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Abstract. We investigate the well-known hypothesis of D. R. Hughes that the full collineation group of
non-Desarguesian semifield projective plane of a finite order is solvable (the question 11.76 in Kourovka
notebook was written down by N.D.Podufalov). This hypothesis is reduced to autotopism group that
consists of collineations fixing a triangle. We describe the elements of order 4 and dihedral or quaternion
subgroups of order 8 in the linear autotopism group when the semifield plane is of rank 2 over its kernel.
The main results can be used as technical for the further studies of the subgroups of even order in
an autotopism group for a finite non-Desarguesian semifield plane. The results obtained are useful to
investigate the semifield planes with the autotopism subgroups from J. G. Thompson’s list of minimal
simple groups.
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Introduction

It is well-known that the geometric properties of projective plane are closely connected with
the algebraic properties of its coordinatizing set. So, a finite Desarguesian projective plane is
coordinatized by the field, a translation plane by the quasifield.

The study of finite semifields and semifield planes started ago with the first examples con-
structed by L. E. Dickson in 1906. A semifield is called a non-associative ring Q = (Q, +, -) with
identity where the equations az = b and ya = b are uniquely solved for any a,b € Q, a # 0.
The abcense of an associative law in a semifield leads to a number of anomalous properties in
comparison with a field or a skewfield or even a near-field.

By the mid-1950s, some classes of finite semifield planes had been found. All of them had the
common property that the collineation group (automorphism group) is solvable. So D. R. Hughes
conjectured in 1959 that any finite projective plane coordinatized by a non-associative semifield
has the solvable collineation group. This hypothesis is presented in the monography [1]; it is
proved also that the hypothesis is reduced to the solvability of an autotopism group as a group
fixing a triangle. Moreover, the hypothesis is reduced to linear autotopism subgroup over the
kernel. The Hughes’ problem attracted the interest of a wide range of researchers who proved
the collineation group solvability for an extensive list of semifield planes with certain restrictions.
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In 1990 the problem was written down by N.D.Podufalov in the Kourovka notebook ( [2], the
question 11.76).

We represent the approach to study Hughes’ problem based on the classification of finite
simple groups and theorem of J. G. Thompson on minimal simple groups. The spread set method
allows us to identify the conditions when the semifield plane with certain autotopism subgroup
exists. This method can be used also to construct examples, including computer calculations.
The elimination of some groups from Thompson’s list as autotopism subgroups allows us make
progress in solving the problem.

We consider, mostly, the case when a semifield plane has a rank 2 over its kernel basing on
the theory of M. Biliotti and co-authors [3]. Nevertheless, some results are generalised to N-rank
case.

It is shown by the first author in [4, 5], that an autotopism of order two has the matrix
representation convenient for calculations and reasoning. Here we use the spread set method
to describe the geometric sense of an autotopism of order 4. The matrix representation of
this autotopism allows us to prove the criterion of existence for the dihedral and quaternion
subgroups of order 8 in an autotopism group. We present the examples of semifield planes of
minimal order 625 with this property.

1. Main definitions and preliminary discussion

We use main definitions, according [1,6], see also [7-9], for notifications.

Consider a linear space @, n-dimensional over the finite field GF(p®) (p is prime) and the
subset of linear transformations R C GL,(p®) U {0} such that:

1) R consists of p™* square (n X n)-matrices over GF(p®);

2) R contains the zero matrix 0 and the identity matrix E;

3) for any A, B € R, A # B, the difference A — B is a nonsingular matrix.

The set R is called a spread set [1]. Consider a bijective mapping 6 from @ onto R and
present the spread set as R = {6(y) | y € @Q}. Determine the multiplication on @ by the rule
xxy=u1x-0(y) (x,y € Q). Then (Q,+,*) is a right quasifield of order p"* [6,10]. Moreover, if
R is closed under addition then (@, +, *) is a semifield.

Note, that if we use a prime field Z, as a basic field then the mapping 6 is presented using
only linear functions; it greatly simplifies reasoning and calculations (also computer).

