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Abstract. The complete system of equations for the dynamics of a Cosserat-type continuum with couple
stresses under finite strains and particle rotations in Lagrangian variables is reduced to a compatible
system of conservation laws in the Godunov sense. This system enables analyzing generalized solutions
with surfaces of strong discontinuity of stresses and velocities and allows integral estimates that guarantee
the uniqueness and continuous dependence of solutions of the Cauchy problem and boundary-value
problems with dissipative boundary conditions on the initial data.
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Introduction

Analysis of the correctness of setting boundary value problems for equations of a mathematical
model is a fundamentally important step in the transition to the development of methods for
numerical implementation. Special classes of equations and systems play an exceptional role in
this process. One of these classes is formed by hyperbolic systems of conservation laws that are
thermodynamically compatible according to Godunov.

Thermodynamically compatible systems were introduced by S. K. Godunov and applied by
him with his followers for analysis the models of gas dynamics, theory of elasticity and some
coupled problems [1–3]. Such form of equations assumes the setting so-called generating poten-
tials L0(UUU) and Lj(UUU) (j = 1, . . . , n, where n is the spatial dimension of a model) depending
on the vector UUU , whose components are projections of the velocity vector, components of the
stress tensor and other thermodynamic state parameters. By means of generating potentials the
system is written in divergent form as follows:

∂φφφ0(UUU)

∂t
=

n∑
j=1

∂φφφj(UUU)

∂xj
, φφφ0 =

∂L0(UUU)

∂UUU
, φφφj =

∂Lj(UUU)

∂UUU
, (1)

or in a more general form, including terms that are independent of derivatives. The additional
conservation law

∂

∂t

(
UUU ·φφφ0 − L0

)
=

n∑
j=1

∂

∂xj

(
UUU ·φφφj − Lj

)
(2)
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is valid for the system (1). The equation (2) may be a conservation law of energy or of entropy.
Thermodynamically compatible systems of the form (1), (2) turn out to be very useful for

justifying the mathematical correctness of models. If the generating potential L0(UUU) is a strongly
convex function, then the system (1) belongs to the hyperbolic type. It is characterized by a finite
speed of propagation of disturbances and a limited area of dependence of solutions. Based on
such formulation, a priori estimates of solutions in characteristic cones can be obtained, from
which it follows the uniqueness and continuous dependence on initial data for the Cauchy problem
and for boundary value problems with dissipative boundary conditions. It is intended for the
integral generalization of the model, which allows to construct discontinuous solutions. For
numerical analysis of the system (1), (2) the effective shock-capturing methods, such as Godunov’s
method, adapted to the computation of solutions with discontinuities, caused by concentrated
and impulsive perturbations, may be applied.

The model of Cosserat continuum [4–6] is used to describe mechanical behavior of materials
having microstructure (soil, rocks, granular and porous media, media with microcracks, liquid
crystals), when subjected to deformation. In this model, in contrast to the classical theory of
elasticity, where the medium is a continuum of material points, it is a continuum of particles,
which are rigid bodies of small volume with translational and rotational degrees of freedom.

The authors of many studies have developed various methods to generalize constitutive equa-
tions of the Cosserat theory for finite strains and particle rotations. An exhaustive survey of the
related research is given in [7].

In [8] the problem of waves propagation in a blocky medium is solved in the framework of
the Cosserat theory by numerical methods on supercomputers of cluster architecture. In [9, 10]
a plane system of equations is used to construct a model of the dynamics of a liquid crystal
under the influence of weak mechanical, electrical and thermal disturbances. In a short note [11]
equations of three-dimensional dynamics have been reduced to a thermodynamically compatible
system of conservation laws. The scope of study encompasses a special case of a reduced Cosserat
model with couple stresses assumed negligible and a version of a general model of physically and
geometrically nonlinear medium with couple stresses, where curvature tensor has a rate of change
equal to a gradient of an angular rate vector. The purpose of present study is a more complete
presentation of the material and improvement of the nonlinear model by means of a special
selection of equations for calculating the measure of curvature from the characteristics of the
rotational motion of particles.

