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Abstract. Multidimensional non-standard interpolation has been recently presented in an article by
D. Alpay and A. Yger. We are talking about algebraic interpolation where discrete roots of a system of
polynomial equations serve as nodes. With the help of the Grothendieck residue duality, the problem of
describing the desired interpolation space of functions is reduced to solving the affine-bilinear equation.
To implement this reduction, algorithms for calculating local Grothendieck residues or their sums are
required. In a fairly general situation, the calculation of these residues is based on the well-known
Gelfond—-Khovanskii formula. This article provides examples of calculating local residues or their sums.
In 2-dimensional case we generalise the Gelfond—Khovanskii formula for Newton polyhedra that are not
in the unfolded position. This is done using the concept of an amoeba of an algebraic set and the notion
of an homological resolvent for the boundary of Weil polyhedron.
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Introduction

By classical, or standard, interpolations we understand the Lagrange, Hermite, or Newton
interpolations. Let us consider the first two of them.

Problem (Lagrange). Given a set of distinct points {w;}7L, C C and the values c; € C, find
the polynomial f(z) of degree m — 1 with the property

f(wj):cj, j:l,...,m.
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Note that the interpolation polynomial f is defined in terms of the polynomial p(z) = (z —
wy) ... (2 — wp) by the formula:

f@w@icij)

Z— Wy wj p

Thus, specifying the interpolation nodes in the form of the null set of the polynomial p provides
tools for constructing an interpolation polynomial by using residues. More general is the following

Problem (Hermite). Let {w;}7., C C be a set of pairwise distinct points and the following
values are given

cje€C, wherej=1,....m, £=0,...,u; — 1.
It is necessary to find a polynomial f(z) of minimal degree, which at points w; has the given
values of derivatives up to orders of p; — 1 including, that is

fOMw))=cjuy, j=1,...om, £=0,...,pu—1. (1)

In the Hermite interpolation problem, it is advisable to enumerate the set of points w; taking
into account their multiplicities, thereby considering the set {w;}7"; as an algebraic set p~1(0),
where

p(z) = (z —w)" - o (2 — wp)P. (2)

The Hermite interpolation polynomial can be represented as

m p(Z) pj—1 Ci pj—£=1 4 (Z _ wj)pj—l—s
;(z—wa‘)“; ¢ ; =) Iﬁf( p ) ’
that is, again using residues.

Recently there have been papers on so-called non-standard interpolation (see [1,2]). They pose
the problem of constructing a function f on an algebraic set p~1(0) (considered as an analytical
space), whose values lie on a given hypersurface. More precisely, the article [1] discusses the
following:

Problem. Given the complex numbers ajr (j = 1,...,m; k = 0,...,u4; — 1) and c. It is
necessary to describe the set of all functions f which are analytic in the neighborhood Q@ C C of
points wy, ..., w, and satisfy the equation:

m pj—1

SN anf®(wy) = (3)

j=1 k=0

Note that if f is a solution of (3), then f + ph is also a solution, where

m

p(z) = H(z —w;)", heO).

j=1

In other words, we can work in the factor ring O(Q2)/(p) by the ideal generated by the polyno-
mial p.

In a similar form, a non-standard problem can be posed in the multidimensional case, treating
the interpolation nodes wy, ..., wy, € C™ as the zeros of an ideal (p) = (p1(2),...,pn(2)) in the
ring of polynomials in the variable z from C™. In the main part of the article, in particular, we
will demonstrate a non-trivial example of such multidimensional interpolation.
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1. Multidimensional non-standard interpolation

To formulate a multidimensional non-standard interpolation problem, we need the following
definition of a Noetherian operator.