A semifield @ coordinatizes the projective plane 7 of order |7| = |@Q| such that:

1) the affine points are the elements (x,y) of the space @ ® Q;

2) the affine lines are the cosets to subgroups

V(o) ={(0,9) [ye @}, V(m)={(z,20(m)) |z €Q} (meQ);

3) the set of all cosets to the subgroup is the singular point;
4) the set of all singular points is the singular line;
5) the incidence is set-theoretical.

The solvability of a collineation group Aut 7 for a semifield plane is reduced [1] to the solv-
ability of an autotopism group A (collineations fixing a triangle). Without loss of generality, we
can assume that linear autotopisms are determined by linear transformations of the space Q & Q:

rien e (3 3)
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here the matrices A and B satisfy the condition (for instance, see [11])
A7'9(m)B € R VO(m) € R. (1)

The collineations fixing a closed configuration have special properties. It is well-known [1],
that any involutory collineation is a central collineation or a Baer collineation.

A collineation of a projective plane is called central, or perspectivity, if it fixes a line pointwise
(the axis) and a point linewise (the center). If the center is incident to the axis then a collineation
is called an elation, and a homology in another case. The order of any elation is a factor of the
order |m| of a projective plane, and the order of any homology is a factor of |7| — 1. All the
perspectivities in an autotopism group are homologies and form the cyclic subgroups [12]:

() we). me{(E )| wer)
{3 wer)

The matrix subsets R;, R,,, R, are defined by a spread set [12]:

R, ={M € GL,(p*) U{0} | MT = TM VT € R},
R, ={Me€R|MT e RVT € R},
R, ={M eR|TM € RVT € R},

they are called left, middle and right nuclei of the plane 7 respectively. These subfields in
GL,(p*) U{0} are isomorphic to correspondent nuclei of the coordinatizing semifield @Q:

N ={reQ]| (zxa)xb=xx(a*xb) Va,b e Q},
Np={zxeQ]| (axz)xb=ax(z*b) Ya,b € Q},
N, ={ze€Q|(axb)xx=ax(bxz) VYa,be Q}.

The plane 7 is Desarguesian (classic) iff @ is a field, then R ~ Q ~ GF(p™*).
An autotopis group of a semifield plane of odd order contains three involutory homologies:

~E 0 E 0 ~E 0
hl(o E)eHl, h2<0 E>€H2, h3h1h2(0 E)eﬂg.

A collineation of a projective plane 7 of order m is called Baer collineation if it fixes pointwise
a subplane of order +/|7| = \/m (Baer subplane). We use the results on the matrix representation
of a Baer involution 7 € A and of a spread set obtained by M. Biliotti with co-authors [3] and by
the first author in [4, 5].
2. Linear autotopisms of order 4

We consider now the case when a semifield plane 7 has a rank 2 over its kernel, || = |N;|?.
To simplify the notification we use K = N; ~ GF(q), ¢ = p™. The point set of the plane is

™= {($17$2ay17y2) | Ti,Yi € GF(Q)}7

=707 -



Olga V. Kravtsova, Daria S. Skok Linear Autotopism Subgroups of Semifield Projective Planes

the spread set R consists of (2 x 2)-matrices determined its second row:

R:{m%w:(ﬂwm M%W)

v u

v,u € GF(q)}.

Here the functions f and g are additive:

flor,u) + f(ve, u2) = f(v1 + va, ur + u2),
g(v1,u1) + g(va,u2) = g(v1 + v, u1 + uz), v1, V2, U1, U2 € GF(q),

so f and g are the additive polynomials:

n—1 n—1
f,u) = (fiu” + Fp?’),  glo,u) =Y (gu” +Go”),  f;,Fj,g;,G; € GF(q).
Jj=0 j=0

The autotopism group A consists of semi-linear transformations of the linear space:

A 0
A 7y’
(z,y) = (27,y7) <0 B> ;
where o is a basic field automorphism:
2% = (21,22)7 = (a7 , 25 ).

Evidently, that the subgroup Ag of linear autotopisms (¢ = 0) is normal in A and the factor A/Ag
is isomorphic to a subgroup of Aut K. Therefore, the solvability problem is reduced to the linear
autotopism subgroup Ag.

G. E. Moorhouse in 1989 proved [13]:

Lemma 1. Let 7 be a projective plane of order n?, n = 2 or 3 (mod 4), and G is a cyclic
collineation group of order 4. Then the involution in G is central.

