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Abstract. In this paper we study the inverse problem on identification of the leading coefficient in
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Introduction

This paper is devoted to the inverse problem of identification of an unknown coefficient in
the pseudoparabolic equation

(u+ L1u)t + L2u = f (0.1)

with the initial data
B1u|t=0 = U0 (0.2)

and the boundary condition
B2u|∂Ω = µ(t, x, k(t)) (0.3)

where Ω is a bounded domain in Rn with a boundary ∂Ω, L1 = ηM , L2 = k(t)M , M and B1 are
linear differential operators of the second order in the spacial variables, B2 is a linear operator.
To find the unknown coeffcient k(t), the additional data is used in the form of the condition of
overdetermination ∫

∂Ω

B3(t)(ηut + k(t)u)ω(t, x) ds+ k(t)φ1(t) = φ2(t) (0.4)

where B3(t) is a linear operator in the spacial variables for every t ∈ (0, T ), ω(t, x) and φi(t),
i = 1, 2, are known functions. The conditions (0.3) and (0.4) must be independent in that (0.4)
may not be evident from (0.3).
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A main goal of this article is to investigate the correctness of the problem (0.1)–(0.4) with

B1u = u, B2u =
∂

∂N
(ηut + k(t)u) + σ(x)(ηut + k(t)u), µ(t, x, k(t)) = µ2(t, x)− µ1(t, x)k(t) and

B3 = I where I is the identity operator, σ(x) and µi(t, x), i = 1, 2, are known functions,
∂

∂N
is

the conormal derivative associated with the operator M (see Problem 1 below).
In [9, 11, 12], the problem (0.1)–(0.4) was considered in the case where L1 = ηM , L2 =

= k(t)M +g(t, x)I, B1u = u+L1u, B2u = u, B3 =
∂

∂N
. In [11], the existence and uniqueness of

the strong solution are proved. The regularity of the solution is also investigated. The work [12]
discusses the stabilization and the asymptotic behavior of the solution as t → +∞. It is shown
in [9] that under certain conditions this solution tends to the solution of the appropriate parabolic
inverse problem when η → 0.

Applications of the inverse problems for (0.1) with various operators L1 and L2 involve the
recovery of the unknown parameters indicating physical properties of a medium (the heat con-
ductivity, the permeability of a porous medium, the elasticity, etc.). In particular, the equation
(0.1) considered in [9, 11, 12] describes the filtration of a liquid in a fissured medium [1]. The
coefficient k(t) is in inverse proportion to the total effect of compressibility of the liquid and
the fissured medium. Since the natural stratum is involved, the parameters in (0.1) should be
determined on the basis of the investigation of its behaviour under the natural non-steady-state
conditions. This leads to the interest in studying the inverse problems for (0.1) and its analogue.

The study of inverse problems for pseudoparabolic equations (0.1) goes back to 1980s. The
first result [16] refers to the inverse problems of determining a source function f in (0.1) with
L1 = L2. Most of the results on inverse problems are concerned with the identification of
an unknown source f and coefficient in the lowest order term u as in [4–6, 15]. The work [8] is
devoted to the inverse problem on reconstruction of the kernels in the integral term of the integro-
differential operator L2. We should mention also the results [5,14,15] concerning with coefficient
inverse problems for (0.1). In [14], the uniqueness theorem is obtained and an algorithm of
determining a constant a in the second order term is constructed. In [5], the solvability is
established for two inverse problems of recovering the unknown coefficients in terms u (the
lowest term of L2u) and ut of (0.1). In [15], an inverse problem of recovering time-depending
right-hand side and coefficients of (0.1) is considered. The values of the solution at separate
points are employed as overdetermination conditions. The existence and uniqueness theorems
are proven for this problem.

The paper is organized as follows. Section 1 presents the formulation of the inverse problem
and certain preliminary results concerning the direct initial boundary value problem for (0.1). In
Section 2, the existence and uniqueness of the strong solution of the inverse problem are proved.

1. The statement of the problem and preliminaries

Let ∂Ω ∈ C2, Ω be the closure of Ω. QT = Ω × (0, T ) is a cylinder with the lateral surface
ST = (0, T )× ∂Ω, QT is the closure of QT and the pair (t, x) is a point of QT .