Definition 1 (Ehrenpreis [15], Palamodov [14]). Let I C Clsi,...,sy] be a primary ideal. A
family of linear differential operators with polynomial coefficients O¢(s, D), £ = 1,...,t is called
a Noetherian operator for I, if the conditions

Ou(s,D)p(s)lyy =0 Vl=1,...,t
are necessary and sufficient for the function p(s) to belong to ideal I.
In the one-dimensional case an arbitrary polynomial has the form:
p(s) = (s —w1)* - ... (s — wg)H*,
and its generated ideal is decomposed into the intersection of primary ones
pi ={(s—wj)*y, j=1,... k.

A necessary and sufficient condition for a given function ¢ to belong to the primary component
p; is vanishing of ¢ by the following operators with constant coeflicients:

L0, L5155 L1

o
where L; ;[¢p(s)] = —
57 [SO( )] dS-j —uw,
For an arbitrary n > 1, the primary components p; of a zero-dimensional polynomial ideal
(p1,...,pn) are attributed to the roots w;. The Noetherian operators p; are the arrangements

of differential operators with constant coefficients.
Ly, 0(0/08)]w;, L€ Aw,.

Here A, is a finite subset in N"
Now we can proceed to the formulation of the multidimensional non-standard interpolation
problem.

Problem 1 ([2]). Let p~1(0) = {w1,...,wmn} and U be an open subset of C"* containing p~—*(0).
Fizaj;, j=1,...,m,l € Ay, and c; all of them are complex numbers. We need to describe the
space of holomorphic functions f: U — C with the following property:

D D weluelfl(w)) =c (4)

J=1L€A,,
The following monomial basis
B={s’k=0,...,N(p) — 1}

in the quotient space C[z]/(p) is one of ingredients for solving the interpolation problem. In fact,
this factor is the space of remainders when dividing polynomials by the ideal (p).

- 760 —



Matvey E. Durakov, Roman V. Ulvert, August K. Tsikh On the Non-standard interpolations in C"...

2. Grothendieck residue and its role in interpolation theory

The Grothendieck residue is a cornerstone of complex analysis and algebraic geometry and
it plays the key role in the singularity theory and foliations theory. Assume that the sequence of
germs

iy s fn € Clz] =Clz1, ..., 2n]
have an isolated common zero at a € C". Consider a meromorphic differential n-form

1 h(z)dz .
w= - with dz =dz; A --- ANdzy,).
2ri) fi(2) .. ful2) ( ' )
Definition 2 ([4,5]). The Grothendieck residue, associated with f = (f1,...,fn) and h, is
determined as an integral

of the form w over a very special cycle
Io={z€U,: |fj(2)| =¢j,7=1,...,n},

where the neighborhood U, of a and ; are chosen such that the closure U, does not contain roots
different from a and I'y CC U,.

We call the integration set I'; a Grothendieck cycle. Note that this is the skeleton of the Weil
polyhedron {z € Uy,: |fj(2)| <e;,j =1,...,n}.

In the case of a finite set of zeros, the mapping p = (p1,...,pn) can define the global
Grothendieck residue as the sum of the local ones. The global residue is denoted by
Res i) dsi A-eo A dsy, , h € H(D) (D is the domain containing all zeros of the mapping
p1(8),...,pn(S)
p).

Now, using the notation introduced above, we can state a theorem that gives the way to solve
Problem 1.

Theorem 2.1 (Alpay, Yger [2]). Let {wy,...,wn,} = p 1(0), U be an open subset in C" con-
taining p~*(0). Let the sequence

a={aje,j=1,...,mALec Ay}

and the complex number ¢ be given. Let us denote the polynomials

e (8) = Y ajel(s —wy)* /e,

LA,
making up the sequence hy, = [hg ..., h% |, and let
alhy] = (aolhy, - anp)-1[hy])

be the projection of this sequence onto the quotient space C[z]/{p).

o Ifalhy] = 0, then the problem has no solution in the case ¢ # 0, and any function f € O(U)
is a solution in the case ¢ = 0;
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o If afhg,] #0, then f € O(U) satisfies the condition (4) iff
alf]- QplB] - alhy]" =,
where T is the transposition sign, and QP[B] is the Grothendieck global residues matriz:

gBk1+Brs dg

pi(s).. 'pn(s)} 0<k1,ka <N (p)—1

Q,[B] = Res [

3. Amoeba and its complement

For further reasoning we will need to introduce the concept of the amoeba of the Laurent
polynomial, as well as describe some of its properties.

