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Abstract. For a stable numerical solution of the constitutive system of an elastoviscoplastic model of a
continuous medium with the von Mises yield condition and hardening, an explicit-implicit second-order
scheme was proposed. It includes explicit approximation of the equations of motion and implicit approx-
imation of the constitutive relations containing a small relaxation time parameter in the denominator of
the non-linear free term. To match the approximation orders of the explicit elastic and implicit corrective
steps, an implicit second-order approximation was constructed for isotropic elastoviscoplastic medium
with hardening model. The obtained solutions with the second-order implicit approximation of the stress
deviators of the elastoviscoplastic system of equations allow limiting case when relaxation time tends
to zero. Correction formulas were obtained in this case, and they can be interpreted as regularizers of
numerical solutions for elastoplastic systems with hardening.
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An elastoviscoplastic (EVP) medium is a medium that exhibits viscous properties beyond
the elastic limit in non-stationary loading processes, i.e., it has a dynamic yield strength that
depends on the strain rate. The governing equations of the model are derived from the additive
representation of the deviator part of the strain rate tensor as the sum of elastic and viscoplastic
components [1, 2]. The volumetric viscoplastic component is assumed to be zero. The differential
part of the non-stationary system of equations for the elastoviscoplastic media coincides with
the system of equations for the dynamic elasticity theory [2, 3, 4]. However, equations for the
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deviatoric stress components beyond the yield point include strongly non-linear free terms with
a characteristic relaxation time τ in the denominator.

In non-stationary processes when characteristic time is much bigger than τ elastoviscoplastic
media behave like elastoplastic (EP) media [4, 5]. When τ → 0 EVP systems of equations
transform into systems of the Prandtl-Reuss type [5, 6]. This fact was proved with the use of
model formulations based on variational inequalities [7, 8].

For essentially non-stationary processes when characteristic time is less than τ effects of high-
speed hardening and sharp increase in the dynamic yield strength reveal themselves [4, 6]. To
describe these effects it is required to use the full EVP system of equations.

Differential part of the EVP system of equations coincides with the equations of the dynamic
elasticity. Then this part is a system of hyperbolic equations, and it can be reduced to a
divergence form. The form allows one to build conservative numerical methods for solving initial-
boundary value problems.

At the same time, the EP systems of equations, to which the theories of plastic flow are
reduced, can not be represented in a divergence form. To describe strong discontinuities one has
to construct generalized solutions [8].

On the one hand, formulation of essentially non-stationary problems of the inelastic defor-
mation in the form of a EVP system of equations reflects the physics of dynamic processes. On
the other hand, it ensures the regularization of the EP system of equations that does not have
divergence form.

The stable integration of the constitutive relations between stresses and strains in the EVP
system of equations by an explicit scheme for small relaxation times requires a stronger con-
straint on the time step than the usual Courant condition. This additional limitation can be
eliminated with the help of implicit schemes for calculating "rigid" constitutive relations. Note
that explicit-implicit schemes for solving constitutive equations for EVP media described below
do not require numerical solution of algebraic systems of equation since all implicit relations
can be solved analytically. Each time step is done explicitly with the time step defined by the
Courant condition. If it is possible to make limit transition τ → 0 in the difference approximation
for the EVP system then the obtained numerical solution can be considered as the solution of
the corresponding elastoplastic problem. Further this approach is systematically used.

1. Isotropic model of elastoviscoplastic continuum media
with hardening

In Cartesian rectangular coordinate system, the system of equations for an elastoviscoplastic
(EVP) medium with hardening has the form [2]

ρ
∂v

∂t
= ∇ · σ, (1)

∂σ

∂t
=

(
λ+

2

3
µ

)
e : I, (2)

∂s

∂t
= 2µe′ − 2µ

s√
s : s

⟨
F

(√
s : s

σs(k)
− 1

)⟩
/τ, (3)