We will expand Moorhouse’ result for |7| = p? if p # —1 (mod 4).

Let 7 be a non-Desarguesian semifield plane of order ¢ with the kernel K ~ GF(q) (¢ = 2").
If 7 € Ay is an involution then it is Baer, and we can propose that, in appropriate base, it has a
Jordan normal form (see [3]):

() =)

The spread set R € GL3(q) U {0} consists of matrices

S O O =
SO O = =
O~ O O
== O O

vhutmv) Fo)+mu)

O(v,u) = ( ) ., v,ueGF@EM). (3)

Lemma 2. The linear autotopism group Mg of a semifield projective plane m of order 22" with
the kernel K ~ GF(2™) does not contain elements of order /.
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Proof. Let o € Ag be an autotopism of order 4, a* = . Then o = 7 is a Baer involution (2),
because hi, ho, hs € A for p = 2. Let
(A 0O
““\o B)

then A2 = B> =L, AL = LA, BL = LB. So we have
a; a2 b1 by
A= B=
(0 a1>’ (0 b1>7

ai =1, b =1,
aias + asa; = ]., ble + bgbl =1.

The systems have no solution in a field of the characteristic 2, the lemma is proved. 0O

where

Theorem 2.1. Let 7 be a semifield non-Desarguesian plane of order 22 with the kernel K ~
GF(2"™). Then the Sylow 2-subgroup of the linear autotopism group Ag has an order at most 2.

Proof. From the lemma, the Sylow 2-subgroup S C A is elementary Abelian. Let 7,a € S,

where 7 is (2). Then
(A O
- \0 B)’

o O O =
S O = Q
O R O O
—_= o O O

Consider the condition (1)
A0, u)B € R Yv,u € GF(2")

for the spread set (3). For 6(0,1) = E we have

—1
A‘lB:((l) ‘;) ((1) i’):(é bia)eR, b=a.

Further, for 6(v, 0):
b D)6 )

_ (v—i—m(;}) +av  f(v)+av +U;n(v)a+a2v> — 9(v,va),

and
m(va) = av + m(v)a + a®v, Yv € GF(2").

Consider the polynomial m(v):
m(v) = mov + miv? +mov* + ...+ mn,1v2n_1,
mova + m1v2a2 + mgv4a4 + ... =mgva + mlvza + m2v4a +...+va+ vaz, a+ a’® = 0.

If a =0 then o = ¢; if a = 1 then o« = 7. The theorem is proved. O
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Let now p > 2, |7| = p?*, K ~ GF(p"™). We will not consider the case p= —1 (mod 4): this
case is more complicated for a semifield plane of arbitrary rank, see [14]. If p =1 (mod 4) then
the prime field Z, of K contains an element i such that i = —1. We have iE = E + -+ + E,
therefore iF € R, N R,, and the linear autotopism group Ag contains the homologies of order 4:

iE 0 E 0
a1 = <0 E) S Hl, Qp = (O ZE) EHQ, 10 € Hg.

As has be proven in [4], a Baer involution 7 € Ag can be written as

10 0 0
0 1 0 0 L 0o ~1 0

o 0o -10 (0 L>’ L(o 1)’ )
0 0 0 1

for appropriate Jordan base. The spread set R consists of matrices

v u

0(v, u) = (m(“) f(”)> . wue G, (5)

where the functions m and f are injective additive polynomials, m(1) =1, f(1) # £1.
The following theorem expands Moorhouse’ lemma 1.

Theorem 2.2. Let 7 be a non-Desarguesian semifield plane of order p*™ with the kernel K ~
GF(p"), p is prime, p=1 (mod 4), and o € Ay is a linear autotopism of order 4. Then o? is a
homology and either o € (a1, a3) or m admits a linear Baer involution T and o € (a1, aa,T).