1. Kinematics in a medium with couple stresses

The translational motion of a particle in a medium possessing microstructure is described by
an equation xxx = ξξξ +uuu, connecting the Lagrangian ξξξ and Eulerian xxx vectors of centers of masses
with the displacement vector uuu(ξξξ, t). The independent rotation is defined by an orthogonal
rotation tensor RRR(ξξξ, t):

RRR ·RRR∗ = III, detRRR = +1, ṘRR ·RRR∗ +RRR · ṘRR
∗
= 000.

The antisymmetric tensor of angular velocity of a particle is calculated by the formula: ΩΩΩ = ṘRR·RRR∗.
As a measure of deformation of an infinitely small element, it is assumed to take the tensor
ΛΛΛ = RRR∗ ·xxxξξξ, having such a property that if a medium moves as a rigid whole, when the distortion
tensor xxxξξξ coincides with the rotation tensor RRR, then ΛΛΛ equals to unit tensor, which conforms
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with the undeformed state of the element. By differentiating with respect to time, it is found
that the latter tensor satisfies the equation:

RRR · Λ̇ΛΛ = vvvξξξ −ΩΩΩ · xxxξξξ (3)

(vvv = ẋxx is the vector of velocity of translational motion). The linear approximation of (3) precisely
coincides with the kinematic equation for the strain rate tensor in the geometrically linear model
by Cosserat. Moreover, it is possible to show that ΛΛΛ is an invariant tensor unchangeable under
rotation of the current configuration. This property is bound to be fulfilled in the Lagrangian
description of motion.

Actually, if OOO is an orthogonal transformation of rotation of the current configuration, then

dxxx′ = OOO · dxxx = OOO · xxxξξξ · dξξξ = OOO ·RRR ·ΛΛΛ · dξξξ,

and, accordingly, xxx′ξξξ = RRR′ ·ΛΛΛ′, where RRR′ = OOO ·RRR, ΛΛΛ′ = ΛΛΛ.
Let xxxξξξ = RRRe · CCC be the polar decomposition of the distortion tensor into a product of the

orthogonal tensor RRRe, describing translatory rotation of a medium element, and the symmetric
Cauchy –Green tensor CCC, describing deformation of this element. Inasmuch as the particle
rotation RRR = RRRe ·RRRr is the superposition of the relative RRRr and translatory RRRe rotations, the
tensorΛΛΛ = RRR∗ ·RRRe ·CCC = RRR∗

r ·CCC, by structure, accounts for both the medium element distortion and
the relative particle rotation. This property of the tensorΛΛΛ is in full compliance with the common
view of the kinematics of the structurally inhomogeneous continuum composed of small-volume
material particles.

If a particle makes complete revolution about fixed axis and returns to initial position, then
the tensor RRR equals a unit tensor. Consequently, given such description, the complete revolution
of a particle entails no change in a strain state, which is typical, e.g., for micropolar media
representing large ensembles of magnetized particles in external magnetic field.

Based on the known theorem, it is valid to represent orthogonal tensors as:

RRR = III + sinψPPP + (1− cosψ)PPP 2, (4)

where ψ is the angle of rotation, calculated in terms of the trace of the tensor RRR by the equation:
cosψ = (trRRR − 1)/2, and PPP is the antisymmetric tensor associated with the orientation of the
instantaneous axis of rotation ppp = (p1, p2, p3):

PPP =

 0 −p3 p2
p3 0 −p1
−p2 p1 0

 , p21 + p22 + p23 = 1.