∂k

∂t
=
√
e′vp : e′vp, σs(k) = σ0f(k), (4)
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e = (∇⊗ v + v ⊗∇) /2, (5)

e′ = e− (e : I) I/3, (6)

s = σ − σI, σ = (σ : I) /3, (7)

e′vp =
s√
s : s

⟨
F

(√
s : s

σs(k)
− 1

)⟩
/τ, (8)

where v is the velocity vector, σ is the stress tensor, s is the deviator part of the stress tensor,
σ is the mean stress, e is the strain rate tensor, e′ is the deviator part of the strain rate tensor,
s : s is the second invariant of the deviator part of the stress tensor, F (x) is the non-linear
viscosity function, describing the rate of hardening, F > 0, F (0) = 0, ⟨F ⟩ = FH(x), H(x) is the
Heaviside function, τ is the characteristic relaxation time of components of the deviator part of
the stress tensor on the yield surface, ρ is the medium density, λ and µ are the Lame constants.
Here additional notations are introduced: e′vp is the deviator part of the viscoplastic strain rate
tensor, σs is the variable yield strength depending on the hardening parameter k, σ0 is the initial
value of the yield strength (before the hardening process), f(k) is the hardening function such
that f(0) = 1.

Taking into account the expression for e′vp, the evolutionary equation for hardening takes the
form

∂k

∂t
=

⟨
F

(√
s : s

σs(k)
− 1

)⟩
/τ. (9)

2. Implicit 2nd order approximation scheme
for the elastoviscoplastic medium with hardening

2.1. General solution for an arbitrary hardening function

Consider linear equations for the velocity components and for the mean stress from system
(1)–(9). Any explicit scheme of the required 2nd order can be constructed for these equations
without difficulties [9]. It is assumed further that such an approximation is carried out. Then
taking into account the initial and boundary conditions, values of velocities and the mean stress
on the next time layer are determined.

Consider now the equation for the deviator part of the stress tensor from EVP system with
hardening (1)–(9). Let us construct an implicit 2nd order approximation of this equation. The
right part of the equation is approximated as a half-sum of terms on the next and current time
layers:

sn+1 − sn

∆t
= µ

(
e′n+1 + e′n

)
−

− µ

τ

(
sn+1

√
sn+1 : sn+1

⟨
F

(√
sn+1 : sn+1

σ0f (kn+1)
− 1

)⟩
+

sn√
sn : sn

⟨
F

(√
sn : sn

σ0f (kn)
− 1

)⟩)
,

(10)

kn+1 − kn

∆t
=

1

τ

(⟨
F

(√
sn+1 : sn+1

σ0f (kn+1)
− 1

)⟩
+

⟨
F

(√
sn : sn

σ0f (kn)
− 1

)⟩)
/2. (11)

Indices n+1 and n mark the values on the next and current time layers, ∆t is the time step.
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This non-linear system of equations with respect to sn+1 can be written as

sn+1 = sn+1
e −

1

δ

(
sn+1

√
sn+1 : sn+1

⟨
F

(√
sn+1 : sn+1

f (kn+1)
− 1

)⟩
+

sn√
sn : sn

⟨
F

(√
sn : sn

f (kn)
− 1

)⟩)
,

(12)

kn+1 − kn =
1

β2

(⟨
F

(√
sn+1 : sn+1

f (kn+1)
− 1

)⟩
+

⟨
F

(√
sn : sn

f (kn)
− 1

)⟩)
. (13)

Here new notations are introduced sn+1 = sn+1/σ0, s
n = sn/σ0, s

n+1
e = sn+1

e /σ0, where
sn+1
e = = sn + µ

(
e′n+1 + e′n

)
∆t is the deviator part of the stress tensor after the "elastic"

time step, δ =
τ

∆t

σ0

µ
and β2 =

2τ

∆t
are dimensionless parameters of the system of equations,

δ/β2 = σ0/ (2µ). In this construction, except for specially stated cases, restrictions on the values
of δ and β2 are not set.

Taking into account that velocity values on the next time layer are known, sn+1
e and values

sn on the n-th time layer are also known.
The non-linear system for the unknown values of sn+1 and hardening parameter kn+1 on the

next time layer can be written as follows

sn+1

δ +

⟨
F
(√

sn+1 : sn+1/f
(
kn+1

)
− 1
)⟩

√
sn+1 : sn+1

+

+ sn

⟨
F
(√

sn : sn/f (kn)− 1
)⟩

√
sn : sn

= δsn+1
e ,

(14)

kn+1 = kn +
1

β2

(⟨
F

(√
sn+1 : sn+1

f (kn+1)
− 1

)⟩
+

⟨
F

(√
sn : sn

f (kn)
− 1

)⟩)
. (15)

