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Abstract. Characteristics of steady-state convective flows of a liquid and a co-current gas flux under
the conditions of inhomogeneous evaporation of the diffusive type in a flat horizontal channel are studied.
A partially-invariant exact solution of equations of the thermosolutal convection is used to describe the
flows within the framework of the Oberbeck – Boussinesq approximation. It is derived as the solution
of the evaporative convection problem with the Dirichlet boundary conditions on the outer channel
walls. The influence of the external thermal load on the structure of the velocity and temperature fields,
evaporation mass flow rate and vapor content in the gas layer was investigated in the HFE-7100 – nitrogen
system.
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Introduction

Traditional approach to describe the evaporative convection in two-phase systems is based
on the use of the Navier–Stokes equations (or their approximations) supplemented by the heat
transfer and molecular transport equations [1]. The set of governing relations for determining
kinematic, temperature and concentration characteristics presents the thermosolutal convection
equations. Due to the group properties the system of equation admits a partially invariant so-
lution belonging to the Birikh class [2, 3]. Such type of solutions can be used for describing
the evaporative convection in a bilayer liquid – gas system with a sharp interface in plane chan-
nels with solid impermeable walls in the frame of the two-sided approach [1]. Various well-posed
statements of the boundary value problems for the thermosolutal convection equations were anal-
ysed [4, 5]. It was shown that the use of the Dirichlet boundary conditions for all the required
functions on the external boundaries of the flow domain allows one to derive the informative
Birikh type exact solution. It correctly takes into account the impact of the thermocapillary
and thermodiffusion effects, non-uniform character of diffusion-limited evaporation on the phase
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boundary as well as the influence of the thermal load applied on the channel walls. It should be
noted that non-constant evaporation rate along the liquid surface was fixed in physical experi-
ments [6]. In the present paper, the mentioned above solution of the Dirichlet problem is used to
study characteristics of gas sheared liquid flows in a horizontal channel under various intensity of
the external thermal load. Applicability conditions of the exact solution to model steady-state
convective flows of a liquid and a co-current gas flux are specified.

1. Statement of the problem and anzatz of solution

Let us consider the combined convection in a system of two viscous heat-conducting in-
compressible fluids (liquid and gas-vapour mixture) in a flat horizontal mini-channel with solid
impermeable walls y = −l and y = h (Fig. 1). The two-phase system is in the terrestrial con-
ditions with the vector of the gravity force acceleration g = (0, −g), g = 9.81 m/s2. Basic
characteristics of this system are the velocity vi, temperature Ti, pressure pi of both media, and
vapour concentration C in the gas. Here and below, the subscript or superscript i = 1 and i = 2

corresponds to the characteristics of the fluids in the lower and upper layers, respectively.

Fig. 1. The sketch of a two-phase system in the Cartesian coordinates

When posing the problem, the following assumptions are supposed to be satisfied.
(i) Surface between the liquid and gas phases is the thermocapillary interface Γ enabling

the mass transfer due to evaporation/condensation. Only diffusive type evaporation occurs, and
convective mass transfer through Γ is not considered. Here, the surface remains in the non-
deformed state y = 0. The tangential forces, induced by the thermocapillary effect and shear
stresses due to the gas pumping, act on Γ. The surface tension of the phase boundary is specified
by the function σ = σ0 − σT (T − T0), where σ0, T0 are the characteristic values of the surface
tension and liquid temperature, respectively, σT is the temperature coefficient of surface tension.

(ii) The liquid volatilizes across the interface at a rate M so that the mixture of the carrier
gas and liquid vapour fills the upper layer. Vapour is considered as a passive admixture. The
Soret and Dufour effects appear in the gas phase due to presence of the volatile component.

(iii) The reference values T0, p0, C0 characterize the thermodynamic equilibrium state of the
two-phase system. The ground state of the system described by the above-mentioned basic func-
tions is close to the thermodynamic equilibrium state or slightly deviates from it, i.e., convection
under the Boussinesq conditions is considered.