2. Governing equations

The description of the strain state in a medium with couple stresses, aside from the tensor
ΛΛΛ, uses a special curvature tensor MMM , calculated in terms of the rotation tensor RRR and its
derivatives in the Lagrangian coordinates RRR,k = ∂RRR/∂ξk (k = 1, 2, 3). Let MMM (k) = RRR,k ·RRR∗ be
the antisymmetric curvature tensors along the coordinate lines. The Darboux vectors fitting
with these tensors are assigned by the columns of MMM :

MMM =

 M11 M12 M13

M21 M22 M23

M31 M32 M33

 , MMM (k) =

 0 −M3k M2k

M3k 0 −M1k

−M2k M1k 0

 .
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DifferentiatingMMM (k) with respect to time and ΩΩΩ with respect to the variables ξk yields kinematic
equations ṀMM

(k)
= ΩΩΩ,k +ΩΩΩ ·MMM (k) −MMM (k) ·ΩΩΩ that admit, collectionwise, the tensor representation:

ṀMM = ωωωξξξ +ΩΩΩ ·MMM. (5)

The validity of this representation is readily tested with the componentwise writing of the tensors
in the Cartesian coordinate system. It follows from (5) that MMM is neither an invariant nor
an indifferent tensor, i.e., it changes both under rotation of the current configuration and under
rotation of the original configuration. Therefore this tensor cannot be accepted in our model as
an objective measure of curvature.

It can be shown that under rotation of the current configuration dxxx′ = OOO · dxxx this tensor
transforms in accordance with the law: MMM ′ = OOO ·MMM . In fact, since the rotation tensor OOO is
independent on time, then

RRR′ = OOO ·RRR, ΩΩΩ′ = ṘRR
′
·RRR′∗ = OOO · ṘRR ·RRR∗ ·OOO∗ = OOO ·ΩΩΩ ·OOO∗, ωωω′ = OOO ·ωωω.

Consequently, Eq. (5) reduces to the equation ṀMM
′
= OOO ·ωωωξξξ +OOO ·ΩΩΩ ·OOO∗ ·MMM ′, having the solution:

MMM ′ = OOO ·MMM .
By the same law goes the distortion tensor xxxξξξ, e.g., which is used to determine the invariant

strain measure xxx∗ξξξ · xxxξξξ, involved in the Lagrangian representation of motion in a classic elastic
medium, and an indifferent measure xxxξξξ · xxx∗ξξξ , included in the Eulerian representation, [12]. The
both measures are independent on rotation of a medium element as a rigid whole, which does
not influence the potential energy of deformation. Similarly, the invariance is the property of the
productMMM∗ ·MMM , that will be used as an independent parameter of state to construct constitutive
equations accounting for the couple properties of a medium, and that leads to a thermodynami-
cally compatible system of conservation laws, as it will be illustrated below.

It is noteworthy that the selected curvature measure differs from the conventionally used
measures [7], defined by nonsymmetric invariant tensors. As judged by the analogy with the
strain measure, the symmetrized measure MMM∗ ·MMM eliminates "excessive" degrees of freedom,
having no influence on potential energy of strain state.

The system of equations of the dynamics of a medium with couple stresses is constructed
based on the integral laws of impulse, momentum and energy conservation in the Lagrangian
form:

∂

∂t

∫
V

ρ0 vvv dV =

∫
S

σσσ · ννν dS +

∫
V

fff dV,

∂

∂t

∫
V

(
JJJ ·ωωω + ρ0 xxx× vvv

)
dV =

∫
S

(xxx× σσσ +mmm) · ννν dS +

∫
V

(
xxx× fff + ggg

)
dV,

∂

∂t

∫
V

(
ρ0
vvv · vvv
2

+
1

2
ωωω · JJJ ·ωωω +Φ

)
dV =

∫
S

(vvv · σσσ +ωωω ·mmm− qqq) · ννν dS +

+

∫
V

(vvv · fff +ωωω · ggg +Q) dV.