Throughout this paper we use the following notation: ∥ · ∥R and (·, ·)R are the norm and the
inner product of Rn; ∥ · ∥ and (·, ·) are the norm and the inner product of L2(Ω), respectively;
∥ · ∥j and

⟨
·, ·

⟩
j

are the norm of W j
2 (Ω) and the duality relation between W̊ j

2 (Ω) and W−j
2 (Ω),

respectively (j = 1, 2).
We introduce the operator M by the following rule: for every u ∈ W 1

2 (Ω) the element Mu
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gives the functional

J(v) = ⟨Mu, v⟩M +

∫
∂Ω

σ(x)uvdx

defined for all v ∈ W 1
2 (Ω) where

⟨Mu, v⟩M ≡
∫
Ω

{(M(x)∇u,∇v)R +m(x)uv}dx.

Here M(x) ≡ ((mij(x))) is a matrix of functions mij(x), i, j = 1, 2, . . . , n, m(x) and σ(x) are
scalar functions. We assume that the following conditions are fulfilled.

I. mij(x), ∂mij/∂xl, i, j, l = 1, 2, . . . , n, and m(x) are bounded in Ω. M is an elliptic
operator, that is, there exist positive constants m0 and m1 such that for any v ∈ W 1

2 (Ω) and
almost all x ∈ Ω

m0∥v∥21 6 ⟨Mv, v⟩M +

∫
∂Ω

σ(x)uvdx 6 m1∥v∥21. (1.1)

II. mij(x) = mji(x), i, j = 1, 2, . . . , n for x ∈ Ω.
We are studying the following inverse problem.
Problem 1. For a given constant η and functions f(t, x), g(t, x), u0(x), µ1(t, x), µ2(t, x),

σ(x), ω(t, x), φ1(t), φ2(t) find the pair of functions (u(t, x), k(t)) satisfying the equation

ut + ηMut + k(t)Mu = f(t, x), (t, x) ∈ QT , (1.2)

and the conditions
u
∣∣
t=0

= u0(x), x ∈ Ω, (1.3){
η
∂ut

∂N
+ k(t)

∂u

∂N
+ σ(x)(ηut + k(t)u)

}∣∣∣
ST

+ k(t)µ1(t, x) = µ2(t, x), (1.4)∫
∂Ω

(ηut + k(t)u)ω(t, x) dS + φ1(t)k(t) = φ2(t), t ∈ (0, T ). (1.5)

Here
∂

∂N
= (n,M(x)∇) and n is the unit outward normal to ∂Ω.

The conditions (1.4) and (1.5) may seem peculiar. However, such formulation of this condi-
tions are rather natural for pseudoparabolic equations. For a deeper discussion of the conditions
(1.4), (1.5) we refer the reader to [10].

We introduce functions b(t, x) and hη(t, x) as the solutions of the boundary value problems

Mb = 0 in Ω,
{ ∂b

∂N
+ σ(x)b

}∣∣∣
∂Ω

= ω(t, x),

hη + ηMhη = 0 in Ω,
{∂hη

∂N
+ σ(x)hη

}∣∣∣
∂Ω

= ω(t, x).

The existence and uniqueness results for Problem 1 rely upon two propositions for the direct
problem (1.2)–(1.4) with the known function k(t).

The first proposition concerns with the existence and uniqueness of the solution of the direct
problem (1.2)–(1.4), which follows from the the results of [19] in the case of the constant coefficient
k(t) ≡ k.

Lemma 1.1. 1) Let the assumptions I-II be fulfilled, η > 0, k ∈ C([0, T ]), f ∈ C([0, T ];L2(Ω)),
u0 ∈ W 2

2 (Ω) and µ1, µ2 ∈ C1([0, T ];W
1/2
2 (∂Ω)). Then there exists a unique solution u(t, x) of

problem (1.2)–(1.4) such that u ∈ C1([0, T ];W 2
2 (Ω)).
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Proof. Let us consider the problem{
vt +G(v) = f, (t, x) ∈ QT ,

v|t=0 = (I + ηM)u0, x ∈ Ω,
(1.6)

where v = (I + ηM)u and the operator G acting from C([0, T ];L2(Ω)) into itself is defined as

G = k(t)M(I + ηM)−1 ≡ k(t)

η

(
I − (I + ηM)−1

)
.