(iv) Thermal load distributed according to the linear law with respect to the longitudinal
coordinate is applied on channel walls.
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Basic factors governing regimes of convective flows in the strip confined by fixed walls are the
buoyancy force, the Marangoni effect, gas pumping and linear heating of the outer boundaries.
To describe the stationary flows of each medium the Navier – Stokes equations in the Oberbeck –
Boussinesq approximation are used:
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The vapour transfer in the background gas is governed by the convection-diffusion equation
[7]:
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Terms γC and δ∆C in the momentum and energy transport equations, respectively, as well as
equation (1.2) are taken into account to model the flow in the upper gas layer only. The following
notations are used: u, v are the projections of the velocity vector v on the Ox and Oy axes, p is
the modified pressure, ρ0 is the average fluid density, ν is the coefficient of kinematic viscosity,
β is the thermal expansion coefficient, γ is the coefficient of concentration expansion, χ is the
coefficient of heat diffusivity, D is the coefficient of vapour diffusion in the gas, and the coefficients
δ and α characterize the diffusive thermal effect and the thermodiffusion effect in the gas-vapour
layer, correspondingly. It is worth noting that within the frame of the Oberbeck –Boussinesq
approximation function p describes deviation of the physical (true) fluid pressure P from the
hydrostatic one. Taking into account the hydrostatic component and equilibrium characteristics
of each fluid, one can obtain pi = Pi− ρ̃ig ·x. Here, ρ̃1 = ρ01(1+β1T0), ρ2 = ρ02(1+β2T0+γC0).

System of equations (1.1), (1.2) admits a stationary exact solution of the form

ui = ui(y), vi = 0, Ti = Ti(x, y) = (ai1 + ai2y)x+ ϑi(y),

C = C(x, y) = (b1 + b2y)x+ ϕ(y), pi = pi(x, y).
(1.3)

Here, aij , bj (j = 1, 2) are parameters of the solution. They satisfy some compatibility relations
dictated by the boundary conditions. Solution (1.3) as the solution of an evaporative convection
problem was first proposed in [8]. Its treatment as the partially invariant exact solution of rank
1 and defect 3 was given in [2]. Below, conditions on the outer boundaries y = −l and y = h

and on the internal interface y = 0 are formulated with regard to the solution form.
The Dirichlet boundary conditions are set on the channel walls for all required functions:

y = −l, u1 = 0, T1 = A1x+ ϑ1,

y = h : u2 = 0, T2 = A2x+ ϑ2, C = 0.
(1.4)

Here, Ai are given constant longitudinal temperature gradients that determines intensity and
type (heating or cooling) of the thermal load applied on the walls, ϑ1, ϑ2 are constants setting
an average temperature of the wall. In the general case when ϑ1 ̸= ϑ2, the transverse temperature
drop is formed in the channel. Then, temperature field in the entire flow domain is characterized
by resulting non-uniform gradient with respect to y. Relations for velocity functions present the
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no-slip conditions. If vapour concentration is equal to zero then it is interpreted as the condition
of full vapour absorption on the upper wall. For the first time this condition was considered in [8].
Later, it was tested in analogical problem within the frame of three-dimensional statement [9].
The comparison of modelling results with experimental data showed that the use of such type of
condition allowed one to describe the influence of edge effects. The effects presents as significant
growth of evaporation rate near the three-phase contact line [10]. Condition C = 0 can be
realized in experiments by the vapour freezing.

The following conditions are to be satisfied on the common internal boundary Γ

y = 0 : ρ1ν1
du1

dy
= ρ2ν2

du2

dy
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u1 = u2 = uΓ, T1 = T2 = TΓ, C = C0[1 + ε(T2 − T0)].

(1.5)

The first two expressions present projections of the dynamic condition on the unit tangential
and normal vectors to Γ. The third condition is the heat balance relation when transfer through
the interface takes place. The fourth and fifth equalities set the continuity conditions for the
velocity and temperature. The last relation gives the concentration of saturated vapour. Taking
into account the solution form and assumption on the diffusive character of evaporation, the
kinematic condition is satisfied identically. The following notations are used in (1.5): κ is the
heat conductivity coefficient, L is the latent heat of vaporization, uΓ and TΓ are common values
of velocity and temperature on the interface, respectively, ε = Lµ/(RT 2

0 ), µ is the molar mass
of evaporating liquid, and R is the universal gas constant. The mass balance condition is used
to evaluate evaporation rate M . In the present paper, the case when M is not constant is
considered. It varies along the channel according to the linear law

M = −Dρ2

(∂C
∂y

+ α
∂T2

∂y

)
, M = M(x) = M0 +Mxx. (1.6)

Positive values of M refer to evaporation of the liquid into the gas flux, and negative ones
correspond to vapour condensation.

