductive
layers (hi/L ∼ 10−4), while keeping other initial calculated parameters unchanged. It can bee
seen that the length of the segments in which the redistribution of currents I1, I2, and I3 mainly
occurs does not exceed half the length of the structure. It is also worth noting that a similar
result can be obtained not only by decreasing the layer thickness, but also by increasing the
length L.

The difference in the character of dependences in Fig. 2, a and Fig. 2, b can be attributed to the
fact that the variation in currents I1, I2 and I3, according to (17), (19) and (18), is determined
by the roots λi of equation (10), depending on the specific contact resistances ρc12, ρc23 and
parameters that, for a given structure width W characterize the longitudinal conductivity of the
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layers – ρ1/h1, ρ2/h2, ρ3/h3. Therefore, an increase or decrease in ρ1/h1, ρ2/h2, ρ3/h3 leads to
a change in the parameters λi and, accordingly, to a reduction or increase in the length of the
regions in which the redistribution of currents I1, I2 mainly occurs and I3.

Due to the fact that in Fig. 2, b, the regions of growth and decay of currents in the layers
make up a relatively small part of the total length L , in the middle part of the structure, the
dependences I1(z), I2(z) and I3(z) have flat sections, within which dI1(z)/dz ≈ dI2(z)/dz ≈
dI3(z)/dz ≈ 0 and, respectively, Ic12(z) ≈ 0, Ic23(z) ≈ 0, Uc12(z) ≈ 0, Uc23(z) ≈ 0, U1(z) ≈
U2(z) ≈ U3(z). For the given design parameters, these sections are located in the range approx-
imately from z̃ ≈ 0.4 to z̃ ≈ 0.6. Obviously, with an increase in the length of the structure, the
extent of these flat sections will increase.

It should be noted that the contribution of each of the currents I1, I2 and I3 in the total
current I0 at (that is, at z = L/2) is inversely proportional to the ratio ρ1/h1, ρ2/h2 and ρ3/h3

respectively for each of the layers. From the dependencies in Fig. 2, b, for example, it can be
seen that the currents in the first and third layers are equal, since ρ1/h1 = ρ3/h3.

An analysis of the influence of geometric factors on the nature of the distribution of currents
and voltages shows that for the considered three-layer structure, a nonlinear dependence of its
total resistance R on the length L can be observed. Fig. 3 shows the dependences R(L) calculated
in the range of L from 10−4 m to 10−2 m for three options corresponding to the layer thicknesses:
h1 = h2 = h3/2 = 10−6 m; h1 = h2 = h3/2 = 3 · 10−6 m; h1 = h2 = h3/2 = 10−5 m. The values
of the other parameters of the structure were set the same as in the previous calculations.
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Fig. 3. Length dependence of the three-layer structure resistance R(L) for different layers thick-
nesses

On the entire length of the upper curve, the condition of smallness of the layer thickness
hi/L 6 0.02 is satisfied, and on the second curve located below it, – hi/L 6 0.02. For the lower
dependence in the range of L from 0.001 m to 0.01 m, this condition corresponds to hi/L 6 0.02.
At L < 0.001m, the ratio h3/L can reach 0.2, so this section can be considered as an extrapolation
of the dependence based on the proposed model.

Plots in Fig. 3 show that for the given design parameters, the dependence R(L) in its initial
section is non-linear, approximately up to L ∼ (2 . . . 3) · 103 × h1. The non-linear nature of the
curves at small values of the structure length is due to the fact that in this range of L variation,
the redistribution of the current between the layers occurs over its entire length.

It can be shown that for a structure length not exceeding approximately L ∼ 1/λi (see (10),
(17)), the current flowing through the structure is mainly concentrated in the upper layer, while
the fraction of the current in the two lower layers is very small. As L increases , the part of the
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current branched into the second and third layers of the structure increases, which leads to a
decrease in the rate of increase in the resistance of the structure dR(L)/dL with an increase in
its length.

With an increase in the length of the structure, approximately from L ∼ (2 . . . 3) · 103 × h1,
the resistance R begins to increase linearly. At large values of L, the most significant influence
on the nature of the R(L) dependence is exerted by the middle part of the structure, within
which the distributions of I1(z), I2(z), and I3(z) have flat areas. In this case, an increment in the
length L leads to a corresponding increase in the length of these flat sections, which determines
the linear nature of the dependence R(L).

Conclusion

The analysis of the current flow mechanism in a three-layer conductive structure made it
possible to obtain a model that describes the regularities in the distribution of electric current
and voltage in the structure. The analysis of the obtained relations describing the three-layer
structure, as well as the calculations performed on their basis, allow us to draw the following
conclusions.

1. The length of the sections of current redistribution between the layers of the structure
within the framework of the proposed model is determined by the specific contact resistances
ρc12, ρc23 at the interfaces of the conductive layers and the ratios of the volume resistivity of the
layers to their thicknesses — ρ1/h1, ρ2/h2, ρ3/h3.

2. For "short" three-layer structures, in which the redistribution of current between the layers
occurs over their entire length L, the dependence of the total resistance R on L is non-linear.

3. For "long" three-layer structures, in which the regions of growth and decay of currents
in the layers make up a relatively small part of the total length L, in the middle part of the
structure, the dependences I1(z), I2(z) and I3(z) have low slope graphs. For such structures, a
linear dependence of the resistance R on the length L is observed .

The approach used in this work can be applied to the construction of similar models of
multilayer structures, for example, for other boundary conditions that determine their connection
to an external circuit.

The study was carried out within the framework of the state task of the Federal State Au-
tonomous Educational Institution of Higher Education Siberian Federal University (no. FSRZ-
2023-0008).
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Анализ распределения электрического тока в трехслойной
проводящей структуре

Алексей А. Левицкий
Павел С. Маринушкин
Валентина А.Бахтина

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. В работе представлена аналитическая модель, позволяющая исследовать характер
распределения электрического тока в трехслойной проводящей структуре. Предложенная модель
учитывает характеристики трех проводящих слоев и переходных сопротивлений между ними. Так-
же получены выражения для распределения тока и изменения электрического потенциала вдоль
структуры, а также её общего сопротивления. Кроме того, представлены количественные оценки,
показывающие особенности перераспределения электрического тока между слоями при изменении
параметров слоев.

Ключевые слова: трехслойная проводящая структура, распределение тока, сопротивление,
удельное контактное сопротивление, TLM-метод.
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