The function v is the solution of the problem (1.6) if and only if the function u = (I + ηM)−1v

is a solution of problem (1.2)–(1.4). Therefore Theorem 1.1 will be proved once we prove the
existence and uniqueness of the solution of the problem (1.6). From the hypotheses of the lemma
it follows that G is a Lipschitz-continuous linear operator. Then, by Theorem 1.2 of [3, Chapter
V], the problem (1.6) has a unique solution v ∈ C1([0, T ];L2(Ω)). The lemma is proved. 2

The next lemma is a maximum principle (a comparison theorem) for the direct problem (1.2)–
(1.4). In general, the maximum principle does not hold for the pseudoparabolic equation [17].
However it has been possible to prove such assertions under certain additional assumptions on
the input data of the initial boundary value problems. In [17, 18, 20], comparison theorems
were proved for the first initial boundary value problem for (0.1) with the general linear elliptic
operators L1 = L2 = L of the second order and k ≡ 1. In [2], the comparison theorem is proved
for (0.1) with the constant coefficient k, L1 = L2 = −∆ in the case of the mixed boundary
conditions.

Lemma 1.2. Under the assumptions of Lemma 1.1, let u(t, x) be the solution of the problem
(1.2)–(1.4) in C1([0, T ];W 2

2 (Ω)). In addition, let f(t, x) > 0 for almost all (t, x) ∈ QT , u0(x) > 0

almost everywhere in Ω, k(t) > 0 for t ∈ [0, T ], µ1 6 0 and µ2 > 0 for almost all (t, x) ∈ ST .
Then

u(t, x) > u0(x) exp
(
− 1

η

∫ t

0

k(θ)dθ
)

for almost all (t, x) ∈ QT .

Proof. It is sufficient to prove the assertion of Lemma 1.2 for the smooth solution of problem
(1.2)–(1.4) since the following arguments can be justified by using the method of difference
quotients or mollifiers.

The function v = u− u0 exp
(
− 1

η

t∫
0

k(θ)dθ
)

is the solution of the equation

v + ηMv =

∫ t

0

[
f +

k(τ)

η
v
]
exp

(
−
∫ t

τ

k(θ)

η
dθ

)
dτ + u0 exp

(
−

∫ t

0

k(θ)

η
dθ

)
, (1.7)

and obeys the boundary condition[ ∂v

∂N
+ σ(x)v

]∣∣∣
ST

=
1

η

∫ t

0

(µ2 − k(τ)µ1) exp
(
− 1

η

∫ t

τ

k dθ
)
dτ. (1.8)

Let us define the functions v1 = min(t,x)∈QT
{v, 0} and v2 = max(t,x)∈QT

{v, 0}. We multiply
(1.7) by v1 in terms of the inner product of L2(Ω) and integrate by parts in the second summand
of the left side of the resulting equation. In view of (1.8) this gives

∥v1∥2 + η⟨Mv1, v1⟩M + η

∫
∂Ω

σv21ds−
∫
Ω

∫ t

0

(f +
k

η
v2) exp

(
−
∫ t

τ

k

η
dθ

)
dτv1dx−
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−
∫
∂Ω

∫ t

0

(µ2 − kµ1) exp
(
−
∫ t

τ

k

η
dθ

)
dτ v1ds− exp

(
−

∫ t

0

k

η
dθ

)∫
Ω

u0v1dx =

=

∫
Ω

∫ t

0

k

η
v1 exp

(
−

∫ t

τ

k

η
dθ

)
dτv1 dx.

In the hypotheses of the lemma this relation implies the inequality

∥v1∥2 6 C

∫ t

0

∥v1∥2dτ.

with the constant C > 0 depending on T , η, maxt∈[0,T ] k(t), whence by Gronwall’s lemma it
follows that v1 = 0, that is, v > 0 almost everywhere in QT . The lemma is proved. 2

2. The existence and uniqueness

In this section we discuss the sufficient conditions for the solvability and the uniqueness of
the solution of Problem 1. By a solution {u, k} of Problem 1 we mean that

1) u ∈ C1([0, T ];W 2
2 (Ω)), k(t) ∈ C([0, T ]);

2) the pair {u, k} obeys the equation (1.2) almost everywhere in QT and the conditions (1.3)
for almost all x ∈ Ω, (1.4) almost everywhere in ST and (1.5) for all t ∈ [0, T ].

The main result of this article is established by our next theorem.

