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1. Introduction and results required

We start with the definition of generalized hypergeometric function ,F, with p numerator
and ¢ denominator parameters as [11]

AR Dy @)

where (a), denotes the well-known Pochhammer symbol (or the raised or the shifted factorial,
since (1), = n!) defined for any complex number a by

_Jala+1)...(a+n—-1), neN  T(a+n)
(a)n—{L n_0 = T (1.2)

where T is the well-known Gamma function. For convergence conditions (including absolute
convergence) and properties of this function, we refer standard texts [2,11].
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It is not out of place to mention here that the vast popularity and immense usefulness of
the hypergeometric function oF; (which is a special case of ,Fy, for p = 2 and ¢ = 1) and
the generalized hypergeometric function ,F; in one variable have inspired and stimulated a
large number of researchers to study hypergeometric functions of two and more variables. In
this contexts, serious and very significant study of the functions of two variables initiated by
Appell [1] who introduced the so-called functions Fy, Fy, F3 and Fy named in the literature,
the Appell functions which are the natural generalizations of o F; and ,F,. Also their confluent
forms were studied by Humbert [16,17]. A complete list of these functions can be seen in the
standard text [7] and also in [3,4].

Later on, the Appell functions Fy, Fy, F3 and F; and their confluent forms were further
generalized by Kampé de Fériet [1], who introduced a more general function in two variables.
The notation for this function was subsequently abbreviated by Burchnall and Chaundy [5, 6].
However, in our present investigations, we recall here the definition of a more general function in
two variables (than the one defined by Kampé de Fériet) in a slightly modified notation which
is due to Srivastava and Panda [18, Equ.(26), p.123] defined as follows

m:AB | (he) : (aa); aA))m((bB))n ™ y"
FESE ot e ZZ R

m=0n=0

where (hy) denotes the sequence of parameters (hy,ha, - ,hy) and for n € Ny, define the
Pochhammer symbol

((he))n = (h1)n - (hH)n,

where, when n = 0, the product is understood to reduce to unity. The symbol (h) is a convenient
contraction for the sequence of parameters hi, ha, -, hy and the Pochhammer symbol (h),, is
the same as defined in (1.2). For details about the convergence for this function, we refer to [16].

The Srivastava-Daoust generalized Kampé de Fériet hypergeometric function of two variables
initially introduced in [13,14] will be defined and represented in the following manner:

A:B;B' | _ A:B;B’ [(a) . ead)] : [(b) : 1/1]7 [( ) 1/}] x,
SC:D%D’l ] =7 luc):a, AL R .
g 1 I'(a; +mb; +n¢1)l_[ L'(b; +m’¢J)H (b +nyj) am y"
B Z Z _ 1 T(e; +mé; —&—nej)H F(d —l—mn])]_[ I‘(d’ +mn;) m! nl’

m=0n=0

where, for convergence

C D A B
1+Z(5j+277]—29j—2’(/1j>0,
j=1 j=1 j=1 j=1
C D’ A B’
L+ 3 e+ my— > d5— > 9 >0.
j=1 j=1 j=1 j=1

A detailed account of the above function can be found in the research paper [15] and in the
text [17].

We also give below the definitions of the Humbert function ®3 (confluent forms of the Appell
functions) in the following manner ([3-6,8,10,17]).

D3(b; c; w, z) = Z Z ( k'm' (1.5)

which converge absolutely at any w, z € C.
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By employing the following generalizations of the Kummer’s summation theorem due to
Rakha and Rathie [12] viz.

a, b ] 222 (b —n)l(a—b+n+1)
a—b+n+1" B rOr(a—2b+n+1)

oI [

it hin 1.6
) o

() e

9=2b—nT (g — b — 1 n I (atk=ntl _
JFy a, b 1| = (a n+1) % Z n ( 2_ ) (1.7)
a—b—-—n+1 F(a—2b—n+1) — k F(%)

Very recently, Brychkov et al. [4] established the following general reduction formulas for the
Humbert functions ®3 viz.

