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Abstract. We consider a mathematical model which describes a frictional contact between an elastic
body and a foundation. We prove the existence of a unique weak solution to the problem. Then, we
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Introduction

Contact problems abound in industry and everyday life. For this reason, the modelling,
numerical analysis and computer simulations of such problems has been extensively studied in
engineering and mathematical literature. See for instance [6, 9, 12–14].

Variational inequalities are a powerful mathematical tool to represent various nonlinear
boundary value problems and mathematical models arising in Contact Mechanics. Their theory
was developed based on arguments of monotonicity and convexity, including properties of the
subdifferential of a convex function. References in the field are [1, 3, 4, 7, 8, 10], for instance.

The optimal control theory in the study of mathematical models of contact is quite limited.
The difficulties are generated by the strong nonlinearities which arise in the boundary condi-
tions included in such models, also by some features like non-convexity and non-differentiability.
Results on optimal control for various contact problems could be found in [2, 5, 11,16].

In this paper, we consider a mathematical model which describes the contact between an
elastic body and a foundation. We assume that the foundation is made of a rigid-plastic material
of yield limit ξ. The body is acted upon by body forces of density φ0 and by tractions of density
φ2, which act on a part of its boundary. The variational formulation of the model is in a form
of an elliptic variational inequality in which the unknown is the displacement field and the data
are the densities of applied forces (φ0,φ2), the yield limit ξ and the friction bound Fb.

The paper is structured as follows. In Section 1 we introduce some notation and preliminaries.
In Section 2 we state the contact model, then we list the assumptions on the data and derive
its variational formulation. Also, we state and prove the unique weak solvability of the problem,
Theorem 2.1. Section 3 is dedicated to a convergence result, Theorem 3.1, which establishes the
continuous dependence of the solution with respect to the densities of applied forces, the yield
limit of the foundation and the friction bound. In Section 4 we state an optimal control problem
and we prove its solvability, Theorem 4.2.
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1. Preliminaries
In this section, we introduce the notation and some preliminaries materials we shall use. We

use the notation R+ for the set of non-negative real numbers, Sd for the space of second order
symmetric tensors on Rd (d = 1, 2, 3) and the zero element of the spaces Rd and Sd will be
denoted by 0. The inner products and the corresponding norms on these spaces are defined by

u · v = uivi , ∥v∥ = (v · v) 1
2 ∀u,v ∈ Rd,

σ · τ = σijτij , ∥τ∥ = (τ · τ ) 1
2 ∀σ, τ ∈ Sd,

where the indices i and j run between 1 and d and, unless stated otherwise, the summation
convention over repeated indices is adopted.

Let Ω ⊂ Rd be a bounded domain with a smooth boundary ∂Ω = Γ and let Γ1, Γ2 and Γ3

be a partition of Γ into three measurable disjoints parts such that meas(Γ1) > 0. We use the
notation x = (xi) for the generic point in Ω∪Γ and note that, in order to simplify the notation,
we usually do not indicate explicitly the dependence of various functions on the spatial variable x.
Moreover, an index that follows a comma represents the partial derivative with respect to the
corresponding component of the spatial variable x. Also, we denote by ν = (νi) the outward
unit normal at Γ.

Everywhere in this paper, we use the standard notation for Sobolev and Lebesgue spaces of
real-valued functions defined on Ω and Γ. In particular, we use the spaces

H = L2(Ω)d, H2 = L2(Γ2)
d, L2(Γ3)

d, L2(Γ)d and H1(Ω)d,

endowed with their canonical inner products and associated norms. Moreover, we recall that for
a function v ∈ H1(Ω)d we still write v for the trace γv ∈ L2(Γ)d of v on the boundary Γ. Let

V = {v ∈ H1(Ω)d : v = 0 a.e. on Γ1 },
Q = {σ = (σij) : σij = σji ∈ L2(Ω), 1 6 i, j 6 d},

which are real Hilbert spaces endowed with the canonical inner products given by

(u,v)V =

∫
Ω

ε(u) · ε(v) dx, (σ, τ )Q =

∫
Ω

σ · τ dx.