Theorem 2.1. Let the assumptions I–II be fulfilled, ∂Ω ∈ C2 and η be a positive constant.
Assume that
(i) f ∈ C([0, T ];L2(Ω)), µ1, µ2 ∈ C

(
[0, T ]; W

1/2
2 (∂Ω)

)
, u0 ∈ W 2

2 (Ω), σ ∈ C(∂Ω), ω ∈
C1

(
[0, T ];W

1/2
2 (∂Ω)

)
, φ1, φ2 ∈ C([0, T ]);

(ii) the assumptions of Lemma 1.2 are fulfilled and there exist constants α0 > 0 and Φ0 > 0 such
that

φ1 −
∫
∂Ω

µ1ωds > α0, (2.1)

Φ(t) ≡ φ2(t)− (f, hη)−
∫
∂Ω

µ2h
ηds > Φ0. (2.2)

Then Problem 1 has a solution {u, k} and this solution is unique. Moreover, u > 0 almost
everywhere in QT and the estimates

0 < k0 6 k(t) 6 Φα−1, (2.3)

∥u∥2 + ∥ut∥2 6 C1 (2.4)

hold with positive constants k0 and C1. Here Φ = maxt∈[0,T ] Φ.

Proof. Following the idea in [11,13], we reduce Problem 1 to an equivalent inverse problem with
a nonlinear operator equation for k(t). To do this, we multiply (1.2) by hη in terms of the inner
product of L2(Ω) and integrate by parts twice. This yeilds

(ut, h
η) + (ηMut + kMu, hη) = (ut, h

η)−
∫
∂Ω

(
η
∂ut

∂N
+ k

∂u

∂N

)
hηds+
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+⟨ηMut + kMu, hη⟩M = (ut, h
η) + k

∫
∂Ω

µ1h
ηds−

∫
∂Ω

µ2h
ηds+

+

∫
∂Ω

σ(x)(ηut + ku)hηds+

∫
∂Ω

(ηut + ku)
∂hη

∂N
ds+ (ηut + ku,Mhη) =

= k
[
− φ1 +

∫
∂Ω

µ1h
ηds− 1

η
(u, hη)

]
−
∫
∂Ω

µ2h
ηds+ φ2 = (f, hη),

whence we obtain that
k
[
φ1 −

∫
∂Ω

µ1h
ηds+

1

η
(u, hη)

]
= Φ(t)

We define the operator A which maps every element y ∈ C+([0, T ]) = {y | y ∈ C([0, T ]), y > 0}
into the element Ay ∈ C([0, T ]) by the rule

Ay = Φ(t)
[
φ1 −

∫
∂Ω

µ1h
ηds+

1

η
(uy, h

η)
]−1

(2.5)

where uy is the solution of the problem (1.2)–(1.5) with k(t) = y. The element Ay is meaningful
for every y ∈ C+([0, T ]). Indeed, the direct problem (1.2)–(1.4) with k = y has a unique solution
uy ∈ C1([0, T ]);W 2

2 (Ω)) for every y ∈ C+([0, T ]) by Lemma 1.1. Moreover, by Lemma 1.2 and
the maximum principle for elliptic equation (uy, h

η) > 0, which implies in view of (2.1) that

φ1 −
∫
∂Ω

µ1h
ηds+

1

η
(uy, h

η) > α0. (2.6)

It can be shown that Problem 1 is solvable if and only if the operator equation

y = Ay (2.7)

has a solution in C+([0, T ]). Really, the deduction of the equation (2.7) shows that if {uy, y} is a
solution of Problem 1, then y is a fixed point of the operator A by (2.5). On the other hand, let
y∗ is a solution of equation (2.7) and u∗ is a solution of (1.2)–(1.4) with k(t) = y∗(t). Multiplying
(1.2) by hη in terms of the inner product of L2(Ω) and integration by parts twice in the second
and third summands implies in view of (1.4), (2.5), (2.7) that the pair {u∗(t, x), y∗(t)} obeys the
condition of overdetermination (1.5).

The relations (2.2), (2.5) and (2.6) imply the estimate

0 6 Ay 6 Φα−1
0 .