(6)

Here V is an arbitrary domain with a piecewise-smooth boundary S, delineated when the medium
was in the original (undeformed) state, ννν is the vector of external normal to the boundary, ρ0 is
the initial density, JJJ is the symmetric and positively definite inertia tensor, σσσ is the Piola –
Kirchhoff stress tensor, mmm is the couple stress tensor, Φ is the internal energy of a medium per
unit volume, qqq is the heat flux vector, fff and ggg are the bulk densities of mass forces and couple
forces, Q is the intensity of internal heat sources.
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As a medium moves, the domain V composed of material particles passes into deformed
state Vt, the mass of the substance remains unaltered: ρ0 dV = ρ dVt, the density changes in
conformity with the law: ρ = ρ0/det xxxξξξ, and the inertia tensor of particles in a unit volume
transforms as is given by the formula: JJJ t = (ρ/ρ0)JJJ . The tensor JJJ related to the initial state
changes with time in accordance with the equation: JJJ = RRR · JJJ0 · RRR∗, which can be evaluated
by passing to an associated coordinate system connected with a rotating particle. The time
differentiation yields the following equation for the inertia tensor:

J̇JJ = ΩΩΩ · JJJ − JJJ ·ΩΩΩ. (7)

For the continuous motions, the integral conservation laws are equivalent to the differential
equations derivable from (6) using the Green formula:

ρ0 v̇vv = divξξξ σσσ + fff,
∂

∂t

(
JJJ ·ωωω

)
= divξξξmmm+ 2 (σσσ · xxx∗ξξξ)a + ggg,

Φ̇ = σσσ∗ : (vvvξξξ −ΩΩΩ · xxxξξξ) +mmm∗ : ωωωξξξ − divξξξ qqq +Q.

(8)

Hereinafter divξξξ is the operator of divergence with respect to Lagrangian variables, the super-
script “a” denotes a vector corresponding to the antisymmetric part of a tensor. Derivation of (8)
made using the equality ωωω · J̇JJ ·ωωω = 0, which is a corollary of Eq. (7).

For the reversible processes, the state of which is characterized with the thermodynamic
parameters represented by the strain measure ΛΛΛ, curvature measure MMM and entropy s, the latter
equation in the system (8), rewritted with regard to (3) and (5) as

∂Φ

∂ΛΛΛ∗ : Λ̇ΛΛ +
∂Φ

∂MMM∗ : ṀMM + T ṡ = σσσ∗ :
(
RRR · Λ̇ΛΛ

)
+mmm∗ :

(
ṀMM −ΩΩΩ ·MMM

)
− divξξξ qqq +Q,

where T = ∂Φ/∂s is the absolute temperature, decomposes, due to linear independence of the
values Λ̇ΛΛ, ṀMM (variations of strain state), into the constitutive equations:

RRR∗ · σσσ =
∂Φ

∂ΛΛΛ
, mmm =

∂Φ

∂MMM
, (9)

heat influx equation
T ṡ = − divξξξ qqq +Q (10)

and a complementary equation mmm∗ :
(
ΩΩΩ ·MMM

)
= 0.

In view of the linear independence of the projections of the angular velocity vector, the
complementary equation reduces to the symmetry condition for the tensor mmm ·MMM∗, confining
general relationship between the elastic potential Φ and the curvature tensor MMM . With a pass to
the coordinate representation, it is possible to show that this condition holds true only when Φ is
a function of the symmetric tensor NNN =MMM∗ ·MMM . Actually, the symmetry condition in expanded
form results in superdefinite system of equations in terms of first-order partial derivatives relative
to the function Φ:

M31
∂Φ

∂M21
+M32

∂Φ

∂M22
+M33

∂Φ

∂M23
=M21

∂Φ

∂M31
+M22

∂Φ

∂M32
+M23

∂Φ

∂M33
,

M11
∂Φ

∂M31
+M12

∂Φ

∂M32
+M13

∂Φ

∂M33
=M31

∂Φ

∂M11
+M32

∂Φ

∂M12
+M33

∂Φ

∂M13
,

M21
∂Φ

∂M11
+M22

∂Φ

∂M12
+M23

∂Φ

∂M13
=M11

∂Φ

∂M21
+M12

∂Φ

∂M22
+M13

∂Φ

∂M23
.
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Each of the equations can be solved using the method of characteristics. For the first equation,
the system of characteristic equations

dM21

M31
=
dM22

M32
=
dM23

M33
= − dM31

M21
= − dM32

M22
= − dM33

M23
=
dΦ

0

has six functionally independent integrals

M2
21 +M2

31 = C1, M2
22 +M2

32 = C2, M2
23 +M2

33 = C3,

M21M22 +M31M32 = C4, M21M23 +M31M33 = C5, Φ = C6.

