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Abstract. The fermion parity of the ground state is determined in various topological phases of the
semiconducting nanowire under external magnetic field with proximity-induced superconductivity and
strong spin-orbit interaction. Electron hopping as well as spin-flip hopping due to spin-orbit coupling
and superconducting pairings in the second coordination sphere are taken into account. The connection
between the fermion parity and the parity of the BDI topological invariant is shown. The formation of
topological phases with three and four pairs of Majorana modes has been demonstrated.
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Majorana modes (MMs) that emerge in topological superconductors are of both fundamental
and practical interest. This is due to their spatial nonlocality and the potential for implementing
non-Abelian statistics through permutations. These characteristics suggest the possibility of
utilizing MMs for quantum computing, providing protection against decoherence processes [1–4].
Permutations of non-Abelian anyons result in alterations to the system’s ground state wave
function. Unlike Abelian anyons (such as fermions and bosons), this change is not solely confined
to the introduction of a phase factor.

One of the most renowned systems where the realization of MMs is feasible involves an InSb
(or InAs) semiconductor nanowire brought into contact with an s-wave superconductor. For in-
stance, this could be achieved by depositing a 3–5 mm thick layer of aluminum on the nanowire’s
surface and subjecting it to an external magnetic field [5, 6]. The formation of MMs in such
heterostructures was initially predicted in several studies [7–9]. The joint implementation of
strong spin-orbit coupling, spin-singlet s-wave superconductivity, and a magnetic field allows the
realization of a Kitaev chain regime with effective triplet p-wave superconducting pairings [10]
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in the system under consideration. It’s essential to note that the experiments have yet to con-
clusively confirm that the observed signals, such as the conductance peak at zero bias voltage,
are precisely associated with MMs and not with trivial Andreev bound states [11,12].

Typically, in superconducting nanowires, a Majorana bound state is considered, consisting of
two MMs localized at opposite ends of the wire. However, the one-dimensional (1D) Hamiltonian
used to describe superconducting wires belongs to the BDI symmetry class [13–15], enabling not
only non-trivial topology in 1D systems but also the formation of multiple MMs on a single end
of a finite-dimensional chain. In this scenario, different MMs on one edge of the chain do not
hybridize with each other due to the effective symmetry similar to time-reversal symmetry [16].
Indeed, the realization of a phase with two pairs of MMs (two modes at each edge of the chain)
was shown in Refs. [16, 17] when considering extended s-wave superconducting pairings. This
implies the presence of pairing interaction between electrons at one site of the chain, as well
as between nearest sites. The transition to such a phase can be induced by on-site Hubbard
repulsion of electrons [17].

Previously, the formation of topological phases with multiple edge MMs was also shown
in chains containing magnetic atoms [18] and under the influence of periodically time-varying
external fields [19]. The interest in topological phases with several MMs stems from their real-
ization with arbitrarily small Zeeman splitting of spin subbands (in zero field, they transform
into Majorana-Kramers doublets [16]). Additionally, it offers the potential to permute multiple
MMs simultaneously in quantum wires of T-, X-, and Y-structures, as was shown for single MMs
in [2].

It is natural to assume that in the mentioned systems there also exist non-zero amplitudes
of electron hopping, including spin-flip hopping due to spin-orbit coupling, and superconducting
pairings between next-to-nearest neighbors in the chain. In this work, considering the processes
in the second coordination sphere (CS), we demonstrate the formation of phases with three and
four pairs of MMs in the model of a superconductor-semiconductor nanowire with spin-orbit
coupling, placed in a magnetic field. Notably, for the classification of regions in the topological
phase diagrams, a clear method is employed in addition to the BDI topological invariant [14,16].
This method is associated with determining the fermion parity (FP) of the system ground state
and was previously proposed in Refs. [20–22].

1. Model of a superconducting nanowire in the presence
of processes in the second coordination sphere

The Hamiltonian of the model of a superconducting nanowire with open boundary conditions
in the tight binding approximation has the form [21]:

HW =
N∑

σ,n=1

(−µ− ησh)C
†
nσCnσ +

N−1∑
σ,n=1

t(C†
nσCn+1σ + C†

n+1σCnσ)+

+
N−1∑
n=1

[
(−α)(C†

n↑Cn+1↓ − C†
n↓Cn+1↑) +H.c.

