Journal of Siberian Federal University. Mathematics & Physics 2023, 16(6), 811-819

EDN: POECNP
VIIK 538.945

Symmetry Analysis of Radial Profiles of Magnetic Skyrmions

Eugenia O. Enkova*
Vitaly A.Stepanenkof

Siberian Federal University
Krasnoyarsk, Russian Federation

Maksim S. Shustin?

Kirensky Institute of Physics

Federal Research Center KSC SB RAS
Krasnoyarsk, Russian Federation

Received 10.08.2023, received in revised form 26.09.2023, accepted 02.11.2023

Abstract. The search for analytical profiles of chiral magnetic structures such as 2D magnetic skyrmions
(MS) is important for their theoretical study. Since the Euler-Lagrange (EL) equations for such excita-
tions are not solved exactly, the MSs are described using analytical ansatzs. In this work, we validate
one of the widely used ansatzs based on a symmetry analysis of the 1D analog of the EL equations, which
characterizes the radial profile of the MS. As a development of this approach, a profiles of skyrmion bags
are proposed.
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Introduction

Skyrmions are topologically nontrivial field configurations that are solutions of nonlinear
differential equations of physics. At the first time, such solutions has been considered by T.
Skyrme in nuclear physics for the baryon field [1,2]. Later, the similar fields, m(7), were found
in magnetic systems [3] and liquid crystals, where 17 € S?, and ¥ € R?>2. Recently, magnetic
skyrmions were found experimentally [4-6], arousing scientific interest in themselves as promising
objects for logic and memory devices of a new generation [7,8]. The main practical interest to
MS is due to their topological stability or, in other words, the inability to convert a nontrivial
distribution 7i(7) with a topological index @ into the another one (corresponding to homotopy
class with different Q) without overcoming a high energy barrier. The vast majority of studies
considered the MSs with @ = —1 (in what follows we fix the chirality of the MS). However, the
more exotic magnetic vortices has recently been predicted numerically [9-11] and experimentally
confirmed [12,13]. The last ones are, for example, magnetic skyrmionium (@ = 0) or skyrmion
bags of nontrivial morphology (arbitrary Q).

The finding of new 2D magnetic structures actualized the problem of their analytical descrip-
tion. So, when describing the ordinary MS with Q = —1, the three types of analitycal ansatz
are widely used: i) linear, ii) exponential, and iii) 27-domain wall ansatz. In this paper, we
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demonstrate that the type iii) ansatz correspond to the symmetry of EL equations describing
the MS profile in the XoZ plane. We also generalize type iii) ansatz to the case of skyrmion
bags.

1. Energy and profile of the magnetic skyrmion
Let us consider a continuum model of a 2D chiral magnet with competing interactions. We

introduce the magnetization field 7(7): |m| = 1, ¥ € R%. Then, the excitation energy of an
arbitrary configuration, m(7), compared to the ferromagnetic case, m.(r) = 1, has the form:
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The first two terms describe the Heisenberg and the Dzyaloshinskii-Moriya interactions of the
strengths J and D, respectively. These interactions are competing, making it possible to exist
of non-trivial configurations, such as MS. The third term describes the "easy-axis" single-ion
anisotropy with an amplitude of A, which defines a chosen space direction along the z-axis.

The MSs are axially symmetric configurations, and are standardly described by the
parametrization:

my =sinO(r) cosp, m, =sinO(r) sinp, m, = cosO(r). (2)

Here ¢ is the azimuthal magnetization angle, which coincides with the polar angle of the vector
7 in XoY plane, O(r) is the «skyrmion angle», depending on the polar radius r (the origin of
polar coordinates coincides with MS center). The © vs. r dependence can be found from the EL
equation:

~ (12 +71?) ~ sin®© M ~
2A, At 2 2 — sin® = 0.
hAWC) 53 Sil 0 +28 T +2/C sin® =0 (3)
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coordinates. The equation (3) can be obtained by substituting (2) into the functional (1) and
varying the latter against the ©(r) and its derivatives. By now, no exact solution of Eq. (3) has
been obtained. In order to simulate the numerical solutions the 27-domain wall ansatz is widely
used

