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Abstract. The effects of strong electron-phonon interaction in a realistic model of a system with strong
Coulomb correlations are analyzed using the Lang and Firsov transformation. It is shown that polaronic
and bipolaronic transformations, widely discussed in the literature and associated with a smooth or
sharp transitions in the properties of charge carriers when the strength of the electron-phonon coupling
changes, determine the switching of the system between the regimes of correlated carriers, polarons or
bipolarons. These transitions are controlled by the local electron-phonon interaction of the Holstein
type. At the same time, the non local electron-lattice contribution associated with the modulation of
the hopping integral plays a major role in the crossover of the polaron and bipolaron regimes in the limit
of strong electron correlations.
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1. Lang-Firsov transformation

Let us consider the classical canonical transformation for systems with the strong electron-
phonon coupling of the Holstein type. It was proposed by Lang and Firsov [1] for systematic
consideration of the perturbation theory of the mobility of small-radius polarons. They managed
to record a significant part of the short-ranged electron-phonon interaction in such a way that,
during the transformation of the Hamiltonian, they could collect infinite series for the transformed
operators. The authors [1] simplified the Hamiltonian of the system by limiting the contribution
of the electron-phonon interaction to the local electron variables:

H =
∑
m

εa†mam +
∑
m,q

Tga
†
m+gam +

∑
q

~ωq

(
b†qbq +

1

2

)
+
∑
m,q

~ωqa
†
mam

(
Um,qb

†
q + U∗

m,qbq
)
, (1)

where a†m (am) are operators of creation (annihilation) of an electron at a site m, b†q (bq) are
operators of creation (annihilation) of a phonon with quasi momentum q; ε is the ground state
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electron energy; the parameter Tg characterizes the hopping energy from site g to m and vice
versa; Um,q is the electron-phonon interaction (EPI) parameter and ωq is the phonon mode
frequency.

According to the original paper, the canonical transformation H̃ = eSHe−S of the Hamilto-
nian (1) with the unitary operator S in the form:

S =
∑
m,q

a†mam
(
b†qUm,q − bqU

∗
m,q

)
,

leads to a new Hamiltonian:

H̃ =
∑
m

a†mam (ε−∆) +
∑
q

~ωq

(
b†qbq +

1

2

)
+
∑
m,g

TgΦ̂m,ga
†
m+gam,

which describes the energy of polarons, lattice oscillators, and their residual interaction. Here
∆ =

∑
q ~ωq |Um,q|2 is the polaron shift of the atomic energy of the ground states of charge car-

riers and Φ̂m,g = exp
[∑

q

(
b†q∆m,m+g,q − bq∆

∗
m,m+g,q

) ]
is the renormalization of the hopping

integral, it depends on the strength of the electron-phonon coupling: ∆m,m+g,q = Um,q−Um+g,q.
In the transformed Hamiltonian, the contribution characterizing the interaction of electrons at
different sites through the exchange of virtual phonons is discarded, since it is less than the
Coulomb correlations of electrons not taken into account in the original model.

The modified Lang and Firsov transformation, which includes the nonlocal electron-phonon
interaction, is also found in the literature. In the general case, analysis of the obtained renor-
malizations is complicated, however, there are some results that generalize the Holstein theory
of polarons. For example, within the framework of the Holstein–Peierls model, the authors
of [2, 3] obtain an expression describing the temperature narrowing of the polaron bandwidth
and demonstrate that nonlocal electron-phonon coupling plays an important role in organic
molecular crystals.

2. Extended pd-model

Realistic models of systems with strong electron-phonon interaction contain more numbers
of contributions compared to the Hamiltonian (1). In addition to the nonlocal electron-lattice
interaction, these can be multiband effects, Coulomb correlations, and much more. Let us con-
sider an extended pd-model combining contributions essential for describing the nature of high-
temperature superconductors based on copper oxides. The Hamiltonian of the model has the
form:

H = Hpd +He−ph +Hph, (2)

here Hpd is a well-known pd model describing the hole carriers in the orbitals of oxygen p and
copperd; it takes into account both the Coulomb interaction of holes in the same and different
orbitals and the strong overlap of the orbitals [4].