Let us prove that there exists such y0 > 0 that the operator A maps the set

Y = { y | y ∈ C([0, T ]), y0 6 y 6 Φα−1
0 }

into itself. We multiply (1.2) with k = y ∈ Y by the solution uy of the problem (1.2)–(1.4) in
terms of the inner product of L2(Ω) and integrate by parts in the second and third summands.
It gives

1

2

d

dt

{
∥uy∥2 + η⟨Muy, uy⟩M + η

∫
∂Ω

σu2
yds

}
+ y⟨Muy, uy⟩M + y

∫
∂Ω

σu2
yds =

= (f, uy)−
∫
∂Ω

(yµ1 − µ2)uyds.
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We next integrate the last relation with respect to t from 0 to τ , 0 < τ 6 T , and rewrite as

∥uy∥2 + η
[
⟨Muy, uy⟩M +

∫
∂Ω

σu2
yds

]
+ 2

∫ τ

0

y
[
⟨Muy, uy⟩M +

∫
∂Ω

σu2
yds

]
dt =

= ∥u0∥2 + η
[
⟨Mu0, u0⟩M +

∫
∂Ω

σu2
0ds

]
+ 2

∫ τ

0

{
(f, uy)−

∫
∂Ω

(yµ1 − µ2)uyds
}
dt. (2.8)

By (1.1), the left side of this equality is estimated from below as

∥uy∥2 + ηm0∥uy∥21 +
∫
∂Ω

σu2
yds.

One can estimate the right term of (2.8) with the help of the embedding theorem and the Cauchy
inequality. This gives

∥u0∥2 + η
[
⟨Mu0, u0⟩M +

∫
∂Ω

σu2
0ds

]
+ 2

∫ τ

0

{
(f, uy)−

∫
∂Ω

(yµ1 − µ2)uyds
}
dt 6

6 c2

ηm0

(
Φα−1

0 ∥µ1∥L2(ST ) + ∥µ2∥L2(ST )

)2

+ ∥f∥2L2(QT ) + ∥u0∥2+

+η
[
⟨Mu0, u0⟩M + σ̄∥u0∥2L2(∂Ω)

]
+

∫ τ

0

(
∥uy∥2 + ηm0∥uy∥21

)
dt

where σ̄ = ∥σ∥C(Ω), c > 0 is the constant of the embedding W 1
2 (Ω) ↪→ L2(∂Ω). Thus, we obtain

from (2.8) that

∥uy∥2 + ηm0∥uy∥21 6 c2

ηm0

(
Φα−1

0 ∥µ1∥L2(ST ) + ∥µ2∥L2(ST )

)2

+ ∥f∥2L2(QT )+

+∥u0∥2 + η
[
⟨Mu0, u0⟩M + σ̄∥u0∥2L2(∂Ω)

]
+

∫ τ

0

(
∥uy∥2 + ηm0∥uy∥21

)
dt,

whence by Gronwall’s lemma we have

∥uy∥2 + ηm0∥uy∥21 6
[ c2

ηm0

(
Φα−1

0 ∥µ1∥L2(ST ) + ∥µ2∥L2(ST )

)2

+ ∥f∥2L2(QT )+

+ ∥u0∥2 + η
(
⟨Mu0, u0⟩M + σ̄∥u0∥2L2(∂Ω)

)]
eT ≡ C2

2 . (2.9)

Coming back to (2.5) we can determine y0. By (2.2), (2.9),

Ay > Φ0

[
φ̄1 + max

t∈[0,T ]

{
∥µ1∥L2(∂Ω)∥ω∥L2(∂Ω) + η−1C2∥hη∥

}]−1

≡ y0, (2.10)

where φ̄1 = ∥φ1∥C([0,T ]). Thus, the operator A maps the set Y with y0 defined by (2.10) into
itself.

Let y1, y2 ∈ Y and uy1 , uy2 be the solutions of the problem (1.2)–(1.4) with k = y1 and
k = y2, respectively. In view of (2.5)

|Ay1 −Ay2| = η−1Φ(t)
∣∣(uy2 − uy1 , h

η)
∣∣{φ1 +

∫
∂Ω

µ1h
ηds+ η−1(uy1 , h

η)
}−1

×

×
{
φ1 +

∫
∂Ω

µ1h
ηds+ η−1(uy2 , h

η)
}−1

6
Φmaxt∈[0,T ] ∥hη∥

ηα2
0

∥uy1 − uy2∥. (2.11)
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On the other hand, the difference wy = uy1
− uy2

satisfies the equation

wyt + ηMwyt + y1Mwy = (y2 − y1)Muy2 (2.12)

and the conditions
wy(0, x) = 0,[

η
∂wyt

∂N
+ y1

∂wy

∂N
+ σ(x)(ηwyt + y1wy)

]∣∣∣
ST

= (y2 − y1)
[(∂uy2

∂N
+ σuy2

)∣∣∣
ST

+ µ1

]
. (2.13)