(4)

~ h
O_1(r, R,w) = 2arctg (COSR/U))

sinh r/w

with two parameters R and w, where w describes the domain wall width, whereas R is the
distance from the skyrmion center to domain wall middle.
Due to complexity of Eq. (3), let us consider a simplified situation where

my =sinO(z), my =0, m, =cosO(z). (5)
Such situation correspond to the flat domain wall, varying along the Oz axis. Since morpho-

logically MS is an axially symmetric domain wall, one can assume that ©(z) approximates the
radial dependence ©(r) of the skyrmion angle for large MS (see Fig. 1). This assumption does
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not take into account azimuthal distortions of the MS texture. However, for this picture, it is
possible to obtain a simple EL equation

?e A
W = ﬁ sin 20 (6)
for the angle ©(z). The exact solution
O(z) = 2arctan(e®/"), (7)

of Eq. (6) can be obtained if 7 > 0, A > 0. It describes the m-domain wall, where 7 wraps by
an angle 7 in the XoZ plane. The solution (7) is a partial one of the Eq. (6). Another solutions
can be obtained by symmetry analysis of the Eq. (6).
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Fig. 1. a) visualization of a 2w-domain wall using a vector field (5) with an angle function ©(x)
defined by Eq. (22) with parameters R = 15, w = 3; b) the function O(z) profile; c¢) visualization
of the vector field MS (see Eq. (2)) with the function ©(r), see Eq. (4), with parameters R = 15,
w = 3. The lengths are defined in the lattice parameter a = 1

2. Symmetry analysis of the approximate equation

Let us perform a symmetry analysis of the Eq. (6), and first consider its discrete symmetries.
It can be seen that the equation retains under transformations: © — —x and ©(x) — —O(z).
Then, taking into account Eq. (7), one get a set of four exact solutions of Eq. (6):

O(z) = +2arctan(er*/v). (8)
Now consider the continuous (Lie) symmetries of the equation. Then the replacing of variables
=F(t; ©,0,0), @ =(t; z,0,0), @ =U(t; z, 0, O) (9)

becomes continuously dependent on the parameter ¢, forming an infinite set. Hereafter
© = dO/dz, and © denotes a new function retaining the form of Eq. (6) in new variables.
In contrast to the discrete transformations (8), it can be shown that continuous ones should
involve both the variable z as well as the functions © and ©, see Eq. (9). The main goal of this
changing is to find the mappings, that retain the form of Eq. (6). Then, knowing the discrete

- 813 -



Eugenia O. Enkova. .. Symmetry Analysis of Radial Profiles of Magnetic Skyrmions

set of solutions (8), as well as the infinite set of mappings (9), one can obtain new solutions that
depends on t.

It is convenient to implement this idea in the framework of the so called geometric approach
to differential equations [16]. Let us consider a second-order equation of the general form

F(z,0,0,0)=06 - f(x,0,0), (10)

as a surface in the space of independent parameters D = {z, ©, 0, @} In the geometric ap-
proach, the replacement of variables (9) corresponds to continuous paths in the space D, depended
on the starting points {z, g, O, Oo} (in fact being a discrete set of solutions (8)) on the sur-
face F. This idea is visualized in Fig. 2 in the reduced space {z, ©, @} for simplicity. By this

(S}

9

(>0, 9o, 90)

Fig. 2. Visualization of the idea of continuous paths in space depending on the initial points on
the initial surface

approach, the invariance of the Eq. 10 under the mapping (9)Nmeans preserving the form of the
surface F with a deformation where the points {zg, ©g, Og, O} move along the paths defined
by Eq. (9). At the same time, these paths determine at each point of the surface F the tangent
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Then, the problem of invariance of the surface F is reduced to finding its tangents with zero

directional derivative:

d _aiai/+afa@'+afa®'_
dt” |,_, o' ot 9o ot ' 9o ot
OF = OF _OF
_<£(9LE’+773@/+C89’>_(£’ n, C)'V‘F|t:0_0' (11)