The term He−ph describes the interaction of electrons with lattice vibrations. We consider
only one optical fully symmetric mode, the dispersion of which can be neglected. Deviations
of atoms from their equilibrium positions when bonds are stretching lead to modulations of
the single-site energy of charge carriers in copper orbitals (local Holstein-type EPI) and of the
hopping integral between the copper and oxygen orbitals (non-local Peierls-type EPI). The Hph

part corresponds to the energy of free phonons.
Let us show the complete form for each part of the Hamiltonian (2):
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Hpd =
∑

g,l,σ,α

(
εαn

α
gα,σ +

1

2
Uαn

α
gα,σn

α
gα,σ̄

)
+

∑
gg′,ll′,σ

Ppptpp

(
p†gl,σ

pg′
l′ ,σ

+H.c.
)
+

+
∑
g,l,σ

Ppdtpd
(
d†g,σpgl,σ +H.c.

)
+
∑

g,l,σσ′

Vpdn
p
gl,σ

nd
g,σ′ . (3)

Here d†g,σ (dg,σ) and p†gl,σ
(pgl,σ) are operators of creation (annihilation) of a hole with spin σ on

copper and oxygen orbitals in positions specified by vectors g and gl respectively. The index l

enumerates oxygen atoms in the unit cell at the site g; nα
gα,σ is the hole number operator, where

gα = g for α = d, and gα = gl for α = p; εα is the local energy of a hole in the p or d orbital; tpp
and tpd are hopping integrals, Uα, Vpd are Coulomb repulsion parameters. The factors Ppp and
Ppd are equal to 1 (-1) if in the region of orbital overlap their phase signs coincide (differ). In the
general case, the Hamiltonian (3) describes compounds of transition metal with an incompletely
filled d orbitals.

The energy of free phonons in the Hamiltonian (2) has the form:

Hph =
∑
q

~ω0

(
f†
qfq +

1

2

)
=
∑
g

~ω0

(
f†
gfg +

1

2

)
, (4)

where f†
q is the phonon creates operator with a quasi momentum q and f†

g is its Fourier image,
ω0 is the frequency of lattice oscillations.

A significant short-ranged part of the electron-phonon interaction can be written as [6]:

He−ph =
∑
g,σ

Md

(
f†
g + fg

)
d†g,σdg +

∑
g,l,σ

MpdPpd

(
f†
g + fg

) (
d†g,σpgl,σ +H.c.

)
, (5)

where Md and Mpd are the electron-phonon interaction parameters for Holstein and Peierls type
contributions, respectively.

3. Lang-Firsov transformation for intercluster part

Assuming that the strong coupling approximation is valid for the system (2) in the limit of
strong electron correlations, we analyze the effects of electron-phonon interaction using the Lang
and Firsov transformation. Following the ideology of the generalized tight-binding method, we
divide the system into clusters and represent the Hamiltonian (2) as the sum of the intracluster
contribution Hc and the intercluster interaction Hcc:

H = Hc +Hcc. (6)

Such splitting is possible if we go from the operators p†gl,σ
(pgl,σ) to the new ones, b†g,σ (bg,σ),

centered on copper orbitals and orthogonal in the nearest cells. A similar transformation for the
displacement operators [5] translates the operators f†

g (fg) into the new A†
g (Ag) [6]. As a result,

the intracluster part of the Hamiltonian (2) is given by:

Hc =
∑
g,σ,β

(
εβn

β
g,σ +

1

2
Uβn

β
g,σn

β
g,σ̄

)
+
∑
g,σ

(
tbd00
(
d†g,σbg,σ +H.c.

)
+
∑
σ′

Vbdn
d
g,σn

b
g,σ′

)
+

+
∑
g,σ

(
Md

00φ
A
g n

d
g,σ +M bd

000φ
A
g

[
d†g,σbg,σ +H.c.