(A0
~\0 B/’
then a? is the homology hi, ho, h3 or a Baer involution 7 (4).
If a? = 7 then from A2 = B> = L, AL = LA, BL = LB we have

ar 0 by O
A= B =
(O CLQ) ’ (O b2> ’

where a1,b; € {i,—i}, as,by € {1,—1}. Thus, the autotopism « can be represented as a product

Proof. Let « is not homology,

£ 0 0 0
0 +1 0 0 L 0\/M 0\[/-E 0
“Tlo o +i o0 <o L><0 M><0 E>”‘h1

0 0 0 =1

M 0 ;0
or a = Tphy or a = Tphs, where p = ( 0 M) , M = (é 1). We consider the condition (1)

for the collineation p for any matrix (5): M ~10(v,u)M € R. For any v € K and u = 0 we have:

wmeon=( ) (0 )5 )= )<

f(iv) = —if(v). It contradicts with the additivity of f(x), because i € Z, and so f(iv) = if(v).

2

Therefore, the case a? = 7 is impossible, and a? is a homology.
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Let a®> = hy. Then A2 = —E, B? = E, and the following Jordan normal form are possible:
+iE, +iL for A and +E, =L for B. If A = 4iF or B = +F then a € (a1, as). The remaining

possibility
iL 0
o= (0 L) - R ke

L
0 L) = 7 is the Baer involution, « € {aq, g, 7).

For a® = hy and a?® = hs we obtain the analogous result. The theorem is proved. O

leads to a - (e h¥ hb2)=1 = (

Note that the homologies generate the normal subgroup in the autotopism group [1]. There-
fore, if F' < Ag is a simple non-Abelian subgroup then it does not contain elements of order 4 for
p # —1 (mod 4). Further, any elementary Abelian subgroup of Ag is of order at most 8. Maxi-
mal its order is for (7, hy, ha); but (hy, ho) is normal in Ag, thus |F| is either odd or 2- (2m +1).
This contradicts to conjecture that F' is simple non-Abelian group.

Corollary 1. Let m be a non-Desarguesian semifield plane of order p*™ with the kernel K ~
GF(p™), p is prime, p=1 (mod 4). Then its autotopism group contains no simple non-Abelian
subgroups.

For p = 2 the more significant result has been proven by M. J. Ganley in 1974 ( [15], see
also [16]).

Theorem 2.3. Let Q be a finite semifield of order 2°. If Q has dimension 2 over one of its
nuclei then its autotopism group is solvable.

Extend the results obtained by the information on coordinatizing semifield automorphisms.
It has been proven in [11], that the linear transformation x — xA is the automorphism of a

semifield @ iff the matrix
A 0 (6)
0 A

is the autotopism of the semifield plane 7 with the condition A=*0(m)A = 6(mA) for any m € Q.
Therefore, we have the following result.

Corollary 2. Let Q be a non-associative semifield of order p°™ with the left nucleus K ~ GF (p"),
p is prime, p Z —1 (mod 4). Then the automorphism subgroup Autx @ of Q that fizres K has a
Sylow 2-subgroup of order at most 2.

Proof. For the even case p = 2 the result is a direct consequence of the theorem 2.1. Let p =1
(mod 4) and the transformation x — xA be an automorphism from Autx Q. Then we can assume
that A € GLa(p™). According to [11], the involution (6) may be Baer only. Up to base chosen,
we can suppose A = L. The centralizer of 7 in Ag contains involutions 7, h17, ha7, hy7 only. All
these possibilities lead to the contradiction, because the involution 7 - (h;7) is not Baer. Thus,
the elementary Abelian 2-subgroup of Autx @ is of order at most 2. Finally, if the autotopism
a (6) is of order 4 then o? is an involutory homology hs with A = —E; we have the contradiction.

O

3. Dihedral and quaternion subgroups

The question on autotopism subgroups isomorphic to Dg or Qg is explained by the fact that
such subgroups are contained in the Sylow 2-subgroup of a large number of simple non-Abelian
groups. For semifield plane of arbitrary rank over the kernel, the first author proved [8] that a

- 711 —



Olga V. Kravtsova, Daria S. Skok Linear Autotopism Subgroups of Semifield Projective Planes

dihedral autotopism subgroup of order 8 must contain the homology if p =1 (mod 4). Now we
describe the matrix representation of subgroup

H=(a,f|a'=p"=1, faf=a"")~ Dy (7)

and the spread set matrices. The generalization of this result for N-dimensional case see in the
next section.