Performing convolutions of equations (14), (15) sequentially with sn+1, sn and sn+1
e , the

system of equations for convolutions X =
√
sn+1 : sn+1, Y =

√
sn+1 : sn, Z =

√
sn+1 : sn+1

e is
obtained, where values of T =

√
sn : sn S =

√
sn : sn+1

e , Σ =
√
sn+1
e : sn+1

e are known.
Then the following system is obtained

δX +
⟨
F
(
X/f

(
kn+1

)
− 1
)⟩

= δS̃, (16)

β2k
n+1 −

⟨
F
(
X/f

(
kn+1

)
− 1
)⟩

= β2k̃
n, (17)

where s̃n+1= sn+1
e − sn

T

⟨F (T/f (kn)− 1)⟩
δ

, k̃n= kn+
1

β2
⟨F (T/f (kn)− 1)⟩, S̃ =

√
s̃n+1 : s̃n+1,

T =
√
sn : sn.

It is easy to see that intermediate value of s̃n+1 and its convolution S̃ are calculated on the
basis of results of the "elastic" time step.

Then components of the deviator part of the stress tensor and hardening parameter on the
next time layer can be found from Eqs. (14)–(17) as follows

sn+1 =
δs̃n+1

δ + ⟨F (X/f(kn+1)−1)⟩
X

=
s̃n+1

S̃
X, (18)

– 11 –



Vasily I.Golubev . . . Numerical Schemes of Higher Approximation Orders . . .

kn+1 = δ
(
S̃ −X

)
/β2 + k̃n. (19)

Thus, to completely determine components of sn+1 and hardening parameter kn+1 Eqs. (16),
(17) should be solved, and the result should be substituted into Eqs. (18), (19).

Now, it is also possible to consider a limiting case δ → 0 in the formula for the intermediate
value s̃n+1 which contains a small parameter in the denominator:

s̃n+1 = sn+1
e − sn

T

⟨F (T/f (kn)− 1)⟩
δ

. (20)

To do this Eq. (16) that is valid on the n+ 1-time layer is rewritten for the n-th time layer:

δT + ⟨F (T/f (kn)− 1)⟩ = δ
√
s̃n : s̃n. (21)

From here
⟨F (T/f (kn)− 1)⟩ = δ

⟨√
s̃n : s̃n −

√
sn : sn

⟩
. (22)

Taking into account that δ/β2 = σ0/ (2µ), it is possible to remove the singularity when δ → 0

and obtain
s̃n+1 = sn+1

e − sn√
sn : sn

⟨√
s̃n : s̃n −

√
sn : sn

⟩
, (23)

kn+1 = k̃n +
σ0

2µ

(
S̃ −X

)
, k̃n = kn +

σ0

2µ

⟨√
s̃n : s̃n −

√
sn : sn

⟩
. (24)

This technique was proposed in [10, 11], and it was widely used in computational practice (see,
for example, [12–15]). However, it was interpreted as a first-order correction based on physical
splitting of the elastoplastic process into elastic step and bringing the deviator part of the stress
tensor to the yield circle.

2.2. Linear viscosity function and linear hardening

In order to solve non-linear algebraic system (16), (17) and obtain explicit expressions for
the unknown quantities sn+1 and kn+1, it is necessary to specify the viscosity function F (x) and
the hardening function f(k). To obtain an analytical solution in a system with hardening linear
viscosity function F (x) = x is accepted. In this case, values of the dimensionless parameters
β2 > 0, δ > 0 are not bounded. The hardening function is often taken in the form f(k) = 1+αk,
where parameter α > 0 regulates the mode and rate of change of the yield strength. For α > 0

we have an increase in the yield strength (hardening), for α = 0 we have the ideal viscoplasticity.
Under these assumptions Eqs. (16)–(19) have the form

δX +

⟨
X

1 + αkn+1
− 1

⟩
= δS̃, (25)

β2k
n+1 −

⟨
X

1 + αkn+1
− 1

⟩
= β2k̃

n, (26)

sn+1 =
s̃n+1

S̃
X, kn+1 = δ

(
S̃ −X

)
/β2 + k̃n. (27)