Additional condition that defines the gas flow rate in the upper layer closes the problem
statement:

Q =

∫ h

0

ρ2u2(y) dy. (1.7)

Explicit expressions for all required functions derived in the frame of the problem statement
under consideration are presented in [4]. Therein, the physical interpretation of exact solution
(1.3) is given, and the domain of its applicability for describing two-phase flows in real physical
systems is discussed. Complete analysis of the applicability conditions of this solution for all
possible problem statement was carried out [5].

It should be noted that solution (1.3) can be derived without using any assumption about
shape of the interface. The second equality in (1.5) can be considered as the first term of the
expansion of the dynamical condition for the normal stresses with respect to small capillary num-
ber Ca. The structure of the exact solution dictates the rectilinear shape of the interface within
the framework of the problem statement under study when the leading term of the expansion
leads to zero mean curvature of the interface (for details see [9]). Experimental possibility to
maintain the plane form of the phase boundary of an evaporating liquid layer blown by a gas
flux was described in [11].
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2. Calculation of the solution parameters characterizing
temperature, evaporation rate and vapour content

Substituting required functions (1.3) in governing equations (1.1), (1.2), functional repre-
sentations for velocity uj , temperature Tj , pressure pj and concentration C can be we found
(see [4]). Constants M0 and Mx that determine evaporation rate as well as solution parameters
aij , bj satisfy relations based on the boundary conditions.

First of all parameters a11 and a21 are equal to each other, ai1 = A as it follows from the con-
tinuity condition for the temperature on the phase boundary. Therefore, temperature functions
in the layers take the form Ti = (A + ai2y)x + ϑi(y). Here, A is the longitudinal temperature
gradient on Γ that determines the intensity of the thermocapillary convection and evaporation
process.

Conditions of linear temperature distribution on the rigid channel walls y = −l and y = h

result in the following relations for ai2: a12 = (A−A1)l
−1, a22 = (A2 −A)h−1.

Taking into account the condition of zero vapour concentration on the upper wall y = h, one
can obtain the following equality that relates parameter b1 to parameter b2: b1 + b2h = 0. The
Clapeyron – Clausius equation in the linearised form gives the saturated vapour concentration on
Γ (the last condition in (1.5)). The consequence of this equation entails relationship b1 = C0εA.
Then, b2 = C0εA/h.

Further, the gradient of evaporative mass flow rate Mx can be directly calculated with the
help of mass balance condition (1.6):

Mx = −Dρ2
(
b2 + αa22

)
= −Dρ2h

−1
(
−A(C0ε− α) + αA2

)
, (2.1)

whereas the relation for M0 that defines the average value of evaporation rate contains integration
constants included in expressions for temperature and concentration functions.

Using the heat transfer condition at the interface and expression (2.1), the following relation-
ship between a12 and a22 is obtained

a22 = Ka12 + K̄Mx, K =
κ1

κ2(1− αδ)
, K̄ =

Dρ2λ+ δκ2

Dρ2κ2(1− αδ)
.

Since a12, a22 and Mx depend on A, A1, A2, condition on constraint is
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)
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(
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)
−A1hl

−1K. (2.2)

Expression (2.2) establishes relation between longitudinal temperature gradients A, A1 and
A2 on system boundaries. Two coefficients defining temperature gradients are prescribed arbi-
trarily; the third one is found according to (2.2). One should note that in a real physical system
evaporation results in cooling of the liquid surface and formation of longitudinal temperature
gradient at the interface. Thus, this gradient can be evaluated on the basis of the exact solu-
tion. According to (2.2), interfacial temperature gradient A depends on boundary gradients Ai,
geometric parameters of the system and physical parameters of the fluids.