Definition 3. Given a Laurent polynomial f its amoeba Ay is the image of the hypersurface
V = f~1(0) under the map

Log: (z1,...,2,) = (log|z1],- - .,log|zxa|)-
For the amoeba we will also use notation Ay .

Amoeba reflects the distribution of the algebraic set V. More precisely, one can say that the
amoeba depicts hollows for V.

The shape of the amoeba is closely related to the Newton polytope Ay of the polynomial f.
Recall that A; is defined as the convex hull in R™ of the index set A in the experession

f(217~--;zn) = ZCLQZQ.

a€cA

The set of integer points in Ay admits a natural partition Ay N Z™ = |J Ar, where T' is a face
on Ay and Ar denotes the intersection of Z™ with the relative interior of I'. We shall consider
the dual cone C, of A at v defined as

C, = R™: = ma .
s~ {sert o) = maxtso}
Notice that dimC, = n — dimT" when v € Ap. In particular, C,, has nonempty interior if v is a
vertex of Ay, and it equals {0} whenever v is an interior point of Ay.

The following theorem allows us to introduce an order on the components of the amoeba
complement.

Theorem 3.1 (Forsberg, Passare, Tsikh [13]). On the set {E} of connected components of Ay
there is an injective map (the order map)

v: {E}—>AfmZ"

with the property that the dual cone C, gy is equal to the recession cone of E. That is, for any
u € E one has u+ C, € E and no strictly larger cone is contained in E (Notice that if v is the
k-skeleton of Ay the C, has dimension n — k).

Thus, connected components can be numbered as E, with integer v € Ay. See, for examples,
the figures below for the polynomial 1+ 2325 + 2123 + 52122 (Fig. 1).
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Fig. 1. An example of an amoeba

4. The Gelfond-Khovanskii formula

We say that the sequence of polytopes Ajp,..., A, € R" is unfolded, if for each covector
v € (R™)" there is such number i, that for vectors x € A = Ay + ... + A,, (the Minkovskii sum
of polytopes A;) the scalar product (z,v) take its maximal value only in some vertex of A,.

Theorem 4.1 (Gelfond—Khovanskii [16]). Assume that the Newton polytopes A1,..., A, of

polynomials f1,..., fn are unfolded. Then the sum of all local residues in (C\ 0)™ is calculated
by the formula:
h
resy (h) = k,Res | —— |,
S = 3wl ()
{a} veEVert A
h

where Resg, is the coefficient c_; of the Laurent decomposition for ——— in the connected

flfn

component E,,.

In fact one can prove that the sum ) I', of local Grothendieck cycles ', is homologically
{a}

Z k,Log *(u,), wu, € E,,
veVert A

equivalent to the sum

where k, are the combinatorial coefficients: We ascribe the combinatorial coefficient to each
vertex v of the sum A of unfolded polytopes. Each face I' C A is a sum I'y + ... 4+ T, of faces
I; C A

Definition 4 ([16]). Combinatorial coefficient k4 is the local degree of the germ
(0A, A) — (OR,0)
of the characteristic map (hy,...,h,): 0A — OR"}, where each component h; is zero precisely on
that face of T, for which the term T'; is a vertex of A;.
5. The homological resolvent
Let U = {U;} be a finite covering of some manifold X. Denote Sff the group generated by all

singular simplices of dimension ¢ which supports belong to some element U; of the covering U.
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Let C.(U, S*) be the complex (which can be called the Cech-de Rham complex in homological
version) formed by the group S’g’, that is bigraduated groups

Cp)q:_ EB _Sq(UiOmUilm-.-mUip>7 p7q2071a--~
10<21<...<1p

We will need the following definition later to calculate local Grothendieck residues. The
definition given below differs slightly from Gleason’s definition [17].