])
+
∑
g

~ω0

(
A†

gAg +
1

2

)
. (7)

where β = d, b is the orbital index in the new representation. Changes in the parameters
of the original Hamiltonian (2) are result from the transition to the basis of Wannier functions.
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Omitting the insignificant details of the polaronic version of the generalized tight-binding method
[6], we only indicate that Md

00 = Mdµ00, M bd
000 = −2Mpdµ

2
00 and the coefficient µ00 ≈ 0.96.

Let us carry out the canonical transformation of the Hamiltonian Hc, limiting ourselves to
local contributions of the Holstein type EPI, that is, we put Mpd = 0. Then unitary operator is:

S =
∑
g,σ

Md
00

~ω0

(
A†

g −Ag

)
nd
g,σ,

and the Hamiltonian (7) takes the form:

Hc =
∑
g,σ

[
(εd −∆)nd

g,σ + εbn
b
g,σ

]
+
∑
g, 12σ

[(
Ud − 2

(
Md

00

)2
~ω0

)
nd
g,σn

d
g,σ̄ + Ubn

b
g,σn

b
g,σ̄

]
+

+
∑
g,σσ′

Vbdn
d
g,σn

b
g,σ′ +

∑
g,σ

tbd00

(
d̃†g,σbg,σ +H.c.

)
+
∑
g

~ω0

(
A†

gAg +
1

2

)
. (8)

The residual polaron-lattice interaction results from the renormalization of the orbital overlap

integral, associated with the transformation d̃†g,σ = d†g,σ exp

[
Md

00

~ω0

(
A†

g −Ag

)]
. In the polaron

shift of the atomic level ∆ =

(
Md

00

)2
~ω0

⟨nd
g,σ⟩ we have explicitly preserved the mean of the particle

number operator. We assume that ⟨nd
g,σ⟩ is not necessarily close to 1 even at small doping of

the system due to the redistribution of charges carries between the orbitals b and d.
The equation (8) correlates with the well-known paper [7] of A. Aleksandrov and co-authors.

The differences are associated with the formulation of the Hamiltonian (2), which takes into
account, in addition to Coulomb correlations, multiband effects, and the structure of the unit
cell. In addition, for the estimates below we use the realistic parameters of the Hamiltonian (2),
determined from ab initio calculations, and compare the results with the conclusions obtained
[8,9] by the exact diagonalization of the cluster Hc.

Carrying out a similar procedure, we consider the renormalizations of the Hamiltonian Hc

due to the contribution of the Peierls-type EPI; so, we set Md = 0. Then we define the unitary
operator in a form which is similar to the nonlocal contribution of the EPI, and, using the
Baker-Campbell-Hausdorff formula, we find a new representation of the Hamiltonian operators.
Avoiding cumbersome expressions, we note that the transformation of a pair of hole creation
(annihilation) operators in the orbitals of copper and oxygen, d†g,σ (dg,σ) and b†g,σ (bg,σ), formally

is a rotation in two-dimensional Minkowski space with angle θ =
M bd

000

~ω0

(
A†

g +Ag

)
. Changes to

phonon operators have the form:

Ãg = Ag −
∑
σ′

M bd
000

~ω0

(
d†g,σ′bg,σ′ +H.c.

)
. (9)

In the transformed Hamiltonian, equation (9) gives renormalizations proportional to the value
M bd

000
2

~ω0
and describing (i) the change in the interorbital Coulomb interaction, (ii) spin fluctuations

in the b and d orbitals without charge transfer, as well as (iii) effective interorbital electron-phonon
interaction associated with charge transfer without spin-flip and (iv) effective interorbital spin-
phonon interaction, corresponding to charge transfer with a change of spin. These processes are
caused by the exchange of virtual phonons between carriers in different orbitals. Note also that
process (i) contributes both εd and εb energies to the polaron shift.
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4. Analysis of the effects of local and non-local EPI

We introduce dimensionless electron-phonon coupling constants λd =
(Md)

2

~ω0W
and λbd =

=
(Mbd)

2

~ω0W
, characterizing contributions of Holstein (local) and Peierls (non-local) types. Here,

W is the width of the bare bond, which is not renormalized by EPI and Coulomb effects. For
ease of comparison, all electronic structures parameters of the pd-model (3) have been chosen in
accordance with the paper [9], in which the effects of EPI were investigated for the cell Hc and
the total 2 Hamiltonians in the framework of polaronic version of the generalized tight binding
method: εd = 0, εp = 1.5, tpp = 0.86, tpd = 1.36, Ud = 9, Up = 4, Vpd = 1.5, W = 2.15, all
in eV.