Theorem 3.4. Let m be a non-Desarguesian semifield plane of order p*™ with the krenel K ~
GF(p™), p is prime, p = 1 (mod 4), and the linear autotopism group Ao contains a subgroup
isomorphic to the dihedral group of order 8 (7). Then the base of 4-dimensional vector space
over K can be chosen such that H = {(a, ),

i 0 0 0 0100
o i 0 o) e {10 0 0 .
a=1yo o i of MM B=|g oo 1| =L i€y
0 0 0 i 0010

k1,ko € {0,1}. The spread set of m consist of matrices (5), where m and f are injective involutory
functions on GF(p"), m(m(x)) =z, f(f(z)) = «.

Proof. If a € {a1,az) then o € Z(A) and the condition faf8 = a~! is not satisfied for any
autotopism . Therefore, the plane 7 admits the Baer involution 7, it has the spread set (5),
and a € (a1, az, ), from the theorem 2.2. Then a? is one of involutory homologies hi, ha, hs.
Consider the possible cases.

iL 0

Let o> = hy. Then, up to involutory homologies, o = (0 I

) = aq7, and B(a17)8 =

c 0

(a17)%B, BT3B = hi7. Denote 3 = (O D

), then C> = D> = E, CLC = —L, DLD = L, and

0 F
C = —F, this contradicts to condition. Therefore, up to involutory homology, D = L,

. ¢ 0\ (CL 0 -
~\o ) \o E)”
and BT is the homology of order 4: 7 = oy or 7 = a3, OL = +iE, C = +iL, C?> = —E # E.
Thus, the case a? = h, is impossible.

either D = +F or D = +L. If D = +F then (C O) is the involutory homology, and so

By similar reasoning we come to a contradiction in the case o = hs.
L0

Let 2= hg,anda = ("
et now « 3, and « (0 iL
BaraeT)B = (1aa7)? = ayashst, 378 = hyt, CLC = DLD = —L, and we have

0 ¢ 0 d
o=(5H ) P-4 o)

Consider the transition matrix 1"

) = a7, without the involutory homologies. Then

o O o
o O o O
o = O O
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Then, for the new base,

01 00
10 00

TaT™ ! = TAT ! =
@ % f 000 1
00 1 0

To complete the proof, it is enough to test the involutority of the functions m and f. Indeed,
B is a collineation, and, for any matrix 6(v, ) from the spread set R, the product

(o) ()G )= (st i)
must belong to R, see (1). Therefore, m(m(u)) = u and f(f(v)) = v for all v,u € GF(p"). The

theorem is proved. O

Now let the linear autotopism group Ag contains a quaternion subgroup of order 8:

F=(ay|at=9"=1 a°> =7 aya=17)~Qs. 9)

Theorem 3.5. Let m be a non-Desarguesian semifield plane of order p*™ with the kernel K ~
GF(p™), p is prime, p = 1 (mod 4), and the linear autotopism group Ao contains a subgroup
isomorphic to the quaternion group of order 8 (9). Then the base of 4-dimensional vector space
over K can be chosen such that F = («,7),

—i 0 0 0 0O 1 0 O
[0 ¢ 0 O k;ke -1 0 0 o0 2 4
a=10 0 - 0 hi'hy?, =l o0 o 1l T= 1, 1 € Zy,
0O 0 0 0O 0 -1 0

k1,ke € {0,1}. The spread set of w consist of matrices (5), where m and f are injective involutory
functions on GF(p"), m(m(z)) =z, f(f(z)) = «.

Proof. If either « or 7 belongs to subgroup (o, as) < Z(Ag) then ay = ~va, it is impossible.
Therefore, the plane 7 admits a Baer involution 7 (4) and, for instance, « € {aq, as, 7). Evident,
that we can ignore the involutory homologies factors, because {a, ) ~ Qs leads to (ozh’f 1h§2 ) =
Qs. So, we suppose further « = a3 7, @ = as7 or @ = ajasT.

In the first case a? = 2 = h;. Notify

7_(0 D), C?=-E, D?=F,

and consider the condition aya = 7:

(u7)y(uT) =7, hiTyr =%, —LCL=C, LDL=D.