Definition 5. The sequence of U-chains {&p},—o, §p € Cpr—p we will call the U-resolvent of the
cycle & € Z,(SY) if the following two conditions are met:

1. 650 = g
2. 86, =081, p=1,...,m
Here € : Cp,. — SY is an inclusion operator U; C X the action of which is determined by the
formula of the alternated sum:
€0 = Z o(i).
iel

Boundary operator 0 : C, 4 = Cy 4—1 is defined as

(80)(2'0, il, ce ,ip) = 8(0’(2'0,2'1, N ,ip)).
The Cech coboundary operator: Inclusions

UiOﬁUilﬂ...ﬂUiP‘—)UioﬂUilﬂ...[ik}...ﬂUi k=0,...,p,

p?
induce the operator § : Cp, . — Cp,_1 . determined using the alternated sum formula:
((SU)(io,il, ce ,Z'pfl) = ZO’(i, 2'0, N ,’L'pfl).
i€l
6. A generalisation of the Gelfond-Khovanskii formula
in 2-dimensional case

Let us consider an example of the polynomial system of equations:

Fy = 32220 + 25 + 22125 = 0,
Fy =23 + 42125 + 32223 =0,

(5)

for which the Newton polytopes are not in unfolded position: A; and Ay have parallel edges.
For convenience, we introduce the notation:

F = ZQ(BZf + zg + 22123) = 2 f1,
Fy = 21(23 +423 + 32122) = 21 fo.

Amoebas of Ay, and Ay, are shown in Fig. 2. In the complement of amoeba Ay ¢, there
are 6 connected components: FEsp, Fs5, E17 corresponds to the vertices of A = Aj + A,, and
E3, Eog, B34 correspond to integer points in the relative interiors of the edges.

We will find the formula for the resolvent of the boundary OW of the Weil polyhedron
W = Log™!(zA) , which is defined by a homothetic dilatation of the triangle A which contains
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1 2 3 4 5 34

Fig. 2. Newton polytopes A, Ay, A and amoebas Ay, , Ay,

the intersection of the amoebas A; and As. So, W contains all roots of the system F; = F, =0
in the torus (C\{0})2.
Note that the sets
U = {(C\{0})*} \{z : F1(2) = 0},
Uz = {(C\{0})*} \{z : F»(2) = 0}.
form a covering U of the complement (C\{0})*\{z : F1(z) = Fa(z) = 0}. We want to construct
the resolvent for the cycle ¢ € Z3(SY) which is the boundary of the polyhedron W.

1%¢ step: Decomposition & = o1 + o2 by blue and red chains with supports supp o; C U;
(see Fig. 3). Therefore we can take & € Cp 3 in Definition 5 as the following:

{@(1) = o1,
&(2) =09

(Note that each support of o; consists of 2 connected components).
27d step: Computation of the boundary of chain &, gives

{(asom)
(940)(2)

Now let &; € C 2 be our chain from the resolvent. Then by inclusions U; N U; — U; we get
the following system:

{(551)(1) =D ier61(i,1) =&(1L1) +61(2,1) = —&1(1,2),
(551)(2) = Zie[ 51(7:, 2) = 51(17 2) + 51(27 2) = 51(17 2)

Therefore if we take into account the fact that d&; should be equal to 0§y then from the system

0(&(1)) = 001 =T96 — I'gs + T'az — I'z4,
0(&(2)) = 00g =T34 —T'g6 + T'35 — Lys.

{—fl(la 2) = (061)(1) = (0&)(1) =Ty — I's5 +T'y3 — 'z,
£1(1,2) = (661)(2) = (060)(2) =T34 —T'g6 4+ I'ss — I'y3
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Fig. 3. The boundary of the Weil polyhedron

we have the following expression for the resolvent:
€1(1,2) = T34 — o6 + I'35 — T'us.