Excluding kn+1 from this system, we obtain the equation for X:

X =
(
1 + δ

(
S̃ −X

))(
1 +

α

β2
δ
(
S̃ −X

)
+ αkn

)
. (28)
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Let us introduce a new variable ζ = S̃−X and notation γ = α/β2. Then equation for ζ takes
the form

γδ2ζ2 +
(
1 + δ

(
1 + γ + αk̃n

))
ζ −

(
S̃ − 1− αk̃n

)
= 0. (29)

The exact solution of this equation that satisfies condition ζ > 0 is

ζ =

√(
1 + δ

(
1 + γ + αk̃n

))2
+ 4γδ2

(
S̃ − 1− αk̃n

)
−
(
1 + δ

(
1 + γ + αk̃n

))
2γδ2

. (30)

Hence,

X = S̃ −

√(
1 + δ

(
1 + γ + αk̃n

))2
+ 4γδ2

(
S̃ − 1− αk̃n

)
−
(
1 + δ

(
1 + γ + αk̃n

))
2γδ2

. (31)

Relations for the deviator part of the stress tensor and hardening parameter on the next time
layer take the form

sn+1 =
s̃n+1

S̃
×

×

S̃ −

√(
1 + δ

(
1 + γ + αk̃n

))2
+ 4γδ2

(
S̃ − 1− αk̃n

)
−
(
1 + δ

(
1 + γ + αk̃n

))
2γδ2

 ,

(32)

kn+1 =
δ

β2


√(

1 + δ
(
1 + γ + αk̃n

))2
+ 4γδ2

(
S̃ − 1− αk̃n

)
−
(
1 + δ

(
1 + γ + αk̃n

))
2γδ2

+

+ k̃n.

(33)

These relations can be simplified if we assume that hardening coefficient α is small, or more
precisely, parameter γ ≪ 1.

Then relations for the invariant, deviator part of the stress tensor and hardening parameter
on the next time layer take a compact form

X ≈
1 + αk̃n + δS̃

(
1 + γ + αk̃n

)
1 + δ

(
1 + γ + αk̃n

) , (34)

sn+1 ≈ s̃n+1

S̃

1 + αk̃n + δS̃
(
1 + γ + αk̃n

)
1 + δ

(
1 + γ + αk̃n

) , (35)

kn+1 ≈ σ0

2µ

S̃ − 1− αk̃n

1 + δ
(
1 + γ + αk̃n

) + k̃n. (36)

These relations allow one to consider a limiting case δ → 0 (pure elastoplastic material):

sn+1 ≈ s̃n+1

S̃

(
1 + αk̃n

)
, (37)
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kn+1 ≈ σ0

2µ

(
S̃ − 1− αk̃n

)
+ k̃n. (38)

Condition of the EVP mode with hardening is S̃ − 1− αk̃n > 0.

3. Numerical simulation results

Using the described explicit-implicit scheme, the wave propagation in an isotropic elas-
toviscoplastic medium initiated by instantly applied load was simulated for various values
of the relaxation time (parameter δ). The medium has the following parameters: density
ρ = 2500 kg/m3, P-wave velocity Cp =

√
(λ+ 2µ)/ρ = 4500 m/s, S-wave velocity Cs is varied,

yield strength σs = 112500 Pa. The computational domain was a parallelepiped with dimen-
sions of 50 × 50 × 10000 m. Computational grid was introduced with space step of 5 m. To
correctly simulate the process of loading a half-space the condition of zero spatial derivative of
the solution was used on the side faces of the computational domain. For the stability of the
explicit grid-characteristic scheme [16, 17, 18, 19] used for solution of the elastic problem, time
step ∆t = 0.001 s was used, and it satisfies the Courant condition. Totally, 2 s of the physical
experiment was simulated.

