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Abstract. The problem of unitary polynomials of degree n with real coefficients least deviating from
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Let K be some compact complex plane, An be a class of unitary polynomials of degree n.
For any polynomial Pn(z) from An norm on a compact K, we define the current: ∥Pn∥K =

= max
z∈K

|Pn(z)|, with the symbol Z(Pn) denote the set of all its zeros.

The problem of finding the polynomials least deviating from zero by K with a zero set on
some fixed subset of D ⊂ C is posed as follows: find the number En(K,D) = inf

{
∥Pn∥K

∣∣
Pn ∈ An, Z(Pn) ⊂ D

}
and a polynomial P ∗

n such that ∥P ∗
n∥K = En(K,D), Z(P ∗

n) ⊂ D, which
is called the extremal or Chebyshev polynomial. Finding such polynomials and other similar
problems have been considered by many mathematicians (see, for example, [1–7]).

Chebyshev polynomials considered on the arc of a circle, without restriction on the location
of zeros in the complex plane, were studied N. I. Akhiezer and many others (see, for example, [8]).
For a narrower problem, with zeros on the arc of a circle, L. S. Maergoiz et al. [9] determined the
extremal polynomials and their norm.

This article is devoted to finding the norm of Chebyshev polynomials with real coefficients
and a zero set outside an open arc segment.

The author is grateful to his teacher L. S. Maergoiz for the task.

1. Two problems of finding extreme polynomials

Consider the arc Γα =
{
z = eiφ ∈ C : |φ| 6 α

}
, where 0 < α < π, interval Gα =

= {z = cosα+ iy : |y| < sinα}, Uα — open arc segment Γα.
We define two classes of polynomials: unitary polynomials with real coefficients with a zero

set outside the open segment of the arc are

βn = {Pn ∈ An : Z(Pn) ⊂ C \ Uα}
∗nrybakova@sfu-kras.ru
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and unitary polynomials with real coefficients with zero set on the boundary of the arc segment
are

β̃n = {Pn ∈ An : Z(Pn) ⊂ Γα ∪Gα}
with norm

∥Pn∥ = max
z∈Γα

|Pn(z)| = max
|φ|6α

|Pn(eiφ)|.

Task A: Find the number En,α = infPn∈βn ∥Pn∥ = minPn∈βn ∥Pn∥ and the polynomial P ∗
n

with the norm ∥P ∗
n∥ = En,α, which is called the extremal or Chebyshev polynomial.

Task B: Find the number En,α = inf
Pn∈β̃n

∥Pn∥ = min
Pn∈β̃n

∥Pn∥ and the polynomial P ∗
n

with the norm ∥P ∗
n∥ = En,α.

The main result of the work:

Theorem 1. An extreme polynomial vacation abroad that can be seen

Tn(z) = S(r)
n :=

r∏
k=1

(z2 − 2a
(2r)
k z + 1) for even n = 2r,

Tn(z) = (z − 1)S(r)
n for odd n = 2r + 1,

where a(n)k = 1− 2 cos2
π(2k − 1)

2n
sin2(α/2) k = 1, . . . , r, ∥Tn∥ = 2 sinn(α/2).

Remark. For n = 2 and cosα > 0, the solution of the problem is not unique: in addition to the
polynomial T2, there is another extreme polynomial F2(z) = z2 − 2z cosα+ cosα.

The polynomials from Theorem 1 and their norm were first written out in the article [9] in
connection with solving the problem of finding extreme polynomials on the arc of a unit circle
with a zero set coinciding with this arc.

The proof of the theorem relies on a number of lemmas.

Lemma 1. Tasks A and B have the same solution.

Proof. If the polynomial Pn(z) belongs to the class βn, but does not belong to the class β̃n, then
there is at least one root of it that does not belong to Γα ∪Gα.

Let b0 /∈ Γα ∪ Gα be such a root of the polynomial Pn(z). Consider the polynomial P̃n(z)
such that Z(P̃n) = Z(Pn)/b0 ∪ b̂0 and ∥P̃n∥ < ∥Pn∥. There are three possible cases:

1. |b0| = |r · eiγ | > 1 и Re(b0) > cosα; b̂0 = eiγ ∈ Γα.