Thus we get the following formula for the sum of the Grothendieck residues:

h h h h
h) = — — .
ngsF( ) %ff <F1F2) %Ses <F1F2> +%§58 (F1F2> %S?’S (F1F2)

Obviously, the following statement in dimension 2 is obtained by similar reasoning.

Theorem 6.1. Assume that the system Fy = Fy = 0 has in (C\{0})? a finite number of roots.
Then the sum of Grothendieck residues in the torus (C\{0})? is calculated by the formula

h
ngsF (h) = Z k., %es (Fng) , where k, € {0,1,—1}.

{a} veEZ2NOA

7. Example in dimension 3

Let us consider an example of non-standard interpolation when the single point a = 0 is
defined as an isolated zero of the polynomial system

P1 = Z% — 2923 = O7
3
P2 = Z9 — X123 :0,

P3 = Zg — 2129 = 0.
We have an open covering U for the punctured neighborhood U of the origin:
U, =U\{z: Pi(z) =0}, 1=1,2,3.

Now we want to construct the resolvent for a multicoloured cycle £ € Z5(SY) (in the picture
4 below) which is homeomorphic to the sphere S°.
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Fig. 4. Hypersurfaces (left) and toric polyhedron (right) on the Reinhardt diagram

1%t step: Decomposition & = o1 + 03 + 03 by blue, red and green chains (see Fig. 4) with
supports supp o; C U;. Therefore we can take {y € Cp 5 as the following chain:

{60(1) = 01, £0(2) = 02, wi(3) = 03}

(Note that each support of o; consists of 2 connected components).
274 step: Computation of the boundary of chain &, (see Fig. 5):

f\
Q
I
(=]
<
—
i
N
|
Q

(§o(1)) =001 =c+b—f—g—d+h,
&(2) =00 =—a—c+e+d—i+y,
0(3)):803:—h—e—|—f+i—b+a.

—~
o))
aas
(=)
~—
~—
w
~—
I
o))
—~
oy

Fig. 5. Orientation and indexing of chains

Now let & € C'1 4 be our chain from the resolvent. Then by inclusions U; N U; — U; we get
the following system:
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i€l

i€l

i€l

(66)(2) =D &(5,2) = &(1,2) +&(2,2) + &(3,2) = &i(1,2) — &1(2,3),
(06)(3) =Y &1(i,3) = &1(1,3) + &1(2,3) + &(3,3) = &1(1,3) + &1(2,3).

G&)(1) = &6 1) =&a(L1) +&2, 1) +&B3,1) = =&(1,2) - &(1,3),

Note that chain &;(1,2) can contain only green segments (d, ¢, g) [only these segments belongs
to both sets Uy and Us], chain &;(1, 3) can contain only red segments (b, f, h) chain & (2,3) can
contain only blue segments (a, e, 7). Therefore if we take this fact into account together with the

fact that 0&; should be equal to d¢y then from system:

—61(1,2) —&(1,3) = (66)(1) = (9%)(1) =c+b—f—g—d+h,

§1(1,2) = &1(2,3) = (0&1)(2) = (0%)(2) = —a—c+e+d—i+g,

§1(1,3) +&1(2,3) = (661)(3) = (96)(3) = —h —e+ f+i—b+a.

we have the following solution:

51(172) :d—C—f—g,
&H(1,3)=—-b+ f—h,
£1(2,3) =a—e+i.

3'4 step: Compute the boundary of the chain &; (see Fig. 6):

(061)(1,2) = 0(&1(1,2)) =0(d—c+g) =0d — 0c+ 09 = —T'y + Ty — T —
:3)=0(&(1,3)) =0(=b+ f—h)=—-0b+0f —O0h =T1+T3 Do+,
3):8(51(2,3)):8(a—e+z):8a—8e+6z:—F1+F0—F2—F3

Fig. 6. 4-dimensional chains a, b, ... (left) and toric cycles I'o,T'y, ...