In view of the form of the exact solution, the vapour concentration function increases with
x. Since function C is treated as mass fraction of the volatile component in the gas phase, it
has a physical meaning only if its values belong to the interval [0; 1]. The extent of the flow
domain Lh where C takes on feasible values can be determined in the terms of input data of
the problem. According to the last condition in (1.5), changes in vapour content along the
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longitudinal coordinate x can be evaluated as follows: C ∼ C0(1 + εAx). Then, the length Lh

can be evaluated as follows Lh 6 (1− C0)/εAC0.
Below, the obtained solution of the Dirichlet problem is used to study the influence of the

applied thermal load on the characteristics of flow regimes in two-phase systems.

3. Characteristics of convective regimes with
non-uniform evaporation

********************************************************************* Let us con-
sider the bilayer system with HFE-7100 liquid and nitrogen gas as working media. Physical
parameters of fluids are given in the order {HFE-7100, nitrogen} or only for one of the media:
ρ = {1.5 · 103, 1.2} kg/m3; ν = {0.38 · 10−6, 0.15 · 10−4} m2/s; β = {1.8 · 10−3, 3.67 · 10−3}
K−1; χ = {0.4 · 10−7, 0.3 · 10−4} m2/s; κ = {0.07, 0.027} W/(m·K), σT = 1.14 · 10−4 N/(m·K),
γ = −0.5, D = 0.7 · 10−5 m2/s, α = 5 · 10−3 K−1, δ = 10−5 K, L = 1.11 · 105 W·s/kg. The
equilibrium characteristics of the bilayer system are C0 = 0.45, T0 = 293.15 K; here, ε = 0.04

K−1, µ = 0.25 kg/mol.
Velocity and temperature fields in the system, vapour content in the gas layer and evaporation

rate that depend on the character and intensity of the thermal load applied on the external
boundaries of the flow domain are analysed. Parameters defining the external thermal action are
the longitudinal temperature gradients A1, A2 and ϑ1, ϑ2 (see (1.4)). Relation (2.2) is used to
evaluate the interface gradient A at various boundary gradients Ai. Values of Ai vary from −10

to 10 K/m, and ϑ1, ϑ2 are equal to 293.15 K unless otherwise specified. If Ai < 0 (Ai > 0) then
the channel wall is cooled (heated) in the direction of the longitudinal axes. For the working
media used and heating conditions under consideration, the length Lh should be within 0.4 m.
The thickness of the liquid layer l = 0.0025 m, the thickness of the gas layer h = 0.005 m and
gas flow rate Q = 9.6 · 10−6 kg/(m2·s) are fixed for all cases under consideration.

Influence of the longitudinal temperature gradient. One of the important factors that defines
the pattern of the arising convective regime is the interface temperature gradient A. It is this
parameter which governs the intensity of the surface tension-driven convection. Considering
data listed in Tabs. 1, 2, one can conclude that interfacial gradient A and other parameters of
the system are more sensitive to variations of boundary gradient A1 then variations of A2. In
the tables, △T denotes the temperature drop in the whole system, Tmax and |u|max are the
maximum values of the temperature and the absolut value of velocity in the system, respectively,
Cmax is the maximum value of the vapour concentration in the gas layer. In all considered cases
the solution predicts relative variations of the temperature and deviations of maximum values of
the vapour concentration from the equilibrium values T0, C0 retained within 15% which can be
considered to be moderate ones.

Significant alterations in flow topology and thermal field occur with the change in Ai. When
analysing basic characteristics of convective regimes, the Napolitano classification of flow types
is used in the two-layer systems on the basis of the flow topology [12]. Three basic classes are
distinguished: mixed type flows (MF), Poiseuille-type regimes (PF) and pure thermocapillary
flows (TKF). Additionally, subclasses of MF and PF that are specific to two-phase systems with
evaporation are considered. Detailed description of specific features and mechanisms causing
all possible flow regimes as well as examples of velocity, temperature and vapour concentration
fields for each mode can be found in [5]. The first form of mixed type flows (MF-1) is defined
by the specific “negative lamination” of the velocity contour near the liquid – gas boundary and
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Table 1. Parameters of the two-phase system at fixed A2 = 5 K/m for different values of A1