The associated norms on these spaces are denoted by ∥ · ∥V and ∥ · ∥Q, respectively. Here and
below, ε and Div will represent the deformation and the divergence operators, respectively, i.e.,

ε(u) = (εij(u)), εij(v) =
1

2
(ui,j + uj,i), Divσ = (σij,j),

where the quantity ε(u) represents the linearised strain tensor associated with the displace-
ment u.

Let 0H2 denote the zero element of H2 and 0V the zero element of V . For any element v ∈ V
we denote by vν and vτ its normal and tangential components on Γ given by vν = v · ν and
vτ = v − vνν. Moreover, for a regular function σ : Ω → Sd we denote by σν and στ its normal
and tangential components on Γ, that is σν = (σν) · ν and στ = σν − σνν and, we recall that
the following Green’s formula holds:∫

Ω

σ · ε(v) dx+

∫
Ω

Divσ · v dx =

∫
Γ

σν · v da ∀ v ∈ H1(Ω)d. (1.1)

Also, recall that there exists a positive constant ctr, depending on Ω and Γ1, such that

∥v∥L2(Γ)d 6 ctr∥v∥V ∀ v ∈ V. (1.2)

Inequality (1.2) represents a consequence of the Sobolev trace theorem.

We end this section with the following result.
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Theorem 1.1. Let X be a real Hilbert space and assume that K is a nonempty closed convex
subset of X, A : X → X is a strongly monotone Lipschitz continuous operator and j : X → R is
a convex lower semicontinuous function. Then, for each f ∈ X there exists a unique solution to
the variational inequality

u ∈ K, (Au, v − u)X + j(v)− j(u) > (f, v − u)X ∀ v ∈ K. (1.3)

Theorem 1.1 will be used in Section 2 to prove the unique weak solvability of our mathematical
model of contact. Its proof could be found in [14].

2. Problem statement and variational formulation
The physical setting of the problem is the following. We consider a body made of an elastic

material which occupies a bounded domain Ω ⊂ Rd with a smooth boundary ∂Ω = Γ, divided
into three measurable disjoint parts Γ1, Γ2 and Γ3 such that meas (Γ1) > 0. The body is fixed
on Γ1, it is acted by given body forces of density φ0. Also, we assume that surface tractions of
density φ2 act on Γ2, and the body is in contact with an obstacle on Γ3.

The classical formulation of the contact problem is as follows.

Problem P. Find a displacement field u : Ω → Rd and a stress field σ : Ω → Sd such that

σ = Eε(u) in Ω, (2.1)

Divσ +φ0 = 0 in Ω, (2.2)

u = 0 on Γ1, (2.3)

σν = φ2 on Γ2, (2.4)

−ξ 6 σν 6 0, −σν =

 0 if uν < 0

ξ if uν > 0
on Γ3, (2.5)

∥στ∥ 6 Fb, −στ = Fb
uτ

∥uτ∥
if uτ ̸= 0 on Γ3. (2.6)

We now provide a description of the equations and boundary conditions in Problem P. First,
equation (2.1) represents the elastic constitutive law of the material. We assume that the non-
linear elasticity operator E satisfies the following conditions

(a) E : Ω× Sd → Sd.
(b) There exists LE > 0 such that

∥E(x, ε1)− E(x, ε2)∥ 6 LE∥ε1 − ε2∥
∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) There exists mE > 0 such that
(E(x, ε1)− E(x, ε2)) · (ε1 − ε2) > mE ∥ε1 − ε2∥2
∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(d) The mapping x 7→ E(x, ε) is measurable on Ω,
for any ε ∈ Sd.

(e) The mapping x 7→ E(x,0) belongs to Q.

(2.7)

Concrete examples of operators E which satisfy condition (2.7) can be found, for example,
in [14,17].
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Equation (2.2) is the equation of equilibrium. Conditions (2.3), (2.4) represent the displace-
ment and traction boundary conditions, respectively. We assume that the densities of body forces
and tractions are such that

φ0 ∈ H, (2.8)
φ2 ∈ H2. (2.9)

Next, (2.5) represent the contact condition in which σν denotes the normal stress and uν is
the normal displacement. Moreover, the function ξ satisfies

ξ ∈ L2(Γ3), ξ(x) > 0 a.e. x ∈ Γ3. (2.10)

We now provide some comments on this condition. It is described by the multivalued relation
between the normal displacement and the opposite of the normal stress. This condition was
already used in [15], where a detailed description was provided, together with some mechanical
interpretation. It models the contact with a foundation made of a rigid-plastic material. Indeed,
this condition shows that the foundation behaves like a rigid body as far as the inequality |σν | < ξ
holds, where the function ξ could be interpreted as the yield limit of the the foundation. It could
allow penetration only when the equality |σν | = ξ holds. In this case, the yield limit ξ is reached
and the foundation offers no additional resistance to penetration.