F3a

(right)

Now let & € (3 be our chain from the resolvent. Then by inclusions U1 NU;NUs — U; NU;
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we get the following system:

6'52 252 Zala2 52(17172)+£2(27172)+£2(33172) :€2(L2,3)7
el

652 252 Zala3 52(17173)+£2(27173)+£2(37173) = _52(17273)a
i€l

(66:)(2,3) = > 6(6,2,3) = &(1,2,3) + &(2,2,3) + £2(3,2,3) = &(1,2,3).
i€l

Therefore by resolvent condition we have:

52(17273) = (652)(172) = (851)(172) =-Ty+Ty—-T7 T3,
_52(17273) = (552)(173) = (851)(173) =11 +T3—-T¢+ Ty,
6(1,2,3) = (062)(2,3) = (9€1)(2,3) = —T'y + Ty — Ty — T

That is why £2(1,2,3) = g — I'; — 'y — I's, and therefore the Grothendieck cycle admits a
representation

I'=T9220 —I's11 = T'is51 = T'115

by toric cycles. This fact helps us to construct the matrix Q,,[B] from Theorem 2.1. For example,
let us compute the following integral.

1 c2fyz)dz ¢ / 2925 20 dzy dzy dzs B
(271'i)3 P1P2P3 o (27T2)3 (Zi)’ — 2’223)(2’3 — 2123)(23 — 2122)
F222 F222
¢ / 25 22 23 dz1 dzo dzs
)3 23 23 -
@m)mm(_@%x—a%x—a@x1—Q%x1—h;x1—m;)
. —c / 207220720 Aoy dao dizg
—(2mi)3 _ A (1o By A
@i J (11— )(1- 21

co  ©co oo Z3 n 23 l
— —2 —2
Z9Z zZ1Z Z1 %
, = 0 n—=0 =0 273 1<3 122

1 T —m—l4B8—2 3—m— _
- —¢ 2 : : (13m n—Il+a QZgn m—Il+3 ZZdl m—n+vy—2 dz — —ck.
(274)3 3

222

m,n,0>0

Here k is the number of sets of non-negative integers {m,n, [} for which the following system of
equalities holds:

3Im—n—Il+a—-2=-1,
-m+3n—-0+p5-2=-
-m-n+3l+v-2=-1
Let us consider an example of non-standard interpolation when the single point a = 0 is
defined as an isolated zero of the polynomial system
P = zf — 2023 =0,
P, = zg’ — 2123 =0,

P3 223—2’12’2 =0.
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The multiplicity at 0 equals 11.
The Grothendieck cycle admits a representation

Lo =T22 —I's11 — 151 — I'115.
Proposition 1. The list of Noetherian operators for the ideal Io{P) is:

o 194 194 10
_ (-0 __ ~ -~ _ - _ ¥ .
(Lot = {EO’OOO - ( R N P AT 924 4024 Al a;;g) ’

R SN o WS G0 SN Al B
31023 0920023 ) O T U 31023 920023 )

1 0® 0? 0 0
EEE 8z18z2> i Lo10 = <823> i Lo101 = (822) ;

Pl 1 82 162
Looi1 = <8zl) i L£o0,200 = (482’2) : Lo,020 = (482’2) ;
i 3

1 0
46z§> i Lo = (—9°) ;1 Loz00 = (3'8z1> ;

) 19 1.,
_3!822> ;1 L£0,003 = <_3'323) i L£o,400 = (—4!3 ) ;

Proposition 2. The monomial basis for the factor-space Og/lo(P) is
2 2 2
{1, 21, 22, 23, 27, 23, 23, 2122, 2123, 2223, 212223 } -

Now we can formulate the local non-standard interpolation problem and its solution.

Problem 2. Let the compler numbers {as},c o, and c be given. Let Up is an open subset of
C3, containing the point 0 = (0,0,0) which is an isolated zero of mapping P = (2} — 2923, 25 —
2123, 25 — 2122). It is necessary to describe the space of holomorphic functions f : Ug — C, with
the property:

Z arLo[f](0) = c.