A1, A, △T , Tmax, Cmax |u|max×, M0 · 104, Mx · 104,
K/m K/m K K ×10−3, m/s kg/(m2·s) kg/(m·s)
−10 −6.596 1.628 293.15 0.4216 2.423 6.9407 −2.909
−5 −2.875 2.097 293.15 0.4134 2.171 6.7669 −1.5049
0 0.846 2.23 293.15 0.4111 2.428 6.7193 −0.1008
5 4.567 2.024 293.15 0.4147 2.78 6.798 1.3034
10 8.289 1.482 293.15 0.4241 3.164 7.0028 2.7075

Table 2. Parameters of the two-phase system at fixed A1 = 5 K/m for different values of A2

A2, A, △T , Tmax, Cmax |u|max×, M0 · 104, Mx · 104,
K/m K/m K K ×10−3, m/s kg/(m2·s) kg/(m·s)
−10 2.029 2.204 293.15 0.4115 2.51 6.7295 1.6056
−5 2.875 2.158 293.15 0.4123 2.598 6.7468 1.5049
0 3.721 2.098 293.15 0.4134 2.688 6.7697 1.4041
5 4.567 2.024 293.15 0.4147 2.78 6.798 1.3034
10 5.413 1.935 293.15 0.4162 2.873 6.8317 1.2026

formation of near-surface reverse flow (Fig. 2(a–c)). The second type mixed flow (MF-2) is
characterized by the "positive stratification" of the velocity profile along the interface. Here,
the longitudinal velocity component is positive in both fluids (Fig. 2(d–f)). Mixed flows of the
third type (MF-3) have the velocity field similar to the Couette structure in one of the layers
(Fig. 2(g–i)) or concurrently in both layers. It was found that all three classes of mixed type
flows could be realized in the system under considered conditions.

In the general case, three subclasses of flows among the Poiseuille-type regimes were identified
[5]. However, in the considered range of boundary gradients Ai, one can observe only flows with
the velocity distribution close to the parabolic one through the whole height of the channel or
simultaneously in both phases, where the longitudinal velocity component is positive everywhere.
Such a flow regime presents the PF-1 regime (Fig. 3(a–c)). Finally, pure thermocapillary flows
(TKF, Fig. 3(d–f)) which are characterized by global liquid counterflow can be also realized
in the two-phase system under conditions of temperature pumping with gradients Ai from the
specified range. Several consecutive transitions from one type of flows to another can occur with
an increase in Ai from −10 to 10 K/m. Topological regimes arising in the bilayer system under
study are specified on the map of flow regimes in Fig. 4(a) according to the given classification.
Along with the topology of the flow, the intensity of the motion also varies. It is characterized
by maximum values of the modulus of velocity |u| (see Tabs. 1, 2) and it can be varied by more
than 40%. As previously mentioned, the system is less sensitive to variations in A2. When A2 is
changed from −10 K/m to 10 K/m, a smaller number of successive transitions between regimes
is observed in comparison with corresponding variations in A1. The intensity of the flow slightly
responds to changes in the thermal load caused by variations in A2 (compare values of |u|max in
Tabs. 1 and 2). One should note that all three basic types of flows are observed in real systems
with evaporating liquid driven by the co-current gas flux [13].

The change of intensity of temperature driving forces leads not only to transformation of the
velocity field but also to alteration of the thermal picture. The solution predicts formation of the
non-uniform temperature gradient in the vertical direction for all observed convective regimes.

– 213 –



Victoria B.Bekezhanova, Olga N.Goncharova On One Exact Solution of an Evaporative . . .