]
+

N∑
n=1

[
∆0C

†
n↑C

†
n↓ +H.c.

]
+

+
N−1∑
n=1

[
∆(C†

n↑C
†
n+1↓ + C†

n+1↑C
†
n↓) +H.c.

]
.

(1)
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The first term in (1) characterizes the electron energy measured from the chemical potential
µ taking into account the Zeeman splitting h in an external magnetic field. The second term
describes hoppings between nearest sites with amplitude t. The third and fourth terms define
the Rashba spin-orbit interaction with amplitude α and on-site superconducting pairings with
amplitude ∆0, respectively. The last term is due to superconducting pairings between electrons
at nearby sites with the amplitude ∆. It was shown in [16,17] that the formation of phases with
two pairs of MMs is possible at 2∆ > ∆0. To consider this regime in further calculations, it is
convenient to set ∆0 = 0, keeping in mind that the results will be preserved at a qualitative level
at ∆0 ̸= 0 and 2∆ > ∆0. The parameter ησ determines the sign and takes the following values
depending on the projection of the spin momentum σ: ησ = +1 (at σ =↑), ησ = −1 (at σ =↓).

The Hamiltonian (1) describes only processes in the first CS. Therefore, to take into account
long-range hopping, including spin-flip processes, as well as superconducting pairings in the
second CS, we add the following terms:

H2 =
N−2∑
σ,n=1

t2(C
†
nσCn+2σ + C†

n+2σCnσ) +
N−2∑
n=1

[
(−α2)(C

†
n↑Cn+2↓ − C†

n↓Cn+2↑) +H.c.
]
+

+

N−2∑
n=1

[
∆2(C

†
n↑C

†
n+2↓ + C†

n+2↑C
†
n↓) +H.c.

]
.

(2)

The first part of (2) determines the hopping between next nearest sites with amplitude t2, the
second and third terms are responsible for the effective spin-orbit interaction with the parameter
α2 and superconducting pairing with the parameter ∆2 for the second CS. As a result, the
Hamiltonian of the model under consideration is written as:

H = HW +H2. (3)

2. Fermion parity and topological phase diagram

The Hamiltonian of the model in the reciprocal space under periodic boundary conditions
takes the form:

H =
∑
k,σ

ξkσC
†
kσCkσ +

∑
k

[
∆kC

†
k↑C

†
−k↓ +∆∗

kC−k↓Ck↑

]
+
∑
k

iαk

[
C†

k↑Ck↓ − C†
k↓Ck↑

]
, (4)

where

ξkσ = tk − µ− ησh, tk = 2t cos(k) + 2t2 cos(2k), (5)

αk = 2α sin(k) + 2α2 sin(2k), (6)

∆k = 2∆cos(k) + 2∆2 cos(2k). (7)

It was previously shown that the fermion parity (FP) of the ground state of a superconducting
system is related to the structure of the Hamiltonian (1) at special points of the first Brillouin
zone [20–22]. Here, the special points are considered as those values of the quasimomentum
at which either the superconducting order parameter ∆k or the spin-orbit coupling integral αk

vanishes while having non-zero amplitudes α, ∆, α2, ∆2. The identification of such special
points is justified by the fact that, as it will be shown later, the Bogoliubov transformations have
a different form for these points compared to other BZ points. It is worth noting that for models,
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like Bardeen, Cooper, Schrieffer (BCS) model, special points are limited to the nodal points of the
superconducting order parameter, where ∆k = 0. When considering the spin-orbit interaction,
the energy spectrum takes a form distinct from BCS theory, although the superconducting gap in
the spectrum still closes at the nodal points upon tuning model parameters. However, it can be
easily shown in the considered model, that the condition αk = 0 also results in the closing the gap
in the elementary excitation spectrum, which could be the cause of a topological transition with a
possible change in the ground state FP. In this case, the gap is closed at points where αk = 0 but
the superconducting order parameter ∆k is non-zero. It is important to emphasize that it applies
specifically to the closure of the superconducting gap, as in the absence of superconductivity the
spectrum becomes gapless on the Fermi contour (lines in BZ).