Hence, the generator of Lie symmetries of Eq. (10) is determined as
O = €0 + e + (Dg,
OF=0. (12)

This property, together with the Eq.(10), defines the necessary conditions for finding the functions
&, n and ¢. However, these conditions are not complete yet. So, considering in the space D the
variables z, ©, © and © as independents, we neglected in fact the bonds between them:

d® —Odr =0, dO—6dz=0. (13)
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In order to account the last ones, let us continue the space D = {z, O, 9, 9} to the expanded
space D = {x, ©, ©, O, dO, dO, dz}, continuing the symmetry generator as well:

Oe5:§8z+n8@+<a@+....

Then, in the expanded space, besides the invariance of the equation, it is necessary to consider
the invariance of differential bonds in a similar way. The latter is the subject of the theory
of continuations described in [16]. This approach allows us to consider the invariance of the
differential, and not the algebraic equation. Then, following the Ref. [16], the sufficient conditions
for searching £, n and ¢ are reduced to the so called system of splittings:

nxa::fw€+f@77_fn®+2f§a:§ (14)
277w@ - g:z:x = 3f 5@; (15)

nee — 2&ze = 0; (16)

)

—feo = 0. (17
Here, the lower indices indicate the derivatives of the corresponding variables. In our case,
f =asin20, see Eq. (6) and Eq. (10).
Starting solving system from the last equation (16), we find:

§E=A0+B; A=A(x), B=B(x) (18)
Next, from Eq.(15) we find also solution for n:
n=A0?+COe+D; C=C(x), D=D(). (19)

Going to Eq. (14), we obtain that 34”0 + 2C" = B” + 3aAsin 20. Differentiating this equation
by ©, we get:
A// (:L,) A//

e = fo(©) = q= fe = K = const. (20)

Finally, consider Eq. (14). So that the solution is not trivial, let us put A = 0. Then, we get:
Cr2® + Dy =2aC O cos20 4+ 2D a cos20 — a C sin 20 + 2B, a sin 20. Expanding cos 20 and
sin 20 into a Taylor series and considering coefficients at various degrees of © as independent
ones, we find that D, C, B, = 0. If we consider again the operator O, we will see that O = 8,.
Thus, the group of Lie symmetries of Eq. (6) is poor and reduces to translations z — x + C. As
a result, the analysis of Eq.(6) allows to generate from the exact solution (7) a set of others:

O(z) = £2arctan (e(i“’+c)/w). (21)

Such solutions describe a set of domain walls, with the middle at points x = +C', where the
angle ©(z) changes from 0 to =7 (or from +7 to 0) when = changes from © = —oco to x = co. It
can be shown that if two domain walls ©1(x) and ©2(x) from the class of solutions (21) overlap
slightly, then the sum of ©® = ©1 + O3 is also an approximate solution of Eq. (6). This allows to
build combinations of solutions of the type Or— or 2w-domain walls. The latter one is:

—2-R 2R cosh £
2 arctan (e w ) + 2 arctg (e w ) = 2arctan | — o = (22)
sinh 2%

It is a 1D variant of the already mentioned ansatz for MS, see Eq. (22).

Fig. 1a shows the dependence of the function ©(z) (22). Next, Fig. 1b shows a visualization
of the vector field m(z), see Eq. (5), for such a domain wall. Finally, Fig. 1c shows a similar
visualization of the MS profile, see Eq. (2), where the free parameters for the functions ©(r) and
for ©(x) are chosen the same. It can be seen that the MS profile can be considered with good
accuracy as a 1D 27-"rotation body" of the domain wall. This makes it possible to generalize
the MS profile to more exotic magnetic structures.
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3. Some generalizations of the skyrmion profile

Summarizing above, it is possible to construct other combinations that will describe axially
symmetric domain walls. So, by choosing a combination of four exact solutions of Eq. (6) with
replacing © — r, one can obtain an expression for the so-called skyrmionium angle