2. Re(b0) < cosα и Im(b0) 6 sinα; b̂0 = cosα+ iIm(b0) ∈ Gα.

3. Re(b0) < cosα и Im(b0) > sinα; b̂0 = cosα+ i sinα ∈ Γα. 2

2. The case of an even number of roots on Gα

Consider the following result.

Lemma 2. For polynomials
L2(z) = (z − cosα− iy)(z − cosα+ iy),

where 0 6 y < sinα, and
P2(z) = (z − eiψ)(z − e−iψ),

where ψ is determined from the equality cosψ = (sin2 α− y2)/2 + cosα, the inequality |L2(z)| >
|P2(z)| is valid for all z ∈ Γα, equality is achieved only at points 1 and e±iα.
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Proof. Denote |L2(e
iφ)|2 := q(cosφ), |P2(e

iφ)|2 := p(cosφ). Note that p(cosα) = q(cosα) and
p(1) = q(1), by this |L2(z)| = |P2(z)| for z ∈ {1; eπα}.

The inequality p(t)− q(t) < 0 holds for all t from the interval (cosα; 1), because cosα and 1

are the roots of a square trinomial

p(t)− q(t) = 4(sin2 α− y2)(t2 − t(cosα+ 1) + cosα),

and the multiplier sin2 α − y2 > 0 according to the lemma, all this indicates that the control is
unmanageable |L2(z)| > |P2(z)| for everything z ∈ Γα \ {1; eπα}. 2

Let’s consider a few lemmas-consequences.

Lemma 3. For the norm of polynomials of the form

L2(z) = (z − cosα− iy)(z − cosα+ iy),

where 0 6 y < sinα, the inequality is valid |L2(z)| > 2 sin2 α/2, and the equality holds only for
polynomials F2(z) = z2 − 2z cosα+ cosα and only in the case of 0 6 α 6 π/2.

Proof. The norm of the polynomial P2 described in Lemma 2 is equal to 2 sin2 α/2, if and only if
it coincides with the polynomial T2 (see Theorem 1), and in other cases is greater than this value.
We define the polynomial L2 of Lemma 2 when P2 ≡ T2. Equating cosψ and a

(2)
k , described in

Lemma 2 and Theorem 1, respectively, we get cosψ =
1 + cosα

2
, hence y2 = cosα− cos2 α > 0,

y2 is non-negative only for 0 6 α 6 π

2
. The desired polynomial is — L2(z) = z2−2z cosα+cosα.

It is not difficult to check that its norm is 2 sin2 α/2. 2

Lemma 4. For any polynomial Pn ∈ β̃n, where n > 2, having an even number of roots on Gα
(taking into account multiplicity) and at least two roots, the inequality ∥Pn∥ > 2 sinn α/2 is valid.

Proof. If we consider any polynomial Pn ∈ β̃n, where n > 2, having an even number of roots
on Gα (taking into account multiplicity), then the inequality ∥Pn∥ > 2 sinn α/2 is valid for it,
because if we replace each pair of complex-conjugate roots from Gα of the polynomial Pn ∈ β̃n
with a pair of roots from Γα described in Lemma 2, we get the polynomial P̃n(z).

Because if Z(P̃n) ∈ Γα, then ∥P̃n∥ > 2 sinn α/2 (see [9]). By lemma 2 |P̃n(z)| 6 |Pn(z)| for
all z ∈ Γα. Consequently, ∥Pn∥ > ∥P̃n∥ > 2 sinn α/2.

If P̃n ≡ Tn, what exists means ξ such that ξ ̸= 1, ξ ̸= e±iα and |Tn(ξ)| = 2 sinn α/2 (the
paper [10] describes the properties of such polynomials, in particular, such as: there is n + 1

points on Γα such that at these points the module of the polynomial Tn is equal to its norm).
This is possible because n > 2. Therefore, the inequality

∥Pn∥ > |Pn(ξ)| > |P̃n(ξ)| = |Tn(ξ)| = 2 sinn α/2

is valid.
If the polynomials P̃n(z) and Tn(z) are not identically equal, then the inequality holds for

the norm of the polynomial

∥Pn∥ > ∥P̃n∥ > ∥Tn∥ = 2 sinn α/2.
2
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3. Properties of Chebyshev polynomials on a segment

To solve our problem, we need several well-known facts about polynomials with real coeffi-
cients, including weight functions, on the segment [−1; 1] of the real axis.

Let’s write down a special case of the theorem [11, Chapter II, page 66].