From (6) and (7) it is obtained that the parameter ∆k vanishes at the following points:

K± = π − arccos
(
∆̃±

)
,−K±; ∆̃± =

1

4

∆

∆2
± 1

4

√(
∆

∆2

)2

+ 8 ∈ [−1, 1], (8)

and the spin-orbit coupling integral αk vanishes at the points

Q = 0, π, P = π − arccos (α̃) ,−P ; α̃ =
α

2α2
∈ [−1, 1]. (9)

Thus, the Hamiltonian (4) is modified to the following sum of quadratic forms:

H = h(0) + h(π) + r(P ) + r(K+) + r(K−) +
∑

k>0,k ̸=Q,P,K±

r(k), (10)

where r(k) = h(k) + h(−k) (this definition is also valid for points P , K±), and

h(Q) =
∑
σ

ξQσC
†
QσCQσ +∆QC

†
Q↑C

†
Q↓ +∆∗

QCQ↓CQ↑, (11)

h(P ) =
∑
σ

ξPσC
†
PσCPσ +∆PC

†
P↑C

†
−P↓ +∆∗

PC−P↓CP↑, (12)

h(K±) =
∑
σ

ξK±σC
†
K±σCK±σ + iαK±

[
C†

K±↑CK±↓ − C†
K±↓CK±↑

]
, (13)

h(k) =
∑
σ

ξkσC
†
kσCkσ +∆kC

†
k↑C

†
−k↓ +∆∗

kC−k↓Ck↑ + iαk

[
C†

k↑Ck↓ − C†
k↓Ck↑

]
. (14)

In [22], it was demonstrated that the eigenfunction of the term r(k) (refer to (14)) can always
be expressed as a superposition of states with an even number of fermions, akin to the wave
function in BCS theory. Consequently, the structure and FP of the system’s ground state are
determined by the eigenvectors of the operators h(Q), r(P ), and r(K±).

As delineated in [22], the eigenvectors of the term of h(Q) comprise two states: one with a
single fermion, denoted as |FQσ⟩ = C†

Qσ|0⟩, and two with an even number of fermions, repre-

sented as |ΦQ±⟩ =
(
A±

Q +B±
QC†

Q↑C
†
Q↓

)
|0⟩. Of particular interest is the scenario where the state

containing one fermion possesses the lowest energy. For h > 0 (which is the case always consid-
ered here), this reduces to the condition EF

Q↓ < EΦ
Q,−. Consequently, the following inequalities

emerge:

h >

√
{2t2 + 2t− µ}2 + |2∆2 + 2∆|2,

h >

√
{2t2 − 2t− µ}2 + |2∆2 − 2∆|2.

(15)
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The term r(P ) has the BCS form, and its eigenvectors also consist of an even number of
fermions, leaving FP of the system’s ground state wave function unaffected. In contrast, the
term h(K±) possesses an eigenvector that can be expressed as a superposition of states with
a single fermion:

(
aK±C

†
K±σ + bK±C

†
K±σ̄

)
|0⟩ (σ̄ represents the opposite spin projection to σ).

Nevertheless, it’s evident that the state
(
a−K±C

†
−K±σ + b−K±C

†
−K±σ̄

)
|0⟩, which is appropriate

for the term h(−K±), has the same energy. Therefore, even in cases where these states have
lower energies than states with an even number of fermions, FP of the ground state wave function
remains unchanged because the one-fermion states at points K± and −K± are filled simultane-
ously. Consequently, the conditions for achieving the ground state of a system with odd FP are
dictated by the inequalities (15).

It is important to note that using the quadratic forms highlighted in (10), it is feasible to
describe transitions that change the ground state wave function even when FP remains the
same. By applying the Bogoliubov transformation, we can determine the excitation energies at
the selected k points that may change signs with parameter variations.

E1k =
√
(tk − µ)2 + |∆2

k| − h, k = Q, P, −P,

E2,3k = (−µ)±
√

α2
k + h2, k = K±,−K±.