The general solution of the equation Φ = Φ(C1, C2, C3, C4, C5) depends on the values Mjk with
the index j = 1 as on parameters. The analysis of the general solutions of the two remaining
equations with selecting a universal dependence Φ(MMM), satisfying all of the three equations of
the system, yields Φ = Φ(NNN). In this case, the constitute equation (9) for the couple stresses
takes the form: mmm = 2MMM · ∂Φ/∂NNN , and the symmetry condition mmm ·MMM∗ = MMM ·mmm∗ is fulfilled
automatically.

It is worthy of noting that linearization of Eq. (5) in case of the infinitely small curvature
yields the equation: ṀMM = ωωωξξξ, and its correctness in description of finite strains and rotations
has been discussed above. Such equation for the curvature tensor is used in the classical theory
of the Cosserat continuum with small strains and rotations. Notwithstanding the resultant
constraint, the stress potential in the classical theory has a term represented by the quadratic
form of all components of the curvature tensor MMM . Inasmuch as independent development of
a geometrically linear model entails no complementary equation – the symmetry condition for
the tensor mmm ·MMM∗, this shows no direct disagreement with the principles of thermodynamics.
Nevertheless, the potential cannot be taken in such form for the correct generalization of the
linear model since the nonlinearity is only possible, when the quadratic form is independent on
the combinations different from the components of the symmetric tensor NNN . Accordingly, in
the case of isotropic Cosserat continuum, the curvature-dependent term of the quadratic stress
potential is to be proportional to the first invariant of the tensorNNN and to equal γMjkMjk. The
respective equation for the couple stresses, mjk = 2 γMjk, contains a single elastic coefficient γ
instead of three independent coefficients β, γ and ε of the classical theory. For an anisotropic
continuum, this term should be defined by the quadratic form ΓklMjkMjl with the symmetric
tensor ΓΓΓ of the second rank rather than of the fourth rank.

3. Canonical form of equations

In the adiabatic approximation of the model (qqq = 0, Q = 0), a closed system consists of
equations of translational and rotational motion from (8), constitutive equations (9), equation
ṘRR = ΩΩΩ ·RRR for the tensor of rotation and equation ṡ = 0 for the entropy.

Let τττ = RRR∗ · σσσ be a stress tensor making a dual couple with ΛΛΛ,

Ψ(τττ ,mmm, s) = τττ∗ : ΛΛΛ +mmm∗ :MMM − Φ(ΛΛΛ,MMM, s)

be a dual potential equal to the Legendre transform from internal energy. Written in terms of
the dual potential, the constitutive equations (9) are given in inverted form:

RRR ·ΛΛΛ = RRR · ∂Ψ(τττ ,mmm, s)

∂τττ
=
∂Ψ(RRR∗ · σσσ,mmm, s)

∂σσσ
, MMM =

∂Ψ(RRR∗ · σσσ,mmm, s)
∂mmm

.
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Using (3) and (5), the equations are reduced to the differential equations

∂

∂t

∂Ψ(RRR∗ · σσσ,mmm, s)
∂σσσ

= vvvξξξ,
∂

∂t

∂Ψ(RRR∗ · σσσ,mmm, s)
∂mmm

= ωωωξξξ +ΩΩΩ · ∂Ψ(RRR∗ · σσσ,mmm, s)
∂mmm

.