Finally, (2.6) represents the contact with Coulomb’s friction law where Fb is a given friction
bound. We assume that

Fb ∈ L2(Γ3), Fb(x) > 0 a.e. x ∈ Γ3. (2.11)

In this section, we derive the variational formulation of Problem P and, to this end, we
assume in what follows that (u,σ) are sufficiently regular functions which satisfy (2.1)–(2.6).
Let v ∈ V . We use Green’s formula (1.1), then we split the surface integral over Γ1, Γ2 and Γ3

and use equalities (2.2), (2.4) to obtain that

(σ, ε(v)− ε(u))Q = (φ0,v − u)H + (φ2,v − u)H2 +

∫
Γ1

σν · (v − u) da+

∫
Γ3

σν · (v − u) da.

Moreover, using this equality

σν · (v − u) = σν(vν − uν) + στ · (vτ − uτ ) a.e. on Γ,

and the condition (2.3), we obtain that

(σ, ε(v)− ε(u))Q = (φ0,v − u)H + (φ2,v − u)H2 +

+

∫
Γ3

σν(vν − uν) da+

∫
Γ3

στ (vτ − uτ ) da. (2.12)

We use standard arguments and the hypothesis (2.10) to see that the contact condition (2.5)
implies that ∫

Γ3

σν(vν − uν) da >
∫
Γ3

ξ(u+
ν − v+ν ) da, (2.13)

where r+ denotes the positive part of r, i.e., r+ = max{r, 0}. In addition, it is easy to see that
the condition (2.6) yields∫

Γ3

στ (vτ − uτ ) da >
∫
Γ3

Fb(∥uτ∥ − ∥vτ∥) da. (2.14)
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Next, we combine (2.12)–(2.14), then we use the constitutive law (2.1) to see that

(Eε(u), ε(v)− ε(u))Q +

∫
Γ3

ξ(v+ν − u+
ν ) da+

∫
Γ3

Fb(∥vτ∥ − ∥uτ∥) da >

> (φ0,v − u)H + (φ2,v − u)H2 . (2.15)

Now, we introduce the operator A : V → V and the function j : V → R defined by

(Au,v)V =

∫
Ω

Eε(u) · ε(v) dx ∀ u, v ∈ V, (2.16)

j(v) =

∫
Γ3

ξv+ν da+

∫
Γ3

Fb∥vτ∥ da ∀ v ∈ V. (2.17)

Using these definitions and inequality (2.15), we find the following variational formulation of
Problem P.

Problem PV . Find a displacement field u ∈ V such that

(Au,v − u)V + j(v)− j(u) >
> (φ0,v − u)H + (φ2,v − u)H2 ∀v ∈ V. (2.18)

We have the following existence and uniqueness result.

Theorem 2.1. Assume that (2.7)–(2.11) hold. Then, Problem PV has a unique solution u ∈ V .

Proof. We apply Theorem 1.1 with K = X = V . To this end, we use the definition (2.16) and
assumption (2.7)(c) to see that

(Au−Av,u− v)V > mE ∥u− v∥2V ∀u, v ∈ V. (2.19)

On the other hand, using assumption (2.7)(b), we obtain that

∥Au−Av∥V 6 LE ∥u− v∥V ∀u, v ∈ V. (2.20)

We conclude from (2.19) and (2.20) that A is a strongly monotone Lipschitz continuous operator
on the space V .

Moreover, using (2.10)–(2.11) and (1.2), we see that the functional j defined by (2.17) is a
seminorm on V and, in addition, it satisfies

j(v) 6 ctr(∥ξ∥L2(Γ3) + ∥Fb∥L2(Γ3))∥v∥V ∀v ∈ V.