(16)

From the considerations given above, it follows that FP of the ground state for a given set of
parameters coincides with the parity of the number of negative energies (16). The energies E1Q

at points 0 and π assume negative values under the conditions of (15), respectively. We will now
outline the inequalities that lead to the remaining energies becoming negative:

E1P,−P < 0, h >
{[

4t2(α̃
2 − 1/2)− 2α̃t− µ

]2
+
∣∣4∆2(α̃

2 − 1/2)− 2α̃∆
∣∣2}1/2

, (17)

E2K±,−K± < 0, h <
{
µ2 − µ2

c

}1/2
, µ > µc, (18)

E3K± −K± < 0, h >
{
µ2 − µ2

c

}1/2
, µ < −µc, (19)

E3K±,−K± < 0, µ > −µc, (20)

where µc = 2
√

(1− ∆̃2
±)(α− 2α2∆̃±).

Whenever the sign of any of the energies changes, it leads to a modification in the ground
state wave function. It is easy to verify that the same conditions correspond to the closure of the
gap in the elementary excitations spectrum at special points such as Q, ±P, K±, −K±, while at
other points the spectrum remains gapped until the amplitudes of superconducting pairings are
non-zero.

In further calculations, we will assume that all parameters within the same CS are equal to
each other. In this context, we will consider λ1 = α = ∆ = t and λ2 = α2 = ∆2 = t2 and
explore the case where λ2 = 1.5λ1, as it allows for the maximum number of MMs to be realized
within the given model. Moreover, to establish the relationship between FP and the parity of
the topological invariant, we compute the value of the topological index BDI [14,16]:

NBDI =
−i

π

∫ k=π

k=0

dz(k)

z(k)
, z(k) =

det(Q(k))

|det(Q(k))|
, Q(k) = ξkσ0 − hσz − αkσy − i∆kσy, (21)

where σ0 is the identity matrix, σy, σz are Pauli matrices.
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Fig. 1. Topological phase diagram in the variables chemical potential µ — Zeeman splitting h
(in units of λ1) for the amplitude λ2 = 1.5λ1. The lines are obtained from the conditions of
changing the sign of the energies of one-fermion states at special points of the Brillouin zone.
The value of the topological index is marked in each phase. Different colors indicate different
fermion parities of the ground state wave function

Fig. 1 illustrates parameter lines h(µ) where the energy sign changes (16). As indicated in
Fig. 1, these lines delineate the regions with distinct values of the topological index. Addition-
ally, these regions are characterized by distinct numbers of negative energies (16). The solid
line depicts the dependence (15). Traversing this line results in an energy sign change and a
parity shifts in the count of negative energies. The other dependencies, determined from the
inequalities (17)–(19), are shown by the dashed lines in Fig. 1. The dashed line obtained from
(17) is highlighted in purple, the dependencies (18) and (19) are shown by green and red lines,
respectively (see color version). Crossing these lines does not change FP but does modify the
form of the ground state wave function. Similarly, when passing through the dashed lines, the
topological index changes without affecting its parity. Consequently, the solid line serves as the
boundary of the regions in the topological phase diagram with different FP of the wave function
of the ground state. The regions highlighted in grey (turquoise in color version) have even FP,
and the light (yellow) ones have odd FP.

It can be concluded that the parity of the topological invariant coincides with the parity of
the number of one-fermion states that have negative energy in a given region. In this work, we
do not specify the precise forms of the ground state wave functions. Their construction is similar
to the method described in [22].

It is seen in Fig. 1, that the phases with NBDI = 3 and NBDI = 4 are formed in the presence
of processes in the second CS. It should be noted that the NBDI = 3 phase appear even when
λ2 < λ1 (approximately for λ2 > 0.5λ1). And this phase can be realized at low values of Zeeman
splitting (∼ 0.1t). On the other hand, the NBDI = 4 phase is implemented for λ2 > λ1.

3. Majorana modes in phases with NBDI = 3 and NBDI = 4

To describe features of MMs in the new phases, we consider the Hamiltonian (3) with open
boundary conditions and assume that the number of sites is N = 150. The transition from the
original Fermi operators to Bogoliubov operators is carried out:

aj =
N∑

n=1
ujn↑Cn↑ + ujn↓Cn↓ + vjn↓C

†
n↓ + vjn↑C

†
n↑,

a†j =
N∑

n=1
u∗
jn↓C

†
n↓ + u∗

jn↑C
†
n↑ + v∗jn↑Cn↑ + v∗jn↓Cn↓, j = [−2N, 2N ] .