0
order 4, C = +iF, oy = ~ya. Therefore, up to involutory homologies, D = L,

_(C 0\ _(cL oy
"“\o )" \o E)T
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then 7 is the involutory homology too (from CLCL = E), that is y7 = hy, v = hy7, and
ary = ya. This contradiction shows that the case a? = h; is impossible; for a? = hy, similarly.

Let now a®> =2 = hs, o = iL ‘0 = 7. Then
0 L
aya = (a1as7)y(araeT) = hihotyT = hatyT = 7,

and we have the conditions —LCOL = C, —LDL = D, C? = D? = —E, leading to

0 c 0 d
o=(h o) 2=(Lh o)

Choose the transition matrix T (8), then for the new base we obtain

0

TaT™ ! =, THT ! = -1

o O O =
o O O
O = O O

0

Prove the involutority of m and f form the condition (1):

(_01 é)_19(v,u) (_01 é) = (_;;L(v) m_(:i)) €R Vu,ucGFp).

Thus, f(—f(v)) = —v, m(m(u)) = u, and the additivity leads to f(f(v)) = v. The theorem is
proved. O

Remark 1. Note that, according to the theorem 2.2 on autotopisms of order 4, the collineation
v must be the product of homologies to a Baer involution. Indeed,

0 2 0 O
- 0 0 O

Y = 1020, g = 0 0 0 il
0 0 —i O

where o is the Baer involution fixing pointwise the subplane
o = {(71, 121,91, 1y1) | 21,91 € GF(p")}.
Rewrite the autotopism ~y of order 4 as

-1

o O O

= fT.

(e}
o O O =
O = O O
o O = O
S O O =
— o O O
O = O O
o O = O

=)

—

— O O O

0
0
-1 0
We see that (a, 8) ~ Dg and (o, 87) ~ Qs, and the following corollary is proved.

Corollary 3. Let m be a non-Desarguesian semifield plane of order p*™ with the krenel K ~
GF(p™), p is prime, p = 1 (mod 4). The linear autotopism group Ay contains a subgroup
isomorphic to the quaternion group of order 8 iff Ay contains a subgroup isomorphic to the
dihedral group of order 8.
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4. Examples

Construct the semifield planes of minimal order satisfying the condition of theorems 3.4 and
3.5. It is well-known [1] that a semifield of order p? is a field GF(p?). Therefore the minimal
examples are the planes of order 5% = 625. Let the field K ~ GF(25) is an algebraic extension of
Zs, K = Zs(a), where a is the root of the irreducible polynomial z? 4+ 3z + 3 € Zs[z]. Then the
semifield @ of order 625 is the vector space @ = {z = (v,u) | v,u € K} with the multiplication
law y*xz =y - 0(z) (x,y € Q); the spread set R consists of matrices (5). The functions m and f
are the polynomials from KJz]:

m(u) = mou+mu®, ¢(v) = fov + fiv°,

which satisfy the conditions m(m(u)) = u, f(f(v)) = v for all u,v € K, m(1) =1, f(1) # 1.
There exist 34 pairs of functions m, f such that det 8(v,u) = 0 only for (v,u) = (0,0). Therefore,
we obtain 34 semifield planes of order 625 with the kernel of order 25 which admit the linear
autotopism subgroup isomorphic to Dg (or s). At most 11 pairwise non-isomorphic planes are
among them. The isomorphism is either multiplication by a suitable matrix (i.e. changing of
base) or the automorphism of K:

(mOamlvaafl) — (mgvm?afgvf{))

The table below represents the coefficients m;, f; together with the nuclei of the semifields.