Lemma 5. Let s(x) be a weight function and a family of polynomials Qk(x) =
k∏
j=1

(x− rj), then

for an extremal polynomial Q∗
k(x), such that

∥s(x) ·Q∗
k(x)∥[−1;1] = min

Qk(x)
∥s(x) ·Qk(x)∥[−1;1],

the statement is true: there are k + 1 points λj , j = 1, . . . , k + 1, such that

|s(λj) ·Q∗
k(λj)| = ∥s(x) ·Q∗

k(x)∥[−1;1], j = 1, . . . , k + 1.

Properties of Chebyshev polynomials tn(χ) =
1

2n−1
cos(n arccosχ) =

n∏
j=1

(χ − γj) on the

segment [−1; 1] can be viewed in [12], in particular, ∥tn∥[−1,1] =
1

2n−1
,

n∑
j=1

γj = 0 if ηj , j =

= 1, . . . , n− 1 are roots of the derivative of the Chebyshev polynomial, then
n−1∑
j=1

ηj = 0.

Let −1 = η0, 1 = ηn, the Chebyshev polynomial deviates most from zero on the segment

[−1; 1] at the points ηj , j = 0, . . . , n, and if n is odd, then tn(1) = tn(ηn−2) = . . . = tn(η1) =
1

2n−1

and tn(−1) = tn(η2) = . . . = tn(ηn−1) = − 1

2n−1
; if n is even, then tn(η1) = tn(η3) = . . . =

tn(ηn−1) = − 1

2n−1
and tn(−1) = tn(η2) = . . . = tn(1) =

1

2n−1
.

Lemma 6. If the norm of the polynomial is f(χ) on the segment [−1; 1] is not greater than the
norm of the polynomial tn(χ), then there are at least n points pj (taking into account multiplicity)
such that

−1 6 p1 6 η1 6 p2 6 η2 6 . . . 6 ηn−1 6 pn 6 1,

tn(pj)− f(pj) = 0, j = 1, . . . , n, at the same time , the inequality −1 6
n∑
j=1

pj 6 1 is fulfilled.

Lemma 7. The unitary polynomial least deviating from zero on the segment [a, b] has a norm

equal to
(
b− a

2

)n
· 1

2n−1
.

4. The case of an odd number of roots on Gα

In the case of an odd number of roots on Gα, to solve problem B it is enough to consider
polynomials with no multiple roots (see lemma 2 and the proof of property 4 of [10] is easily
transferred to this case too)

Pn(z) = (z − cosα)

k∏
j=1

(z − eiφj )(z − e−iφj ), (1)
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where |φj | 6 α, j = 1, . . . , k для n = 2k + 1, k ∈ N and

Pn(z) = (z − cosα)(z − 1)
k∏
j=1

(z − eiφj )(z − e−iφj ), (2)

for n = 2k + 2, k ∈ N. It is easy to check that the polynomial (2) is not extremal at k = 0.

Lemma 8. If cosα = 0, n > 2, then for all polynomials of the form

Pn(z) = (z − cosα)
n−1∏
j=1

(z − eiφj ), (3)

where |φj | 6 α, j = 1, . . . , n− 1, in particular, for (1) and (2), the inequality ∥Pn∥ > 2 sinn α/2.

Proof. For the norm of the polynomial (3) the inequality is true ∥Pn(z)∥ > minz∈Γα
|z − cosα| ·

∥Tn−1(z)∥, where Tn−1(z) is an extremal polynomial (see Theorem 1) of degree n− 1.

∥Pn(z)∥ > min
z∈Γα

|z − cosα| · 2 · sinn−1(α/2) > 2 sinn α/2. 2

Find the moduli of the polynomials (1) and (2) if α ̸= π/2, for z = eiφ ∈ Γα:

|Pn(eiφ)| =
√
1 + cos2 α− 2 cosα cosφ ·

k∏
j=1

|2(cosφj − cosφ)| ,

|Pn(eiφ)| =
√
1 + cos2 α− 2 cosα cosφ ·

√
2− 2 cosφ ·

k∏
j=1

|2(cosφj − cosφ)| .