Fig. 2. Velocity (a, d, g), temperature (b, e, h) and vapour concentration (c, f, i) fields for mixed
type flows: MF-1, A1 = 5 K/m, A2 = −10 K/m (a–c); MF-2, A1 = −10 K/m, A2 = 10 K/m
(d–f); MF-3, A1 = 0 K/m, A2 = −10 K/m (g–i)

Two typical thermal patterns with a substantial "cold" zone on both sides of the phase boundary
(CNsZ) and with a cold thermocline along the interface (CThI) can emerge. The regimes with
the cool near-surface zone (CNsZ) are characterized by unstable temperature stratification of
the entire liquid layer. In this case, the gas layer is steadily stratified (Figs. 2(b, e, h), 3(b)). The
evaporation effect prevails over the thermocapillary effect in these modes. Formation of the dis-
tinctive cold thermocline on the interface (CThI) is caused by the competition of the Marangoni
effect which gives rise to the thermocapillary motion of the liquid from the region with higher
temperature into the cool domain along the interface with the evaporation process resulting in
cooling of the liquid surface (Fig. 3(e)). The possibility of formation of convective modes with
the cool boundary layer near the liquid surface in the two-layer systems with evaporation was
confirmed in experiments [14]. Figure 4(b) presents a "map" of thermal regimes that depend on
the longitudinal temperature gradients Ai.

The pattern of the vapour concentration field in the gas layer remains the same for all con-
sidered cases (see distributions of the vapour concentration functions in Figs. 2, 3). The vapour
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Fig. 3. Velocity (a, d), temperature (b, e) and vapour concentration (c, f) fields: PF-1,
A1 = −5 K/m, A2 = 0 K/m (a–c); TKF, A1 = A2 = 10 K/m (d–f)

Fig. 4. Maps of flow regimes (a) and temperature patterns (b) in the HFE-7100–nitrogen system
subjected to external thermal load: (a) — ◦ – MF-1, • – MF-2, ⊗ – MF-3, � – PF-1, ♢ – TKF;
(b) — ⋆ – regime with CNsZ, ∗ –regime with CThI

content is close to the concentration of saturated vapour C0 near the interface, and it varies
here depending on changes in the interfacial temperature gradient A whereas near the upper
wall the values of C drop to zero. The behaviour of the vapour concentration function is caused
by changes in the evaporation mass flow rate M which significantly depends on temperature
characteristics of the interface. Since temperature gradient A is more sensitive to variations of
the thermal load applied to the substrate then similar behaviour is inherent to M (compare the
variation range for M0, Mx in Tabs. 1, 2 and the character of their relation with changes in A
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related to changes in boundary temperature gradients Ai presented in Fig. 5). If Mx is negative
then the evaporation rate M decreases along the channel and the vapour concentration in the gas
diminishes (Tab. 1). The higher is the temperature, the higher is the saturation pressure on the
gas side of the phase interface. Therefore, more liquid evaporates at the same gas pressure. If the
surface tension-driven motion is co-directional with the gas flow then evaporation is induced by
both the thermal load and the effect associated with the shear stress. The gas flux encourages the
vapour motion in the gas. It results in higher concentration gradient at the liquid – gas interface
and ensures higher evaporation rate.

Fig. 5. Relationship between parameters M0 (dashed lines) and Mx (solid curves) and interface
temperature gradient with changes in A1 (a) and A2 (b): A2 = 20 K/m; A1 = 20 K/m

Thus, one can exert control over the evaporation rate and flow regimes with the intensity of
thermal pumping defined by boundary gradients Ai. If it is necessary to retain the given tem-
perature head on one of the walls then one can maintain acceptable variations of the evaporation
rate by means of the thermal regime on other wall and forecast potential changes in the vapour
content.

Influence of the vertical temperature gradient. The structure of the thermal field can be
considerably transformed with conditions of thermal load with non-zero gradients Ai and various
ϑ1 and ϑ2. It depends on the value and orientation of the resulting temperature gradient. Since
the system behaviour is more responsive to variations of the thermal load applied on the substrate
the influence of the vertical temperature drop on the bilayer flow characteristics is investigated
when parameter ϑ1 varies from 288.15 to 298.15 K. Formation of regimes with stable (Fig. 6(b))
and unstable (Fig. 6(e)) temperature stratification is studied in the transverse direction of the
whole system. One should note that solution predicts only reconstruction of the thermal field
whereas the velocity profile is not transformed with the changes in ϑ1. According to (2.2) and
(1.6), both interface temperature gradient A and gradient Mx defining the variation rate of M
along the longitudinal axes do not depend on ϑ1. It remains the same for corresponding fixed
values of Ai for all vertical temperature drops (quantitative characteristics for configurations
under consideration are exemplified in Tab. 3). It is regarded as a imperfection of solution
(1.3) as in this case the exact solution does not reflect the impact of the Marangoni effect.
One can conclude that the presence of non-zero transverse temperature drop does not lead to
the formation of topologically new classes of flows that differ from those described earlier and
presented in Figs. 2, 3.
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Table 3. Parameters of the two-phase system at A1 = −5 K/m, A2 = 5 K/m with changes in ϑ1