We multiply (2.12) by wy in terms of the inner product of L2(Ω) and integrate by parts in the
second and third summands and the right side. In view of (2.13) this gives

1

2

d

dt

{
∥wy∥2 + η

[
⟨Mwy, wy⟩M +

∫
∂Ω

σw2
yds

]}
+ y1

{
⟨Mwy, wy⟩M +

∫
∂Ω

σw2
yds

}
=

= (y2 − y1)
{
⟨Mu2y, wy⟩M +

∫
∂Ω

(σu2y + µ1)wyds
}
. (2.14)

By (1.1), (2.9) and the embedding theorem,

∣∣∣(y2 − y1)
{
⟨Mu2y, wy⟩M +

∫
∂Ω

(σu2y + µ1)wyds
}∣∣∣ 6

6 c|y2 − y1|
{
(m1 + cσ̄)∥uy2

∥1 + ∥µ1∥L2(∂Ω)

}
∥wy∥1 6

6 c2

2ηm0
|y2 − y1|2

{
(m1 + cσ̄)C2

(ηm0)1/2
+ ∥µ1∥L2(∂Ω)

}2

+
ηm0

2
∥wy∥21. (2.15)

Integrating (2.14) with respect to t from 0 to τ , 0 < τ < T , and estimating the left side of the
result with the use of (1.1) we obtain in view of (2.) that

∥wy∥2 + ηm0∥wy∥21 6 c2

ηm0

∫ τ

0

|y2 − y1|2
{
(m1 + cσ̄)C2

(ηm0)1/2
+ ∥µ1∥L2(∂Ω)

}2

dt+

+

∫ τ

0

(
∥wy∥2 + ηm0∥wy∥21

)
dt.

Accordig to Gronwall’s lemma the last relation implies the estimate

∥wy∥2 6 c2eT

ηm0

(
(m1 + cσ̄)C2

(ηm0)1/2
+ ∥µ1∥C([0,T ];L2(∂Ω))

)2 ∫ τ

0

|y2 − y1|2dt. (2.16)

Combining (2.11) and (2.16) we are led to the inequality

|Ay1 −Ay2| 6 K
(∫ τ

0

|y1 − y2|2dt
)1/2

where

K =
cΦmaxt∈[0,T ] ∥hη∥

η3/2m
1/2
0 α2

0

(
(m1 + cσ̄)C2

(ηm0)1/2
+ ∥µ1∥C([0,T ];L2(∂Ω))

)
eT/2.

Let us introduce an equivalent norm in C([0, T ]) as·ν = max
t∈[0,T ]

{e−νt| · |}
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with a positive constant ν to be determined later. ThenAy1 −Ay2
ν 6 K

(2ν)1/2
y1 − y2

ν .

Choosing ν = 2K−2, we obtain the inequalityAy1 −Ay2


ν 6 1

2

y1 − y2


ν . (2.17)

This means that the operator A : Y → Y is a contraction. Thus, in accordance with the principle
of contracting mappings the operator A has a unique fixed point k∗ ∈ Y . The pair {u∗, k∗} gives
the solution of the inverse problem (1.2)–(1.5) where u∗ satisfies (1.2)–(1.4) with k = k∗ and
u∗ ∈ C1([0, T ];W 2

2 (Ω)) by Lemma 1.1. Moreover, the estimates (2.3) and (2.9) are valid for k∗

and u∗.
We are coming now to the estimates for u and ut in W 2

2 (Ω). Multiplying (1.2) by ut in terms
of the inner product of L2(Ω) and integrating by parts in the second and third terms of the left
side yields

∥ut∥2 + η⟨Mut, ut⟩M + η

∫
∂Ω

σ(x)u2
tds = −k⟨Mu, ut⟩M − k

∫
∂Ω

σ(x)uutds+

∫
∂Ω

βutds+ (f, ut).