It follows that j is a continuous seminorm and, therefore, it is a convex and lower semicontinuous
function on V . Finally, using the Riesz representation theorem, we define f ∈ V as follows

(f ,v)V = (φ0,v)H + (φ2,v)H2
∀v ∈ V.

Theorem 2.1 now is a direct consequence of Theorem 1.1. �

3. A continuous dependence result

In this section, we study the dependence of the solution u of Problem PV with respect to
the data φ0, φ2, ξ and Fb. To this end, we assume in what follows that (2.7)–(2.11) hold, and
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we consider a perturbation φ0η, φ2η, ξη and Fbη of φ0, φ2, ξ and Fb, respectively, which satisfy
(2.8)–(2.11). For each η > 0, we introduce the functional jη : V → R defined by

jη(v) =

∫
Γ3

ξηv
+
ν da+

∫
Γ3

Fbη∥vτ∥ da ∀ v ∈ V, (3.1)

and, we consider the following variational problem.

Problem Pη
V . Find a displacement field uη ∈ V such that

(Auη,v − uη)V + jη(v)− jη(uη) > (φ0η,v − uη)H + (φ2η,v − uη)H2 ∀ v ∈ V. (3.2)

It follows from Theorem 2.1 that, for each η > 0, Problem Pη
V has a unique solution uη ∈ V .

The behaviour of the solution uη as η → 0 is given in the following result.

Theorem 3.1. Assume that (2.7)–(2.11) hold and, moreover, assume

φ0η ⇀ φ0 in H as η → 0, (3.3)

φ2η ⇀ φ2 in H2 as η → 0, (3.4)

ξη → ξ in L2(Γ3) as η → 0. (3.5)

Fbη → Fb in L2(Γ3) as η → 0. (3.6)

Then, the following convergence holds

uη → u in V as η → 0. (3.7)

The proof of Theorem 3.1 will be carried out in two steps. First, we provide the following
weak convergence result.

Lemma 3.2. The sequence {uη} converges weakly in V to u, i.e.,

uη ⇀ u in V as η → 0. (3.8)

Proof. Let η > 0. We take v = 0V in (3.2) to obtain

(Auη −A0V ,uη)V + jη(uη) 6 (φ0η,uη)H + (φ2η,uη)H2 − (A0V ,uη)V .

Next, using assumption (2.19), the positivity of the functional j and the inequality (1.2), we
deduce that

∥uη∥V 6 1

mE
(∥φ0η∥H + ctr∥φ2η∥H2 + ∥A0V ∥V ) 6

6 max(1, ctr)

mE
(∥φ0η∥H + ∥φ2η∥H2 + ∥A0V ∥V ).

The convergences (3.3) and (3.4) imply that the sequences {φ0η} and {φ2η} are bounded in H
and H2, respectively. Therefore, we deduce that there exists M > 0, which does not depend on
η, such that

∥uη∥V 6 M. (3.9)

Now, we combine (3.9) with a standard compactness argument to see that there exists ũ ∈ V
such that, passing to a subsequence, still denoted {uη}, we have

uη ⇀ ũ in V as η → 0. (3.10)
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We establish the equality
ũ = u. (3.11)

Let η > 0. We take v = ũ ∈ V in (3.2) to obtain that

(Auη,uη − ũ)V 6 (φ0η,uη − ũ)H + (φ2η,uη − ũ)H2
+ jη(ũ)− jη(uη).

Next, we pass to the upper limit as η → 0 in this inequality and taking into account the
convergences (3.3)–(3.6), (3.10) and the compactness of the trace operator, we deduce that

lim sup
η→0

(Auη,uη − ũ)V 6 0.

Therefore, assumptions (2.19)–(2.20) and the convergence (3.10) yield

lim inf
η→0

(Auη,uη − v)V > (Aũ, ũ− v)V ∀v ∈ V. (3.12)

On the other hand, we pass to the upper limit in (3.2) and we use again the convergences
(3.3)–(3.6), (3.10) and the compactness of the trace operator to obtain that

lim sup
η→0

(Auη,uη − v)V 6 (φ0, ũ− v)H + (φ2, ũ− v)H2 + j(v)− j(ũ) ∀v ∈ V.