(22)
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The coefficients ujnσ and vjnσ in this case are components of the eigenfunctions of the Hamil-
tonian matrix. They can be used to obtain the distribution of quasiparticle operators over the
sites of the chain. However in order to spatially separate MMs in the chain, it is convenient to
use Majorana operators:

b
′
= aj + a†j =

∑
n,σ

ωnσγAnσ + znσγBnσ,

b
′′
= i

(
a†j − aj

)
=

∑
n,σ

ω̃nσγAnσ + z̃nσγBnσ,

ωnσ = 2Re(ujnσ + vjnσ), znσ = −2Im(ujnσ − vjnσ),

ω̃nσ = 2Im(ujnσ + vjnσ), z̃nσ = 2Re(ujnσ − vjnσ),

(23)

where γAnσ = Cnσ + C†
nσ, γBnσ = i(C†

nσ − Cnσ) are Majorana self-conjugate operators.

Fig. 2. Distributions of Majorana modes depending on the chain site for the first (a), second (b),
third (c) and fourth (d) excitation energies in the phase with NBDI = 3. The ratio between
amplitudes in the second and first coordination spheres is λ2/λ1 = 2

In Fig. 2, the distributions of MMs on the chain sites (coefficients ωnσ and ω̃nσ in (23))
are presented for the phase with NBDI = 3. The dependencies for coefficients znσ and z̃nσ are
qualitatively the same. Figures (a–c) reveal that the formation of MMs with edge localization
occurs only for the first three excitation energies. These three excitations have near-zero energies
(counted from the Fermi level). In the case of the fourth excitation with nonzero energy (d), the
probability density of quasiparticles is minimal at the edges of the chain and increases towards
to its middle. The probability density of edge states in NBDI = 3 phase exhibits an exponential
decay with oscillations.

Fig. 3 shows the distributions of MMs for the phase with NBDI = 4. As evident from figures
(a–d), MMs are formed for all four excitation energies in this phase, resulting in the formation
of four pairs of MMs with near-zero energies.
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Fig. 3. Site distributions of Majorana modes for the first (a), second (b), third (c) and fourth (d)
excitation energies in the phase with NBDI = 4 (λ2/λ1 = 2)

Сonclusion

The model of the superconducting nanowire under external magnetic field is considered with
the periodic as well as open boundary conditions taking into account electron hoppings, includ-
ing spin-flip hoppings due to Rashba spin-orbit coupling, as well as superconducting pairings
between nearest and next-nearest neighbors. It is shown for the periodic boundary conditions
that different phases on the topological phase diagram can be characterized by the number of
occupied one-fermion states that have negative energy at special points of the Brillouin zone.
As a result, the region of formation of odd fermion parity of the ground state is determined.
It is obtained that the parity of the ground states coincides with the parity of the topological
invariant, which in turn indicates the number of Majorana bound states, each of which contains
one pair of Majorana modes localized at opposite edges of the chain. We show that taking into
account the processes between next-nearest neighbors in a chain with open boundary conditions
leads to the formation of phases with three and four pairs of Majorana modes.

The work was partially carried out within the state assignment of Kirensky Institute of
Physics. GamovA. acknowledges the support of the Theoretical Physics and Mathematics Ad-
vancement Foundation "BASIS".
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Фермионная четность в фазах с множеством
майорановских мод в сверхпроводящей нанопроволоке
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Аннотация. Для полупроводниковой нанопроволоки, помещенной во внешнее магнитное поле, с
наведенной сверхпроводимостью и сильным спин-орбитальным взаимодействием определена фер-
мионная четность основного состояния в различных топологических фазах при учете перескоков
электронов, включая перескоки с переворотом спина за счет спин-орбитальной связи, и сверхпро-
водящих спариваний во второй координационной сфере. Показана связь фермионной четности и
четности BDI топологического инварианта. Продемонстрировано формирование топологических
фаз с тремя и четырьмя парами майорановских мод.

Ключевые слова: фермионная четность, сверхпроводящая нанопроволока, майорановские моды,
топологический инвариант, топологическая фазовая диаграмма.
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