LeAo

Theorem 7.1. If alhl] # 0, then the holomorphic function f(8) satisfies the Alpay—Yger
problem for single point (m = 1) iff the coordinatization of f satisfies the following condition:

a +a “+ a a
(aooo +aiy — -2 ;)io 004) ar[f] + (aon + %) az[fl+

+ (a101 + %) asz[f]+ (auo + %) ag[f]+ 6122&045[]0]"‘

+ %%[ﬂ + %Of?[f] + ago10s[f] + aorov[f] + acori0[f] + aco11[f] = —c.

This means that the coordinate vector of f in the local algebra lies in the prescribed affine hyper-
plane 11, C C'.
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O HecTtanmapTHBLIX MHTepIHoadnuax B C" m KoMOMHATOPHBIX
Ko3ddurimeHTax ajisi MHOTOIPAHHUKOB Beiiig

Margeit E. /Ilypakos
Cubupckuii deepasbHbIil YHUBEPCUTET
Kpacnosipck, Poccuiickast ®eneparus

Poman B. YabBeprt

Cubupckuii dhemepasbHbIil YHUBEPCUTET

Kpacnosipck, Poccuiickas @eneparnus

MNucruryT nHdOPMATUKY 1 TEIEKOMMYHIKAIIHIA

Cubupckuil rocy1JapCTBEHHBIN YHUBEpCUTET Hayku u TexHosornit um. M. @. Pemernesa
Kpacnosipck, Poccuiickas ®enepanus

Asrycr K. ITux

Cubupckuii deepaabHbIl YHUBEPCUTET
Kpacnosipck, Poccuiickass @eneparust

Awnnoranusi. MHOroMepHasi HeCTaHIAPTHAsI WHTEPIOJISANNS ObLTa HEIABHO IPEJCTABIEHA B CTAThE
. Ammas u A. Nxepa. Peub uger 06 anrebpamdecKoil MHTEPIOALINNA, B KOTOPO y3JIaMU CJIy>KaT JUC-
KpEeTHBIE KODHU CHCTEMbI IIOJIMHOMHMAIBHBIX ypaBHeHuit. C moMoIpbio IBORCTBEeHHOCTH Bhrdera ['porenin-
Ka 3aJ[a9a ONMMCAHUsI ICKOMOTO WHTEPITOJISIIIMOHHOTO MTPOCTPAHCTBA (DYHKITUN PEYIUPYETCS K PENTeHUTO
adurHO-OMIMHEHOrO ypaBHeHus. i peasu3anuu 3TOi peayKiuu TpeOyIoTCs aJrOpPUTMbl BBIUKC-
JIEHWsI JIOKAJIbHBIX BBIYETOB ['poTeHInKa WM UX CyMM. B j10cTaTOYHO OOINEN CHUTyallMu BBIYKMCJIEHHE
YKa3aHHBIX BBIUETOB OCHOBAaHO Ha m3BecTHON dopmyre [enbdornn—Xosanckoro. B mammoit cratbe mpu-
B€JIEHBI IPUMEPBI BbIMUCIEHUS JIOKAJIBHBIX BBIYETOB WX UX CYMM. B JBymMepHOM ciydae Mbl 06001aem
dopmyny lenbdona—XoBaHCKOrO sl MHOTOTPAaHHUKOB HbIOTOHA, KOTOpBIE HE HAXOJISATCS B PA3SBEPHYTOM
TIOJIOZKEHUN. DTO JIEJIAETCS C UCIOTH30BAHNEM MOHSITHS aMeObl airedpandecKoro MHOYKECTBA, U TOHSITHS
POMOJIOTUYIECKOM PE30JIbBEHTHI JIJIsi PPAHUIIBI MHOTOI'DaHHUKa Beiis.

KirogyeBblie ciioBa: BbIUeT FpOTeHILI/IKa, UHTEPIIOJIAINA, aM'é6a, roMoJioru4deckasi pe3oJibBeHTa.
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