(a) For n =0,1,2,..., the following result holds true:

B (b; HT" n 1;z,—22) - (—nz!)” i(—l)’f(Z) x

k=0

F<b+n22k+2) 1 b4+n+2k+2 2—2k—b+3n 9 ( )
X =7ramonay st { ntl 1 bintd bin P2 ] + 1.8
F(b312k+2) 2’§+1’T’T+1
N ]2 T (b+n4+2k 4 1) . { 1, b+n4+2k +1,1— b—32+2k . 22] }
(e Db+n+2) TSR L g g e e T
(b) For n =0,1,2,..., the following result holds true:
b—n . " /n b—n+2k+2 2—2k—b+n

OB (b; 5 +1; 2, —z2) =2 Z (k> {2F3 [ 1 b2 ’b—7n _'fll ;—ZQ} +

k=0 o4 (1.9)

2(b—n+2k)z bent2k 4 1 — bond2k 2
T T2 ”{3,‘74"“,’72*6 R

In addition to this, the Beta function B(a,b) is defined by the first integral and known to be
evaluated as the second one as follows:

}z“_l(l —2)"71dz, (Re(a) > 0, Re(b) > 0)
0
['(a)T'(b)

ma (a, b€ C\Z)

B(a,b) = (1.10)

Recently, Krattenthaler and Rao [9] made a systematic use of the so-called Beta integral
method, a method of deriving new hypergeometric identities from old ones by mainly using the
beta integral in (1.10) based on the Mathematica Package HYP, to illustrate several interesting
identities for the hypergeometric function and Kampé de Fériet functions.

Thus, the aim of this note is to provide certain new and general transformation formulas for
the Srivastava—Daoust double hypergeometric functions with the help of the general reduction
formulas (1.8) to (1.9). The results are established by employing the beta integral method. A
few results obtained earlier by Wei et al. [19] follow special cases of our main findings.

The results presented in this note are simple, interesting, easily established and may be useful
(potentially).
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2. Transformation formulas

The new and general transformation formulas for the Kampé de Fériet functions to be estab-
lished in this note are given in the following theorems.

Theorem 2.1.
110 le:1,2] ooy~ w | (=2 = ok (n
520, l[d:l,?], (A 41:1,1: - —|=u?| T al I;J( 1) k)~
1 b+n+2k+2 2—2k— b+3n g et+1 9
F6 |: n-24—1’ 54_’_1 b+n+2 b+n +1, g’ df—;—l ;U :| + -
8uel“(w+l) 1)
+ : b—3nt2ky <
d(n+1)(b+n+2)I (2=30+2k)
1 b+n+2k +1 1— b—3n+2k e+l e +1 9
><5F’6|: n3 bvn b4n67 d2172d ;U .
2""1 + Z +1, JF4Jr7 ;’5"1'1
Theorem 2.2.
1;1;0 [62172 . [b:l], - u _ o—n - n
S200((4:1,2), (g2 41:1,1]: - —|-u?| "2 ki_% k)
b— n+2k+2 2— 2k: btn e e+l 9
4F5{ 1 b- n+2 b +1 d 2d41® -u ] + (2.2)
27 T 4 ) 2’ 2

2ue(b — n + 2k) bont2h 1,1 — bomazk el ey —u“}
27 4 ’ 4 2 2 7

db—n+2) 4F5{ 3 bon |1 bont6 dil

Proof. For the derivation of the result (2.1) asserted in the theorem 2.1, we proceed as follows.
First of all replacing z by zu in the reduction formula (1.8), we have

(b bER s, (uz)2> - (_Ti)n zn:(_m'f(Z)x

2

k=0
F(%) 1, btnt2k+2 2—2k— b+3n )
x F(b—3n+2k+2) 3F4{ n-2&-1 ;_'_1 b+n+2 b+n +1 s —(uz) } + (2.3)
4 b)
b+n+2k b+n+2k b—3n+2k
Suz (™ +1)><3F4 LA - s —(uz)?| .
2 +1 n+3 b+n +1 b+n+6 )

+ -

m+1)b+n+2) T (—b*3z+2k>

Now, multiply the left-hand side of (2.3) by 2¢71(1 — 2)4=°~! and integrating with respect
to z over the interval [0,1], we have

1
b
L.H.S :/ 22711 = 2)T 1Dy (b, L + 1; zu, —(zu)?)dz.
0
Expressing the Humbert function ®3 as a double series with the aid of its definition (1.5),

change the order of integration and summation (which is easily seen to be justified), we have

m k+2m

1
LHS—ZZ [ ieas,
ker k!'m! 0

kOmO 2
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Evaluating the beta integral and using the result
T'(a+k+2m)
I'(a)

and after some simplification, summing up the series by interpreting with the help of (1.4), we
have

= (a)k+2m

I'(e)'(d—e)
I'(d)