The first case is λbd = 0. Let us consider the single-particle states, the atomic energy εd of

which decreases under strong local electron-phonon interaction by the value ∆ =

(
Md

00

)2
~ω0

⟨nd
g,σ⟩.

If the polaron shift ∆ is larger than the width of the charge carrier band W , then the formation of
an energetically more favorable band of polaron states begins near the Fermi level of the system.

The critical EPI strength is λc1
d =

1

µ2
00⟨nd

g,σ⟩
For given parameters, this occurs for the electron-

phonon coupling strength λc1
d > 1.1 if ⟨nd

g,σ⟩ ≈ 1; at lower values of ⟨nd
g,σ⟩, due to the strong

hybridization of the orbitals p and d, the value of λc1
d increases. In the electronic structure of the

extended pd-model (2), a narrow polaron band appears [8] in certain directions of the Brillouin
zone.

Now let us consider two-particle states and estimate the value of the second critical parameter
of the local EPI, at which the Coulomb interaction at the copper sites effectively vanishes or

becomes negative. The equation (8) gives the value of λc2
d =

Ud

2µ2
00W

. So, for Ud = 9 we obtain

λc2
d ≈ 2.2. The screening of the Coulomb potential by electron-phonon interaction forms a

tendency to the formation of bipolarons (here, local bipolarons). The process is accompanied by
a significant transfer of charge carries from the p to the d orbital at λd > λc2

d [8].
In the limit of strong electron correation we get that λc1

d < λc2
d . Obviously, a decrease in

the Coulomb interaction Ud leads to a decrease in λc2
d . In the Holstein model, (λbd = 0) the

crossover of the critical values marking the polaronic λc1
d and bipolaronic λc2

d regimes take place

at Ud <
1

⟨nd
g,σ⟩

2W . It corresponds to the case of weak or intermediate Coulomb correlations.

However, in a more realistic approach that takes into account the contribution of nonlocal EPI,
such a crossover occurs in the limit of strong electron correlations for (λbd ̸= 0) [9]. The replace-
ment of the polaron and bipolaron regimes is accompanied by changes in the electronic structure
associated with the redistribution of the density of charge carriers in favor of the p orbital and
with the ‘relocation" of the chemical potential into the band of the two-particle states for hole
doped system. This proves the essential role of the nonlocal EPI in the formation of bipolarons
in a correlated system and emphasizes the need to take its effects into account in such problems
as, for example, the search for light bipolarons.
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Преобразование Ланга-Фирсова в обобщенном методе
сильной связи

Александр В. Дударев
Сибирский государственный университет науки и технологий им. ак. М. Ф.Р̇ешетнева

Красноярск, Российская Федерация
Елена И. Шнейдер

Институт физики им. Л.В.Киренского СО РАН
Красноярск, Российская Федерация

Аннотация. В настоящей работе с помощью преобразования Ланга и Фирсова анализируются
эффекты сильного электрон-фононного взаимодействия в реалистичной модели системы с силь-
ными кулоновскими корреляциями. Показано, что широко обсуждаемые в литературе поляронные
и биполяронные трансформации, связанные с плавным или резким изменением свойств носителей
заряда при изменении силы электрон-фононной связи, определяют переключение системы меж-
ду режимами коррелированных носителей, поляронов или биполяронов. При этом существенную
роль в кроссовере поляронного и биполяронного режимов в пределе сильных электронных корреля-
ций играет нелокальный электрон-фононный вклад, связанный с модуляцией интеграла перескока
между различными орбиталями.

Ключевые слова: преобразование Ланга и Фирсова, кроссовер поляронов и биполяронов,
pd-модель.
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