We combine now this inequality and (3.12) to see that

(Aũ,v − ũ)V + j(v)− j(ũ) > (φ0,v − ũ)H + (φ2,v − ũ)H2 ∀v ∈ V. (3.13)

Next, we take v = u in (3.13) and v = ũ in (2.18), then, adding the resulting inequalities and
using assumption (2.19), we obtain that the equality (3.11) holds.

A carefully examination of the proof of Lemma 3.2 shows that any weakly convergent subse-
quence of the sequence {uη} ⊂ V converges weakly to u ∈ V , where, u is the unique solution of
(2.18). Moreover, the bound (3.9) shows that the sequence {uη} is bounded in V and, therefore,
Lemma 3.2 is a consequence of a standard compactness argument. �

We proceed with the following strong convergence result.

Lemma 3.3. The sequence {uη} converges strongly in V to u, i.e.,

uη → u in V as η → 0. (3.14)

Proof. Let η > 0. We take v = u in (3.2) to obtain that

(Auη,uη − u)V 6 (φ0η,uη − u)H + (φ2η,uη − u)H2 + jη(u)− jη(uη).

Next, we use this inequality and assumption (2.19) to see that

mE ∥uη − u∥2V 6 (Auη −Au,uη − u)V =

= (Auη,uη − u)V − (Au,uη − u)V 6

6 (φ0η,uη − u)H + (φ2η,uη − u)H2 + jη(u)− jη(uη)− (Au,uη − u)V .

We now pass to the limit as η → 0 and we use (3.3)–(3.6), (3.8) and the compactness of the trace
operator. As a result we deduce that

∥uη − u∥V → 0 as η → 0,

which concludes the proof. �
We are now in position to present the proof of Theorem 3.1.

Proof. The convergence (3.7) is a consequence of Lemma 3.2. �
The convergence result (3.7) is important from mechanical point of view, since it shows that

the weak solution of the elastic contact problem (2.1)–(2.6) depends continuously on the densities
of applied forces, the yield limit and the friction bound.
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4. The optimal control problem

In this section, we formulate an optimal control problem associate to Problem PV . To this
end, we assume that conditions (2.7)–(2.11) hold and, in order to control the solution of Problem
PV by the density of surface tractions φ2, we assume that φ0, ξ and Fb are given and satisfy
(2.8), (2.10), (2.11), respectively. Let ϕ ∈ V and δ, γ > 0 be two positive constants and let us
define the cost functional L : H2 × V → R by

L(φ2,u) = δ ∥u− ϕ∥V + γ ∥φ2∥H2 ∀ (φ2,u) ∈ H2 × V. (4.1)

Using standard arguments it is easy to see that L is a convex lower semicontinuous functional on
H2×V and, therefore, it is weakly lower semicontinuous. Also, we define the following admissible
set

Vad = { (φ2,u) ∈ H2 × V, such that (2.18) holds }. (4.2)

We formulate now the following optimal control problem.

Problem O. Find (φ∗
2,u

∗) ∈ Vad such that

L(φ∗
2,u

∗) = min
(φ2,u)∈Vad

L(φ2,u).

An element (φ∗
2,u

∗) is called an optimal pair and the corresponding surface traction force φ∗
2

is called an optimal control. The mechanical interpretation of Problem O is the following : we
are looking for a given surface traction force φ2 ∈ H2 such that the displacement u ∈ V given
by (2.18) is as close as possible to the “desired displacement" ϕ. Furthermore, this choice has to
fulfil a minimum expenditure condition which is taken into account by the second term in the
definition (4.1).

Our result in this section is the following.

Theorem 4.1. Assume that (2.7)–(2.8) and (2.10)–(2.11) hold. Then, there exists at least one
solution (φ∗

2,u
∗) ∈ Vad of Problem O.

The proof of Theorem 4.1 will be carried out in two steps, that we present in what follows.
We start by considering the following functional J : H2 → R defined by

J(φ2) = δ ∥u(φ2)− ϕ∥V + γ ∥φ2∥H2 ∀φ2 ∈ H2, (4.3)

where u = u(φ2) is the solution of (2.18). Next, we consider the following optimization problem.