The problem of instantaneous application of compressive load σn = −3σs = −337500 Pa

along the axis x3 to an isotropic elastoviscoplastic half-space was considered in three-dimensional
case. The velocity of transverse wave in the medium is 2250 m/s. For the case of an elastoplastic
medium, analytical solution includes longitudinal plane wave and plastic deformation wave that
propagates with lower speed Cf =

√
(λ+ 2µ/3)/ρ. In this case, a zone of constant stress is

established between two discontinuities of the solution. The value of this stress σ∗
33 can be also

calculated analytically. Using the von Mises yield condition for certain ratio between stress
components σ11 = σ22 = λ/(λ+ 2µ)σ33, one can obtain

(σ11 − σ/3)
2
+ (σ22 − σ/3)

2
+ (σ33 − σ/3)

2
= σ2

s , σ = σ11 + σ22 + σ33 =
3λ+ 2µ

λ+ 2µ
σ33. (39)

Finally, we have σ∗
33 = λ+2µ

µ

√
6
4 σs. The computational algorithm developed in this work can

be also successfully used if relaxation time τ is not small. The calculations were carried out for
the problem of deformation of an elastoviscoplastic medium with a linear viscosity condition for
non-zero values of dimensionless parameter δ. The results are presented in Fig. 1. It can be seen
that propagation velocities of both waves and the value of stress σ∗

33 are correctly restored. An
increase in viscosity of the medium leads to broadening of the plastic wave front, and it does not
affect the front of the elastic precursor.

Further, hardening effect of the EVP medium was studied. Hardening parameter is varied
in a wide rage, however, the condition γ << 1 was always fulfilled. The simulation results are
presented in Fig. 2. For large values of α the effect of hardening significantly influences the
propagation velocity of the plastic deformation wave.

Conclusions

The dynamic behaviour of isotropic elastoviscoplastic media with hardening effect under
the action of an external load was studied in this paper. The resulting system of equations is
semi-linear hyperbolic system. Its structure doesn’t allow us to directly apply standard explicit
numerical schemes. An approach based on the implicit approximation of the constitutive relations
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Fig. 1. The distribution of stress σ33 along the axis x3 after 2 s from the beginning of the
calculation, σn = −3σs, medium without hardening

Fig. 2. The distribution of stress σ33 along the axis x3 after 2 s from the beginning of the
calculation, σn = −3σs, γ = 0.044

containing a small relaxation time parameter in the denominator of the non-linear free term was
used. In this work, the grid-characteristic method on structured computational grids was used.
It allows one to increase approximation order and to avoid strong oscillations of discontinuous
solutions. The explicit computational algorithm that has second-order approximation in time
and space was developed.

The obtained solutions with the second-order implicit approximation for the deviator part of
the stress tensor of the elastoviscoplastic system of equations allow one to consider the limiting
case when relaxation time tends to zero. Correction formulas obtained in this case can be
interpreted as regularizers of numerical solutions of elastoplastic systems.

The developed algorithms were applied to the three-dimensional direct dynamic problems for
elastoviscoplastic media. The obtained results may be useful for the inverse seismic problems [20].

The construction of numerical algorithms for elastoviscoplastic media was carried out by Gol-
ubev V. I. and Nikitin I. S. with the financial support of the Russian Science Foundation (project

– 15 –



Vasily I.Golubev . . . Numerical Schemes of Higher Approximation Orders . . .

no. 19-71-10060, https://rscf.ru/project/19-71-10060/). The simulation results were obtained by
Mi Xin with the financial support by the Fellowship of China Scholarship Council.
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Численные схемы повышенной аппроксимации для задач
динамики упруговязкопластических сред
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Аннотация. Для устойчивого численного решения определяющей системы упруговязкопластиче-
ской модели сплошной среды с условием текучести Мизеса и с учетом упрочнения предложена
явно-неявная схема 2-го порядка с явной аппроксимацией уравнений движения и неявной аппрок-
симацией определяющих соотношений, содержащих малый параметр времени релаксации в знаме-
нателе нелинейных свободных членов. Для согласования порядков аппроксимации явного упругого
и неявного корректировочного шагов построена неявная аппроксимация второго порядка для изо-
тропной упрочняющейся упруговязкопластической модели сплошной среды. Полученные решения
неявной аппроксимации 2-го порядка для девиаторов напряжений упруговязкопластической си-
стемы уравнений допускают предельный переход при стремлении времени релаксации к нулю.
Корректировочные формулы, полученные таким предельным переходом, можно трактовать как
регуляризаторы численных решений упругопластических систем с упрочнением.

Ключевые слова: математическое моделирование, упруговязкопластические среды, полулиней-
ные гиперболические системы, явно-неявные схемы повышенного порядка.
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