Applying the transformation χ(φ) = sign(cosα)
(
2
( sinφ/2
sinα/2

)2

− 1
)
, we obtain |Pn(eiφ)| =

= 2(sinα/2)n · 2(n−2)/2|ln(χ)|, where for polynomials (1) and (2) respectively

ln(χ) =
√
aχ+ 1 ·

k∏
j=1

(χ− νj) (4)

and

ln(χ) =
√
aχ+ 1 ·

√
(1 + sign(cosα)χ) ·

k∏
j=1

(χ− νj), (5)

a = | cosα|, νj = χ(φj), j = 1, . . . , r. If the norm of polynomials is defined on Γα, then the norm
of functions ln(χ) is on the segment [−1; 1] of the real axis.

Lemma 9. If all roots of the derivative of the function ln(χ), (for (4) and (5)) n > 2 belong to
the segment [−1; 1], then the inequality

∥ln∥ = max
|χ|61

|ln(χ)| >
1

2
n−2
2

(6)

is true for the norm of the function.
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Proof. If all roots of the derivative of the function ln(χ), n > 2 and a ̸= 0 belong to the segment
[−1; 1], then the norm of the function ∥ln∥ = max|χ|61 |ln(χ)| on the segment [−1; 1] coincides
with the norm of the function on the segment [−1; 1] with the norm of the function on the segment[
− 1

a
; 1
]
. If rn(χ) = l2n(χ) −

1

2n−1
, then by Lemma 7 ∥rn∥|[−1/a;1] > a ·

(
1 + 1/a

2

)n
· 1

2n−1
.

Notice that 0 < a < 1. The function m(a) = a ·
(
1 + 1/a

2

)n
in the interval (0; 1) is decreasing

for n > 2. Thus m(1) = 1, hence, ∥rn∥[−1/a;1] >
1

2n−1
. The lemma is proved. 2

Lemma 10. For the norm of the function (4) for which
k∑
j=1

νj <
1

2
, the inequality (6) holds.

Proof. Consider the family of functions ln(χ) =
√
aχ+ 1 ·

k∏
j=1

(χ− νj), |νj | 6 1, j = 1, . . . , k, for

which the inequality ∥|ln∥ 6 1

2
n−2
2 2

is satisfied. If rn(χ) = l2n(χ) −
1

2n−1
, then by assumption

∥rn(χ)∥[−1;1] =
1

2n−1
.

Consider the Chebyshev polynomial on the segment [−1; 1]

tn(χ) =
1

2n−1
cos(n arccosχ) =

n∏
j=1

(χ− γj).

The roots of the derivative of the Chebyshev polynomial are ηj(j = 1, . . . , n − 1). Since, by
assumption, ∥|rn∥ = ∥tn∥, then Lemma 6 is valid.

Thus, the identity

tn(χ)− rn(χ) = (1− a)
n∏
j=1

(χ− pj)

is valid for pj , j = 1, . . . , n are described in Lemma 6:

n∏
j=1

(χ− γj)− (aχ+ 1)

k∏
j=1

(χ− νj)
2 +

1

2n−1
= (1− a)

n∏
j=1

(χ− pj).

Let us equate the coefficients of the polynomials at χn−1 of the right and left parts of the previous
equality:

−
n∑
j=1

γj −

−2a

k∑
j=1

νj + 1

 = −(1− a)

n∑
j=1

pj .

Using the inequality of Lemma 7 and properties of Chebyshev polynomials, we obtain

−1 + a 6 −2a
k∑
j=1

νj + 1 6 1− a

или
1

2
6

k∑
j=1

νj 6
2− a

2a
. (7)
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Hence, if for the coefficients νj , j = 1, . . . , k of the function ln(χ) =
√
aχ+ 1 ·

k∏
j=1

(χ − νj) the

inequality (7) is not satisfied, then for the norm of this function the inequality (6) holds for the
norm of this function. 2

The following two lemmas are proved in the same way.

Lemma 11. For the norm of the function (5) at cosα > 0, for which
k∑
j=1

νj /∈
[
1;

1

a

]
, the

inequality (6) holds.

Lemma 12. For the norm of the function (5) at cosα < 0 for which
k∑
j=1

νj /∈
[
0;

1− a

a

]
, the

inequality (6) holds.

Lemma 13. For a function ln(χ) (4) for which there exists k + 1 points λj ∈ [−1; 1] such that
|ln(λj)| = ∥ln∥, j = 1, . . . , k+1 and having the largest deviation from zero on the segment [−1; 1]
at the roots of the derivative located between the points νj , j = 1, . . . , k and at the ends of the
segment, the inequality (6) holds.