~ o — 2arctan cosh (Ry/w1) | arctan cosh (Ra/ws)
Oo(r) = 2arct (sinh (r/ w1)> Zarct (sinh (r/ w2)>’ (23)

generalizing the two-parameter MS ansatz (4). Magnetic excitation, which profile is described by
(2) and (23) is called magnetic skyrmionium. It has a topological charge @ = 0, which is depicted
by the lower subscript on the radial function Og(r). A comparison of the radial dependencies
of the skyrmion and skyrmionium magnetizations, m, = cos©, is shown in Fig. 3. It can be
seen that the latter can be considered as an axially symmetric pair of successive domain walls.
At the same time, in (23), the parameters w; and Ry (w2 and Rj) characterize the width and
distance to the middle of the first (second) domain wall. Recently, magnetic skyrmioniums have
been discovered experimentally [12].

1 s
0.5 / B kyrmion
8 J *, |+ skyrmionium
E o . :
-0.5 ¥
1 _j .
0 10 20 30 40 50
r/a

Fig. 3. Dependencies of the component m. = cos© for the skyrmion (4) and the skyrmionium
(23) on the polar radius r. Parametrization for the skyrmionium corresponds to situations where
the component m, = cos ©g = —1 at the points 7 = 0 and r = co. The parameters of ansatz (4)
and (23) in units of a are: R = Ry = 15, Ry = 30, wy = 3, wy = 3.3

The knowledge of the skyrmionium profile allows us to construct profiles of Cgy-symmetric
exotic magnetic structures — the skyrmion bags. They have a topological charge Q@ = g — 1 and
have recently been discovered both numerically [9-11] and experimentally [13]. Numerical exper-
iments have shown [9] that to stabilize skyrmion bags with @ = g — 1, g magnetic skyrmioniums
located near to each other should be chosen as the seed magnetic configuration. A similar idea
can be developed in the analytical construction of skyrmion bags profiles. We will consider the
skyrmionium (23) to be the generating function of the skyrmion bags. Consider the cut of the
magnetic skyrmionium m -profile by the plane XoZ. This dependence has a two-peak structure,
which can be obtained by mirroring the dependency in Fig. 3. Now, let us shift the origin from
the point (x,y) = (0,0) to the peak point, (z, y) = (—a, 0), and move on to the polar system
centered at the latter. So, we first replace the variables in dependence 7i(r(Z, ), ¢(Z, 7)) in the

following way:
x cosf —sinf a
(3)- ()-8 &) (5)+(5), 2

followed by the second replacement & — 7/, § — 0. At this stage, we have introduced a new
parametrization of the magnetic skyrmionium, whose field now depends on the variables r/, 6 of

< &
< &
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the new polar system: m = m(r’,0). Now, let us make the third substitution: ' — r9, 8 — g-¢,
where r € [0,00), ¢ € [0,27). As a result, the g replicas of the skyrmionium profile are
obtained, that are slightly deformed at small » and large g. Let us write the Eq. (24) in matrix
form: 7 — 7 = 0(9) -7+ @ and apply the described transformations to the function (:)o(f’), see
Eq. (23). Thus, one obtain the so-called angle of skyrmion bags ©,(r, ¢):

O¢(F) = Oy(r,) =7 — 2arctan
sinh (

cosh (Ry /wy) ) B
a2 +129+2a-r-cosgp | wl)

— 2arctan cosh (R/uw2) . (25)
sinh (\/a2 +729+2a-r-cosgp / wg)

The profiles of the components m, = cos (:)g are shown in Fig. 4 for the cases: a) g = 1 — magnetic
skyrmionium; b) ¢ = 2 and ¢) g = 3. It can be shown that functions b) and ¢) approximate
with a good accuracy the numerical profiles of skyrmion bags with topological charges @ = 1
and Q = 2, respectively.

a) b) c)

Fig. 4. Dependencies m,(r)=cos ©,4, where O, is defined by (25). Parameters {R1, Rs, w1, w2, g}
are: a) {7.66,26.47,2.80,3.08, 1}, b) {7.86, 26.45, 2.83, 3.08, 2}, ¢) {7.56, 26.34, 2.90, 3.09, 3}

However, note that the Eq. (25) approximates the numerical profiles of the skyrmion bags
with good accuracy only for small topological indices ). For large @), the peculiarities in the
analytical profiles, that are absent in numerical one appear. A more correct construction of
analytical profiles for skyrmion bags will be the subject for further studies.