ϑ1, △T , Tmax, Cmax |u|max×, M0 · 104, Mx · 104,
K K K ×10−3, m/s kg/(m2·s) kg/(m·s)
288.15 5.818 293.15 0.3484 2.171 5.3628 −1.5049
293.15 2.097 293.15 0.4134 2.171 6.7669 −1.5049
298.15 5 298.15 0.4784 2.171 8.171 −1.5049

Fig. 6. Velocity (a, d), temperature (b, e) and vapour concentration (c, f) fields in the bilayer
system at A1 = 5 K/m, A2 = 10 K/m for ϑ1 = 288.15 K (a–c) and ϑ1 = 298.15 K (d–f)

Despite the mentioned above defect this solution feasibly describes the qualitative interrela-
tion of the variations of the evaporative mass flow rate and the vapour content in the gas with
changes in the vertical temperature drop. The growth of deviation of the liquid temperature from
the equilibrium value T0 and significant deviation of vapour concentration in the gas phase from
C0 with an increase in the transverse temperature drop is observed. If ϑ1 < T0 then the vapour
content in the gas drops. The lower is the temperature of the liquid the lower is the average
kinetic energy of the liquid volume and, therefore, the smaller is the quantity of the volatilizing
fluid. Along with this, the lower is the vapour concentration in the background gas, the faster is
the volatilization from the liquid phase [15]. With the rising temperature the average kinetic en-
ergy of the liquid volume increases. Therefore, vapour concentration C also grows accompanied
by the inhibition of growth of the vaporization rate M . If ϑ1 > T0 then the maximum vapour
concentration is above the equilibrium concentration C0. The solution precisely specifies this
relationship between evaporation rate and characteristics of the vapour content in the gas phase
and temperature drop in the whole system. Thus, the qualitative behaviour of evaporation char-
acteristics that depends on the transverse temperature drop in the bilayer system is adequately
described by the exact solution under study.

The applicability of solution (1.3) that describes characteristics of the bilayer system with the
transverse temperature drop is limited by values of ϑ1 and ϑ2 providing moderate deviations of
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Cmax from C0, namely, no more than 20–25%. For the considered two-layer system the transverse
temperature drop should be within 10 degrees, where the average temperature of duct walls ϑ1

and ϑ2 have to be close to the temperature of the local thermodynamic equilibrium T0.

The work of O.N.Goncharova was carried out in accordance with the State Assignment of the
Russian Ministry of Science and Higher Education entitled "Modern methods of hydrodynamics
for environmental management, industrial systems and polar mechanics" (Government contract
code FZMW-2020-0008).
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Об одном точном решении задачи испарительной
конвекции с граничными условиями Дирихле

Виктория Б. Бекежанова
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация
Ольга Н. Гончарова

Алтайский государственный университет
Барнаул, Российская Федерация

Аннотация. Изучаются характеристики стационарных конвективных течений жидкости и спут-
ного потока газа в плоском горизонтальном канале в условиях неоднородного испарения диффу-
зионного типа. Для описания течений в рамках приближения Обербека –Буссинеска используется
частично-инвариантное точное решение уравнений термоконцентрационной конвекции, получен-
ное как решение задачи испарительной конвекции с граничными условиями Дирихле на внешних
стенках канала. На примере системы сред HFE-7100 – азот исследовано влияние внешней тепловой
нагрузки на структуру полей скорости и температуры, массовый расход испарения и паросодер-
жание в газе.

Ключевые слова: математическая модель, краевая задача, точное решение, испарительная кон-
векция.
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