[6:1,2] : [b;l}; _

LHS = n
[d:1,2], [M2+1:1,1]: — -

1:1;0
52:0;0

“21 . (2.4)

Similarly, multiply the right-hand side of (2.3) by z¢7!(1 — 2)9=¢~L, and integrating with
respect to z over the interval [0, 1] and proceeding as above, we have

L(e)T(d—e)(=2)" k(1
R.H.S = -1 X
L'(d)n! kZ:O( ) k
1 bint2kt? 2-2k-bidn e etl ,
X {5F6|: n+1 Q+1’b+z+2jllr0;Tn +21, g% d+1 Q—U} +

2 72
N 8ueF(%+l)
, X
d(n+1)(b+ n+2)T (b=20t2k)
b+n+42k _ b=3n42k e+l e
x sFp 1, 1 +1,1 1 s 2’§+1;—u2 .
§+1

n n+3 b+n b+n+6 d+1
3+ L5555 A L 5

Finally, equating the equations (2.4) and (2.5), we arrive at the result (2.1) asserted in the
Theorem 2.1. this completes the proof of the result (2.1).
In exactly the same manner, the result (2.2) asseerted in the Theorem 2.2 can be established.

O
3. Corollaries
In this section, we shall mention some of very interesting results of our main findings.
Corollary 3.1. In Theorem 2.1 or 2.2, if we take n = 0, we get the following result:
GLiL0 [e:1,2] b1y —| u _
2000[d:1,2], [241:1,1]: —  —|-u?
2-b e efl. 2ueb 1-b efl e 2
—3F4{ Ly 2% an s UQ} 3F4{ pie dx1%a  p mw |, (B1)
»itlg 4 d(b+2) 5 S gt
which is also believed to be a new result.
Corollary 3.2. In Theorem 2.1, if we take n =1, we get the following result:
gLi1;0 [e:1,2] b1y —| u _
200\ [d : 1,2], [% :1,1]: —; —|—u?
5—b e efl 4ue1‘(b75) 1, 7=b etl e 4 q
=-2 3F4[34b7%’d2d’1 ) 2} - 415‘5{37 Yo a4 aUQ]
{ 3 5 d(b+3)I'(*3%) 32 g s+l
3=b e etl 4uer(u) 1. 8=t etl €41
Sam| gTiE i ] - | e AN NCES
20 402 2 d(b+3) (&) 2:2 s Ty g+l

which is also believed to be a new result.
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Corollary 3.3. In Theorem 2.2, if we take n =1, we get the following result:

51;10 [6 ].,2] [b 1], —| u _
20,0 [d 152]a [le 1’1] ) ——U2
1 3=b e efl 2ue(b — 1) 5=b etl ey q.
—— F 4 2y 2 2 4 0 2 139 ) 2
2{3 red gl o Stn | el Y )
1;7 e €+1’ Que ;b7 e+17 €11
+3F4[ 1t it a® de 7—u2] +d3F4[ 3% bys? did 4y ,—uQ} , (3.3)
27 4 0 2 2 27 40 2 2

which is also believed to be a new result.

Similarly, other results can be obtained by giving values to n. However, we prefer to omit
the details.

Concluding Remark

In this present note, we have provided certain new transformation formulas in the most
general case for any n € Ny for the Srivastavas-Doust double hypergeometric functions with the
help of certain general reduction formulas for Humbert’s functions. The results are derived by
employing the well-known Beta integral method. Interested reader can develop further new and
interesting formulas by employing beta integral method.
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3aMevaHme o JAByX obmmx popmysiax nNpuBeaeHUs
JJid ABOMHBIX ruriepreoMerpudecknx PyHKIINi
IIIpuBacraBbi-laycTa
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Ansortauusd. [lesb 3T0i1 3aMeTKM — IPEIOCTaBUTh JBE HOBbIE 00Ie (DOPMYJIbI IPUBEIEHUS JJTS JIBOM-
HBIX runepreomerpudeckux eyukiuii [Ilpusacrasei—/laycra. Tak»ke mpuBeIeHO HECKOJIBKO UHTEPECHBIX
YACTHBIX CJIy9a€B.

KurogyeBbie ciioBa: runepreomerpuydeckue (OyHKIUHU, IBOMHBIE THIlepreoMeTpuydeckre pyHKIuu ['yMm-
6epra, pyrkiun Anmnesisi, 1BoiiHas runepreomerpudeckas yukims [llpusacrassr u Jaycra, meros Gera-
WHTErpaJia.
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