This allows representing the model by a thermodynamically compatible system of the laws of
conservation in the following sense [13]: it is possible to indicate generating potentials L0 and
Lj , the use of which modifies the complete system of equations in the Cartesian coordinates:

ρ0 v̇i = σij,j + fi,

∂

∂t

(
Jij ωj

)
= mij,j + εijk σkl

∂Ψ(RRR∗ · σσσ,mmm, s)
∂σjl

+ gi,

∂

∂t

∂Ψ(RRR∗ · σσσ,mmm, s)
∂σij

= vi,j ,

∂

∂t

∂Ψ(RRR∗ · σσσ,mmm, s)
∂mij

= ωi,j + εikl ωk
∂Ψ(RRR∗ · σσσ,mmm, s)

∂mlj
,

Ṙij = εikl ωk Rlj , ṡ = 0, Jij = J0
klRik Rjl

(11)

(εijk is the discriminant tensor) and makes it uniform:

∂

∂t

∂L0(DDDUUU)

∂UUU
=

∂

∂ξj

∂Lj(UUU)

∂UUU
+FFF (DDD,UUU),

∂DDD

∂t
=GGG(DDD,UUU). (12)

Here UUU is the column–vector composed of unknown functions, except for the entropy, namely,
projections of vectors of velocity of translational motion and angular velocity, components of
tensors of stresses and couple stresses, and components of tensor of rotation;DDD is the nonsingular
matrix, non-zero and non-unit elements of which are given by the values Rij ; FFF and GGG are the
preset vector–function and matrix–function readily determinable from the form of the equation.
The generating potentials are equal to:

L0(DDDUUU) = ρ0
vi vi
2

+
1

2
(RRR∗ ·ωωω)i J0

ij (RRR
∗ ·ωωω)j +Ψ(RRR∗ · σσσ,mmm, s), Lj(UUU) = vi σij + ωimij .

The equation for the entropy from (11) is not included in the system (12), as it automatically
yields an equivalent equation in the form of auxiliary law of conservation:

∂

∂t

(
UUU · ∂L

0(DDDUUU)

∂UUU
− L0(DDDUUU)

)
=

∂

∂ξj

(
UUU · ∂L

j(UUU)

∂UUU
− Lj(UUU)

)
+

+ UUU ·FFF − ∂L0(DDDUUU)

∂UUU
·DDD−1GGGUUU,

(13)

the validity of which is checked using the differentiation formula

∂L0(DDDUUU)

∂t
=
∂L0(DDDUUU)

∂UUU
·
(
∂UUU

∂t
+DDD−1 ∂DDD

∂t
UUU

)
. (14)

The system of Eqs. (12) possesses some essential properties reflective of mathematical cor-
rectness of the model. It has a divergent form and can serve to describe generalized solutions
with discontinuous velocities and stresses – shock waves and contact discontinuities at inter-
faces of media having different mechanical properties. Solving of such systems involves effective
computational algorithms adapted to calculation of discontinuities [14].
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Application of the formula (14) to the derivative ∂L0(DDDUUU)/∂UUU brings the system (12) into
symmetric form: (

III 000

000 AAA

)
∂

∂t

(
DDD

UUU

)
=

(
000 000

000 BBBj

)
∂

∂ξj

(
DDD

UUU

)
+

(
GGG

HHH

)
. (15)

Here

AAA(DDD,UUU) =
∂2L0(DDDUUU)

∂UUU2
, BBBj(UUU) =

∂2Lj(UUU)

∂UUU2
, HHH(DDD,UUU) = FFF −AAADDD−1GGGUUU.

The matrices AAA and BBBj are symmetric, and, moreover, when the potential L0(DDDUUU) is strongly
convex, the matrix AAA is positively definite. Therefore, the system of equations (12) is of hyper-
bolic type. The strong convexity condition L0 is fulfilled, when the dual potential Ψ(τττ ,mmm, s) is
a strongly convex function with respect to the set of variables τττ and mmm.