Problem O1. Find φ∗
2 ∈ H2 such that

J(φ∗
2) = min

φ2∈H2

J(φ2). (4.4)

We have the following existence result.

Lemma 4.2. There exists at least one solution φ∗
2 ∈ H2 of Problem O1.

Proof. Let
θ = inf

φ2∈H2

J(φ2) ∈ R, (4.5)

and let {φ2n} ⊂ H2 such that
lim

n→∞
J(φ2n) = θ. (4.6)
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We prove that the sequence {φ2n} is bounded in H2. Arguing by contradiction, assume that
{φ2n} is not bounded in H2. Then, we pass to a subsequence, still denoted {φ2n}, to see that

∥φ2n∥H2 → +∞ in H2 as n → +∞. (4.7)

Using the definition (4.3) and the positivity of the parameters δ and γ to see that

J(φ2n) = δ ∥u(φ2n)− ϕ∥V + γ ∥φ2n∥H2 > γ ∥φ2n∥H2 ,

then, passing to the limit as n → +∞ and using (4.7) we deduce that

lim
n→+∞

J(φ2n) = +∞.

We combine this equality with (4.6) to see that θ = +∞ which is a contradiction with (4.5) and,
therefore, we conclude that the sequence {φ2n} is bounded in H2. Thus, a standard compactness
argument implies that there exists φ∗

2 ∈ H2 such that, passing to a subsequence, still denoted
{φ2n}, we have

φ2n ⇀ φ∗
2 in H2 as n → +∞. (4.8)

In addition, using the convergence (4.8) and the continuous dependence result given by The-
ore 3.1, we have that

u(φ2n) → u(φ∗
2) in V as n → +∞. (4.9)

We now use (4.8) and (4.9) to see that

lim
n→+∞

∥u(φ2n)− ϕ∥V = ∥u(φ∗
2)− ϕ∥V ,

lim inf
n→+∞

∥φ2n∥H2 > ∥φ∗
2∥H2 ,

which imply that
lim inf
n→+∞

J(φ2n) > J(φ∗
2). (4.10)

It follows from (4.6) and (4.10) that
θ > J(φ∗

2). (4.11)

On the other hand, (4.5) implies that
θ 6 J(φ∗

2). (4.12)

Finally, we combine (4.11) and (4.12) to see that (4.4) holds, which concludes the proof. �
We proceed with the following existence result.

Lemma 4.3. There exists at least one solution (φ∗
2,u

∗) ∈ Vad of Problem O.

Proof. We note that

(φ2,u) ∈ Vad ⇐⇒ φ2 ∈ H2 and u = u(φ2) is the solution of (2.18). (4.13)

The definitions (4.1) and (4.3) imply that

J(φ2) = L(φ2,u(φ2)) ∀φ2 ∈ H2.

Let φ∗
2 ∈ H2 be a solution of Problem O1 and u∗ = u(φ∗

2) be the solution of (2.18) with the
data φ2 = φ∗

2. Then, by using (4.13) we deduce that

(φ∗
2,u

∗) ∈ Vad. (4.14)
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Moreover, we have that

L(φ∗
2,u

∗) = J(φ∗
2) 6 J(φ2) = L(φ2,u)

for all (φ2,u) ∈ Vad. Combining this inequality with (4.14), we deduce that (φ∗
2,u

∗) is a solution
of Problem O, which concludes the proof. �

We are now in position to present the proof of Theorem 4.1.

Proof. Theorem 4.1 is a direct consequence of Lemma 4.3. �
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Оптимальное управление для задачи упругого
фрикционного контакта

Ахлем Бенрауда
Университет науки и технологий Хуари Бумедьена

Баб-Эззуар, Алжир

Аннотация. Рассматривается математическая модель, описывающая фрикционный контакт упру-
гого тела с фундаментом. Доказано существование единственного слабого решения задачи. Изуча-
еся непрерывная зависимость решения от данных. Наконец, мы рассматриваем задачу оптималь-
ного управления, для которой доказываем существование хотя бы одного решения.

Ключевые слова: слабое решение, кулоновское трение, непрерывная зависимость, полунепре-
рывность снизу, оптимальное управление.
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