Summary

The Euler—Lagrange equations are found for magnetic excitations in 2D chiral magnets
with competing interactions: Heisenberg, Dzyaloshinskii-Moriya, and the "easy axis" single-ion
anisotropy as well. These equations were found for two classes of magnetic excitations: i) axially
symmetric magnetic vortices, such as magnetic skyrmions, and ii) flat domain walls. It is noted
that in the case i) the EL equations cannot be solved analytically, and their numerical solutions
can be approximated by an axially symmetric 2w-domain wall analytical ansatz. Whereas in
case ii), the partial solutions as well as the Lie symmetries of corresponding EL equations can
be obtained exactly, despite the approximate character of the description.

The symmetry analysis of the EL equations for the case ii) was carried out in the framework
of the so-called "continuation theory". The main idea of latter is to find new exact solutions
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from the previous ones with the use of the symmetries of the EL equation. It was shown that
the EL equations describing the flat domain walls (case ii) ) have only the translation symmetry
of the domain wall middle. Moreover, the sum of solutions for several domain walls displaced by
a significant distance relative to each other is also an approximate solution of the equation.

The latter feature allowed us to justify the choice of a 2r-domain wall type ansatz for a mag-
netic skyrmion. Moreover, continuing this idea for more complex combinations of closed domain
walls, including axially asymmetric ones, allowed us to propose analytical ansatzs for more ex-
otic magnetic vortex structures — the skyrmion bags, recently discovered both numerically and
experimentally. A detailed analysis and justification of the proposed parametrization will be the
subject for further study.
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Anann3 cuMMeTpumn paauaJIbHBIX Mpoduieii MarHuTHBIX
CKUPMUOHOB

EBrenusa O. EnbkoBa

Buranuit A. CrennaneHko

Cubupckuii deepaibHbIil YHUBEPCUTET
Kpacuosipck, Poccuiickas @emxeparims

Maxkcum C. Ilyctun

Nucruryr dusukn um. JI. B. Kupenckoro CO PAH
Kpacnosipck, Poccuiickas @epeparims

Anvortamuda. Ilonck anamuTudeckux npoduieil KHpPaJbHBIX MATHUTHBIX CTPYKTYp Tuna 2D maraur-
HbIX ckupMuoHOB (MC) siBisiercst BayKHBIM LIPU UX TEOPETHYECKOM OLMCAHUH. 1IOCKOJIBKY ypaBHEHUs
Sitnepa—Jlarpamka (DJI) qyst Takux Bo3OyKIeHUH He penraoTcss To9HO, onmcaane MC mposogar ¢ mo-
MOIIBIO aHAJUTUIECKUX TPOOHBIX (DYHKIMN — aH3areB. B Hacrosmeit pabore mpoBOAUTCs 060CHOBAHME
OJTHOT'O W3 IIMPOKO HCIOJIb3YyEMBIX aH3allell Ha OCHOBe cUMMeTpuitHoro anaiausa 1D Bepcum ypaBHeHUMi
9JI, onpenensromero pagunanpubiit mpoduas MC. B pazsurun Takoro moaxo/ia mpeiaraTcst TpoMuIn
CKUPMUOHHBIX MEIIIKOB C TOIOJIOTUYeCKUME 3apsigamu Q = 0.

KirouyeBnble cjioBa: MarsnTHbLIE CKHPMUOHBI, KHUDaJIbHbIE ]?»33‘1/1MO‘,HEI"/'ICTBI/IH7 CI/II\JI\{QTpHﬁHbeI AHaJIU3

mudHepeHITnaTbHBIX YPAaBHEHN, CKHPMUOHHBIE MEITKU.
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