Table 1. Information on the planes of order 625

Ne | mg my fo i Ny Nm = N,

1 0 1 0 a K {(0,y) |y € K}

2| 0 1 0 | a+1 |Np| = |N,| = 25

3 0 1 2041 2

4 0 1 2a+ 1 3

5 | 4a+2| a+4 | a+3 | a+2 {(0,y) | y € Zs5}

6 |da+2| a+d | a+3 |3a+d| K INpn| = |N,| =5

7 | 3a+4|2a+2 0 a+1

8 | 3a+4|2a+2 | 2a+1 2

9 | 3a+4|2a+2 | 2a+1 2a

10 | 3a+4 | 2a+2|2a+1 | 2a+2 {(z,y) |

11| a+3 | 4a+3| a+3 | a+2 | K x€{0,a+3,2a+1,
3a+4,4a+ 2}y € Zs}

|Nim| = [Ny = 25

5. Generalization for arbitrary dimension

Here we consider the case when a semifield plane 7 has the order p¥, without restriction to
the order of the kernel. In this case we can represent the point set of 7 as a 2/N-dimensional
vector space over Zj,, with the spread set R C GLy(p) U {0}. Some results from the previous
sections can be generalized for any N and p =1 (mod 4).
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Let 7 be a non-Desarguesian semifield plane of order p™¥ (p > 2 be prime). According to the
results of [5], if the autotopism group A contains the Baer involution 7 then N = 2n is even and
we can choose the base of 4n-dimensional linear space over Z, such that

L 0 -E 0
SN e (F ), "
The spread set R in GLa,(p) U {0} consists of matrices

m(U)  f(V)
o0(V,U) = 11
v = ("7 1), (1)
where V € Q, U € K, Q, K are the spread sets in GL,(p) U {0}, K is the spread set of the Baer
subplane 7., m, f are additive injective functions from K and @ into GL,(p) U{0}, m(E) = E.
Note that throughout the section, the blocks-submatrices have the same dimension by default.
Instead of linear autotopism group Ag we will consider the autotopism group A:

A= { (61 g) ‘ A, B € GLy(p), A'0(m)B € R Vo(m) € R} .

Unfortunately, we can not now extend the result of the theorem 2.2 to the general case. The

2 = 7 is a Baer involution.

geometric sense of order 4 autotopism « was presented in [14] when «
Perhaps, one will construct the examples illustrating the matrix representation of a spread set

in this case; there is no evident contradiction.

Theorem 5.6. Let © be a non-Desarguesian semifield plane of order p™, p is prime, p = 1
(mod 4), and « € A is an autotopism of order 4. If &® is a homology then either a € (a1, ) or
m admits a Baer involution 7 and « € (a1, a2, T).

0 B
A = diag (i, —i) # +iF, B = diag (1, —1) # +FE. The number of 1 among the diagonal elements
of B equals to the number of —1, because else we have the autotopism that fixes more than a Baer
subplane, it is impossible. So, we can assume, up to base changing and involution homologies
factors, that B = L and A = iL, o = a;7. For a? = hy and a2 = hs the consideration is similar.
O

Proof. Let a® = hy and o ¢ {ay,az). Then o = (A 0) where A2 = —E, B? = E. Therefore

We extend now the main result of [§]:

Theorem 5.7. Any non-Desarguesian semifield plane © of order p™ , where p > 2 is prime and
p=1 (mod 4), does not admit an autotopism subgroup isomorphic to the dihedral group of order
8 without homologies.

Denote the following autotopisms:

E 0 0 0
o i 0 0 ik
=19 o _ip oM
0 0 0 iE
(12)
0O E 0 0 O E 0 0
s_|E 0 00 =B 0 0 o
“lo o o E|l” 7" lo o o E|
0 0 E 0 0 0 —E 0

o

where i € Z,, i* = —1, k1, ko € {0,1

-

. Using the result of [18], we prove.

)
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Theorem 5.8. Let m be a non-Desarquesian semifield plane of order p™, p is prime, p = 1
(mod 4). The autotopism group A contains a subgroup H ~ Dg (7) iff it contains a subgroup
F ~ Qg (9). Then N = 2n > 4, the subgroups H and F contains the involutory homology hs,
the plane © admits a Baer involution 7 (10). The base of linear space can be chosen such that
H = {a,p), F = {«a,7), where the autotopisms are (12). The spread set R consists of matrices
(11), where V € Q, U € K, the sets Q,K C GL,(p) U {0} are closed under addition. The
additive injections m : K — K and f : Q — Q are non-trivial involutions.

Proof. The result for Qg had been proven in [18]. We will repeat now the proof of the theorem 3.4
with generalization for N-dimensional case. Let o € H ~ Dg, a* = ¢. Then o2 is the homology
by the theorem 5.7.