By (1.1), (2.3), (2.9) and the embedding theorem, the last equality implies the relation

∥ut∥2 + ηm0∥ut∥21 + η

∫
∂Ω

σ(x)u2
tds 6

{Φ(m1 + c2σ̄)

α0
∥u∥1 + c∥β∥L2(∂Ω)

}
∥ut∥1+

+∥f∥∥ut∥ 6 1

2ηm0

{C2Φ(m1 + c2σ̄)

α0(ηm0)1/2
+ c∥β∥L2(∂Ω)

}2

+
1

2
∥f∥2+

+
1

2

(
∥ut∥2 + ηm0∥ut∥21

)
which implies the estimate

∥ut∥2 + ηm0∥ut∥21 6 1

ηm0

{C2Φ(m1 + c2σ̄)

α0(ηm0)1/2
+ c∥β∥L2(∂Ω)

}2

+ ∥f∥2 ≡ C2
3 . (2.18)

We are now in a position to get the estimates for u in W 2
2 (Ω). To do this we rewrite the

boundary condition (1.4) in the form [ ∂u

∂N
+ σu

]∣∣∣
ST

= β (2.19)

where

β =
[∂u0

∂N
+ σu0

]∣∣∣
ST

exp
(
− 1

η

∫ t

0

k dθ
)
+

1

η

∫ t

0

(µ2 − kµ1) exp
(
− 1

η

∫ t

τ

k dθ
)
dτ.

Multiplying (1.2) by Mu in terms of the scalar product of L2(Ω) gives

η

2

d

dt
∥Mu∥2 + k(t)∥Mu∥2 = (f − ut,Mu).

By (2.3) and (2.18),

η

2

d

dt
∥Mu∥2 + y0∥Mu∥2 6 1

2y0
(∥f∥+ C3)

2 +
y0
2
∥Mu∥2
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whence

∥Mu∥2 6 ∥Mu0∥2e−
y0
η t +

1

y0

∫ t

0

(∥f∥+ C3)
2e−

y0
η (t−τ)dτ. (2.20)

The inequality [7, Chapter 2]

∥v∥2 6 K1(∥Mv∥+ ∥β∥
W

1/2
2 (∂Ω)

+ ∥v∥1) (2.21)

is valid for all v ∈ W 2
2 (Ω) satisfying the boundary condition (2.19) where the constant K1 > 0

depends on m0, m1 and mesΩ. In view of (2.9), (2.18)–(2.21) we have

∥u∥2 6 K1

[
∥Mu0∥+

( 1

y0

∫ t

0

(∥f∥+ C3)
2dτ

)1/2

+ ∥β∥
W

1/2
2 (∂Ω)

+ C2(ηm0)
−1/2

]
≡ C4. (2.22)

The estimates (2.18) and (2.20) enable one to conclude from (1.2) that

η∥Mut∥ 6 ∥f∥+ C3 +
Φ

α0
C5. (2.23)

The positive constant C5 depends on C2, C3, y0, T , η, ∥f∥L2(QT ). By (1.4), (2.18) and (2.23),

∥ηut + k(t)u∥2 6 K1

(
∥M(ηut + k(t)u)∥+ ∥β − σ(ηut + k(t)u)∥

W
1/2
2 (∂Ω)

+

+∥ηut + k(t)u∥1
)
6 K1

[
∥f − ut∥+ ∥β∥

W
1/2
2 (∂Ω)

+ (c0σ̄ + 1)
(
η∥ut∥1 +

Φ

α0
∥u∥1

)]
6

6 K1

[
∥f∥+ C3 + ∥β∥

W
1/2
2 (∂Ω)

+
(c0σ̄ + 1)

(ηm0)1/2

(
ηC3 +

Φ

α0
C2

)]
≡ C6

whence

η∥ut∥2 6 C6 +
Φ

α0
∥u∥2 6 C6 +

Φ

α0
C4.

The last inequality and (2.22) implies the estimate (2.4).
The uniqueness of the solution {u, k} follows from (2.17). Really, let {u1, k1} and {u2, k2}

be two solutions of Problem 1. Hence, k1 and k2 satisfies the operator equation (2.7) and the
inequality (2.17) is valid. Then

k1 − k2


ν =
Ak1 −Ak2


ν 6 1

2

k1 − k2


ν ,

which proves that k1 = k2. From this in turn follows by (2.16) that u1 = u2. 2
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Обратная задача для псевдопараболического уравнения
со смешанным граничным условием

Анна Ш. Любанова
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. В данной статье исследуется обратная задача идентификации старшего коэффициен-
та в псевдопараболическом уравнении со смешанным граничным условием. Неизвестный коэффи-
циент восстанавливается по дополнительным интегральным граничным данным. Доказано суще-
ствование и единственность сильного обобщенного решения. Результат связан с идентификацией
гидравлических свойств трещиноватой среды.

Ключевые слова: фильтрация, обратная задача, псевдопараболическое уравнение, существова-
ние, единственность.
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