Proof. Let the conditions of the lemma be satisfied. This is possible if and only if, at the ends
of the segment and in the roots of the derivative belonging to the segment [−1; 1], the modulus
of the function coincides with its norm. Find some positive number L such that ∥ln(χ)∥[−1,1] =

=

√
L

22k−1
. Consider the transformation rn(χ) = l2n(χ) −

L

2n−1
, where n = 2k + 1. For the

function bn(χ) = tn(χ) − rn(χ)/L Lemma 7 holds, bn(pj) = 0, where pj , j = 1, . . . , n, are
described in Lemma 6. Note that pn = 1, the remaining arrangement of zeros of the polynomial

bn is possible if
k∑
j=1

νj <
k∑
j=1

η2j . Indeed, let νk > η2k, (2k = n − 1), then the function bn on

the segment [η2k; 1] has at least two roots (if the root is at η2k, it has multiplicity two). Hence,
the total zeros of the function bn are more than n, then bn ≡ 0. This is impossible because
of the difference between the polynomials tn(χ) and rn(χ)/L. Similarly consider the inequality

νk−1 > η2k−2, etc. The equality
k∑
j=1

η2j = 1/2 follows easily from the properties of the Chebyshev

polynomial. The inequality (6) follows from Lemma 10. 2

The proof of the next two lemmas differs slightly from the proof of the previous lemma.

Lemma 14. For a function ln(χ) =
√
aχ+ 1 ·

√
(1− χ) ·

∏k
j=1(χ− νj), a ̸= 0, for which there

exist k + 1 points λj ∈ [−1; 1] such that |ln(λj)| = ∥ln∥, j = 1, . . . , k + 1 and having the largest
deviation from zero on the interval [−1; 1] in the roots of the derivative located on the interval
[−1; 1] and at the point -1, the inequality (6) holds.

Lemma 15. For a function ln(χ) =
√
aχ+ 1 ·

√
(χ+ 1) ·

∏k
j=1(χ− νj), a ̸= 0, for which there

exist k + 1 points λj ∈ [−1; 1] such that |ln(λj)| = ∥ln∥, j = 1, . . . , k + 1 and having the largest
deviation from zero on the interval [−1; 1] in the roots of the derivative located on the interval
[−1; 1] and at the point 1, the inequality (6) holds.

Lemma 16. Let n > 2. The norms of the polynomials (1) and (2) are greater than 2 sinn α/2.

Proof. Let a ̸= 0. If P ∗
n is an extremal polynomial among (1) and (2), then a function l∗n(χ) of

the form (4) or (5), respectively, associated with the extremal polynomial. The function l∗n(χ)

falls under the conditions of Lemma 5:
√
aχ+ 1 and

√
aχ+ 1 ·

√
(1 + sign(cosα)χ) are weight
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functions. Hence, there are k + 1 points λj ∈ [−1; 1] such that |l∗n(λj)| = ∥l∗n∥, j = 1, . . . , k + 1

(see Lemma 5). The derivative of the function l∗n(χ) has k roots. There are two possible cases:
either all roots of the derivative function l∗n(χ) lie on the segment [−1; 1], or one root does not
belong to the segment [−1; 1], and in both the first and second cases k − 1 roots are located
between the points ν̃j , j = 1, . . . , k. Moreover, in the second case, the function l∗n(χ) has the
largest deviation from zero on the segment [−1; 1] at the roots of the derivative located between
the points ν̃j , j = 1, . . . , k and at one or two ends of the segment, depending on the structure of
this function.

All possible variants have been considered above. If a = 0, then Lemma 8 is valid. 2

Theorem 1 is proved.
The main result was reported at the conference [13].
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Многочлены Чебышева с нулями вне открытого
сегмента дуги

Наталья Н. Рыбакова
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. Рассмотрена задача об унитарных многочленах степени n с вещественными коэффи-
циентами, наименее уклоняющихся от нуля на произвольной фиксированной дуге окружности, с
нулевым множеством вне открытого сегмента той же самой дуги. Дано описание экстремальных
многочленов решения этой задачи и получена их норма, зависящая от степени полинома и длины
дуги.

Ключевые слова: многочлены Чебышева, многочлены, наименее уклоняющиеся от нуля, нулевое
множество, многочлены с вещественными коэффициентами.
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