1. If a® = hy then o & (a1, a3) C Z(A). Therefore we can assume, up to base changing, that
a = aqT, the spread set R consists of matrices (11). Further, let the Baer involution 8 be the

matrix § = (g 10)> Then, from o8 = Ba~! we have
0 ¢y Dy 0 2 2
= D= =F, D[=D5=E.
C (CQ 0 > ) ( 0 D2> ) 0102 ) 1 2

We can use the block-diagonal transition matrix 7" similar (8) and obtain Cy = Cy = E. More-
over, we can assume that D; and Dy are either diagonal matrices diag (1, —1) or =F. From the

0 E\(D, 0\ [0 D)\
(& o) (3 5)- (5 §)-omoen

but either the matrix E + 6(D1,0) = (D1, E) # 0 or the matrix 8(D1,iE) # 0 is singular, it is
impossible. Thus, the conjecture a? = hy leads to contradiction, similar for hs.
2. Let a? = h3. Then « is the matrix (12), up to base changing. The transition matrix

condition (1) we have

E 0 0 0
[0 ¢ 0 0
™=1lo o £ 0
0 0 0 D
preserves o and maps the Baer involution
0 C; O 0
g c;to 000
0 0 0 D
0 0 D' 0
to the matrix (12). The condition (1) for 8(V,U) leads to the involutivity m(m(U)) = U,
f(f(V)) = V. The theorem is proved. |
Conclusion

We can see that the properties and the structure of the linear autotopism group for a two-
dimensional semifield plane may be considerably generalized to the N-dimensional case. The
proof technique can be used with more careful consideration.
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In order to study Hughes’ problem on the solvability of the full collineation group of a finite
non-Desarguesian semifield plane, the authors consider it possible to use the obtained results
to further investigations. The method applied will probably be useful to consider simple non-
Abelian groups and to exclude an extensive list from possible autotopism subgroups.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation (Agreement no. 075-02-2023-936).
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Iloarpynnel JUHEHBIX aBTOTOIIM3MOB
MOJIYTIOJIEBBIX MPOEKTUBHBIX IJIOCKOCTEN

Ouasra B. KpasuoBa
Happsa C. Ckok

Cubupckuii dheepabHbIil YHUBEPCUTET
Kpacnosipck, Poccuiickas Pejrepariust

Awnnoranus. Usygaercs nu3secraas runoresa . Xpioza 1959 r. 0 pa3pemmnMoCTH MOJTHOM IPY bl KOJIIN-
Healui Hee3aproBoil IOy OJIEBON IPOEKTUBHOMN IIOCKOCTH KOHEYHOrO Topsiaka (Takyke Bompoc 11.76
H. 1. Tlonydamosa B Koyposckoit Terpaam). DTa runore3a pelyupyeTcss K TPYIIe aBTOTONU3MOB, CO-
CTOAIIEH U3 KOJLUIMHeAIuit, (GUKCUPYIOMUX TPEYTOJbHUK. B paboTe ommcaHbl 3/€MEHTHI HOpsaka 4 u
U3pasibHble MO0 KBATEPHUOHHBIE TIOATPYIIILI MOPSAKA 8 B IPYyIIE JIMHEHHBIX aBTOTOMU3MOB ITOJIYIIO-
JIEBOU TIJIOCKOCTH paHra 2 Haj simpoM. OCHOBHBIE JOKA3aHHBIE PE3YJIbTATHI SBJISIIOTCS TEXHUYECKUMU U
HEOOXOMUMBI JJTs1 TAJIbHENIIEro N3y IeHusl MOrPYIIT Y€THOTO MOPSIKA B IPYIIIe aBTOTOMN3MOB KOHETHON
HeJ1e3aProBOil TOJIYIIOJIEBO MJIOCKOCTH. Pe3ybraThl MOTYT OBITH UCIOJIB30BAHBI JJIsl U3YYEHUsT TIOJIYIIO-
JIEBBIX TLIOCKOCTEH, MOMYyCKAIONUX MOArPYIIbl aproTonm3mMoB u3 cruucka . [. Tommcona MuHMMATIBHBIX
MIPOCTHIX T'PYIII.

KuroueBbie cjioBa: moJrynosieBas IJIOCKOCTh, aBTOTOIN3M, TOMOJIOTHsT, 63POBCKasi MHBOJIIOIUS, TTPODJIe-
Ma, XbI0o3a.
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