Suppose that the matrices–coefficients of the system (15) and the right-hand sides GGG and HHH
meet the Lipschitz condition relative to DDD and UUU . In this case, for the difference of two solutions
derived for such system in the space-time domain W in the form of a truncated cone with its
bases represented by hyperplanes t = t0 and t = t1 and the lateral surface equation h(ξξξ, t) = 0

complying with the Hamilton – Jacobi inequality [1]: ḣ+ c(hξξξ) > 0, where hξξξ is the gradient of h
and c(ννν) is a minimum root of the characteristic equation det(cAAA+ νjBBB

j) = 0, a priori estimate
is valid: ∥∥(DDD′,UUU ′)− (DDD,UUU)

∥∥(t1) 6 ∥∥(DDD′,UUU ′)− (DDD,UUU)
∥∥(t0) exp a(t1 − t0). (16)

Here a is a constant governed, generally speaking, by the both solutions and by their derivatives
with respect to time and with respect to spatial variables, the double brackets denote the energy
norm: ∥∥(DDD,UUU)

∥∥2(t) = 1

2

∫
Wξ

(
trDDD∗DDD +UUUAAAUUU

)
dV

(tr is the trace of a matrix), calculated as an integral taken over the section Wξ of the conical
domain W by the hyperplane t = const. It follows that the Cauchy problem solution

DDD|t=t0 =DDD0(ξ), UUU |t=t0 = UUU0(ξ)

is unique in W and continuously dependent on initial data. Furthermore, the estimate (16)
shows boundedness of the domains of dependence and influence of the solutions — finiteness of
perturbation velocities in the model under analysis.

An analogous estimate is valid in truncated cones, adjoining the problem solution region in
case that the boundary conditions set at the region boundaries are dissipative. The dissipativity
precisely means that for any two solutions at the boundary the following inequality holds true:(

UUU ′ −UUU
)
BBBj

(
UUU ′ −UUU

)
νj 6 0,

where ννν is the vector of the external normal. In this case, the integral estimate yields the
unique and continuous dependence of the solutions of boundary-value problems on the initial
data. Considering structure of the matrices BBBj , it is possible to show that the condition of
dissipativity for the model of the couple-stress elasticity theory reduces to the inequality:

(v′i − vi)(σ
′
ij − σij) νj + (ω′

i − ωi)(m
′
ij −mij) νj 6 0. (17)

The dissipative boundary conditions include conditions in terms of velocities: vi = v̄i, ωi = ω̄i,
and conditions in terms of stresses: σij νj = σ̄i, mij νj = m̄i, as well as their combinations. For
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example, at a certain section of a boundary, the vectors of angular velocity ω̄i and stresses σ̄i,
or the vectors of linear velocity v̄i and couple stresses m̄i may be set. It is allowable to impose
mixed boundary conditions, when normal velocities and tangential stresses, or, conversely, normal
stresses and tangential velocities are given.

Conclusion

The problem of reducing the governing equations to a thermodynamically compatible sys-
tem of conservation laws in the nonlinear continuum mechanics is extremely complicated. This
problem can be solved relatively easy only within the framework of a geometrically linear approxi-
mation of models. Nevertheless, research in this direction is actively developing (see, [15, 16]),
since this form of the equations guarantees the mathematical correctness of the model and allows
the use of well-developed computational algorithms for numerical implementation. The canonical
form (12) is a simple generalization of the thermodynamically compatible system (1). Such form
also provides reliable properties. In present paper, the equations of the nonlinear elastic Cosserat
continuum with a special measure of curvature are reduced to canonical form. The question of
reducing the equations with other curvature measures, different from (5), to the thermodynami-
cally compatible form remains open.
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Приведение нелинейных уравнений типа Коссера
к системе в форме Годунова

Владимир М. Садовский
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация

Аннотация. Полная система уравнений динамики моментной среды типа Коссера при конечных
деформациях и вращениях частиц в лагранжевых переменных приводится к термодинамически
согласованной по Годунову системе законов сохранения. Такая форма системы позволяет анализи-
ровать обобщенные решения с поверхностями сильного разрыва скоростей и напряжений, а также
получать интегральные оценки, гарантирующие единственность и непрерывную зависимость ре-
шений задачи Коши и краевых задач с диссипативными граничными условиями от начальных
данных.

Ключевые слова: упругость, континуум Коссера, моментные напряжения, тензор кривизны.
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