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1. Problem statement

Let us choose r different points α1, α2, . . . , αr in the space E1.
Consider the Cauchy problem

ut = a(t)uxx + b(t, x, u(t, x), ω(t))ux + f(t, x, u(t, x), ω(t)), (1)

u(0, x) = u0(x). (2)

In the strip G[0,T ] = {(t, x)|0 6 t 6 T, x ∈ E1}. Let us introduce the vector-function ω(t) =(
u(t, αj),

∂k

∂xk
u(t, αj)

)
, k = 0, . . . , p1, j = 1, . . . , r. Components of this function are the traces

(depending only on the variable t) of function u(t, x) and all its derivatives with respect to x up
to order p1 inclusive. Choose and fix the constant p > max{2, p1} > 2.

Definition 1. Let us denote the set of functions u(t, x) defined in G[0,t∗] belonging to the class

C1,p
t,x (G[0,t∗]) =

{
u(t, x)|∂u

∂t
,
∂ku

∂xk
∈ C(G[0,t∗]), k = 0, . . . , p

}
,
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by Zp
x([0, t

∗]). Functions are bounded for (t, x) ∈ G[0,t∗] together with all derivatives satisfying
inequalities

p∑
k=0

∣∣∣∣∂ku(t, x)∂xk

∣∣∣∣ 6 C. (3)

Definition 2. Classical solution of problem (1), (2) in G[0,t∗] is a function u(t, x) ∈ Zp
x([0, t

∗])
that satisfies (1) and initial data (2) in G[0,t∗].

Here 0 < t∗ 6 T is a fixed constant. Let us assume that the following conditions are satisfied.

Condition 1. Functions b(t, x, u(t, x), ω(t)), f(t, x, u(t, x), ω(t)) are real-valued continuous func-
tions that are defined for any values of their arguments. For all t∗ ∈ (0, T ] and for all
u(t, x) ∈ Zp+2

x ([0, t∗]) these functions, as functions of the variables (t, x) ∈ G[0,t∗], are con-
tinuous and have continuous derivatives involved in (5) and (6). Function a(t) > a0 > 0 is a
continuous bounded function on the interval [0, T ]. Function u0(x) has continuous derivatives
satisfying inequalities

p+2∑
k=0

∣∣∣∣dku0(x)dxk

∣∣∣∣ 6 C. (4)

Condition 2. Let us introduce the following notations

Uk(0) = sup
x∈E1

∣∣∣∣ dkdxk u0(x)
∣∣∣∣ , k = 0, 1, . . . , p+ 2,

Uk(t) = sup
0<ξ6t

sup
x∈E1

∣∣∣∣ ∂k∂xk u(ξ, x)
∣∣∣∣ , k = 0, 1, . . . , p+ 2,

U(t) =

p+2∑
k=0

Uk(t), U(0) =

p+2∑
k=0

Uk(0).

Let us assume that for all t∗ ∈ (0, T ], for all t ∈ [0, t∗] and for any u(t, x) ∈ Zp+2
x ([0, t∗]) the

following estimates hold

p+2∑
k=0

∣∣∣∣ ∂k∂xk b(t, x, u(t, x), ω(t))
∣∣∣∣ 6 Pγ1(U(t)), (5)

p+2∑
k=0

∣∣∣∣ ∂k∂xk f(t, x, u(t, x), ω(t))
∣∣∣∣ 6 Pγ2

(U(t)). (6)

Here γ1, γ2 > 0 are some fixed integer constants and

Pξ(y) = C(1 + |y|+ |y|2 + . . .+ |y|ξ),

where C > 1 is a constant independent of function u(t, x) and its derivatives.

Theorem 1 (Existence). Let us assume that Conditions (1) and (2) are satisfied and
0 6 γ1 <∞, 0 6 γ2 < ∞. Then there exists the constant t∗ ∈ (0, T ] that depends on a0 from
Condition (1) and C from inequalities (5), (6) such that classical solution u(t, x) of problem
(1), (2) exists in the class Zp

x([0, t
∗]).

The proof of the theorem for 0 6 γ2 6 1 is given in [2]. The case 2 6 γ2 < ∞ is considered
in this paper.
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Proof. To prove the existence of a solution of Cauchy problem (1), (2) the weak approximation
method [1] is used. Let us consider an auxiliary split problem with time shift

(
t− τ

3

)
in unknown

functions and non-linear terms

uτt (t, x) = 3a(t)uτxx(t, x), nτ < t 6
(
n+

1

3

)
τ ; (7)

uτt (t, x) = 3b

(
t− τ

3
, x, uτ

(
t− τ

3
, x
)
, ωτ

(
t− τ

3

))
uτx(t, x),

(
n+

1

3

)
τ < t 6

(
n+

2

3

)
τ ; (8)

uτt (t, x) = 3f
(
t− τ

3
, x, uτ

(
t− τ

3
, x
)
, ωτ

(
t− τ

3

))
,

(
n+

2

3

)
τ < t 6 (n+ 1)τ ; (9)

uτ (t, x)
∣∣
t60

= u0(x). (10)

Let us prove a priori estimates that ensure the compactness of the family of solutions u(t, x)
of problem (7)–(10) in the class C1,p

t,x (G[0,t∗]) for some constant 0 < t∗ 6 T .

At the first fractional step
(
0 < t 6 τ

3

)
for (n = 0) we apply the maximum principle to

problem (7), (10) and obtain the estimate for function uτ (t, x)

|uτ (t, x)| 6 U0(0), 0 < t 6 τ

3
.

Differentiating problem (7), (10) k times with respect to x, we obtain similar estimates∣∣∣∣ ∂k∂xk uτ (t, x)
∣∣∣∣ 6 Uk(0), 0 < t 6 τ

3
, k = 1, . . . , p+ 2.

Summing up the obtained inequalities, we obtain the estimate

Uτ (t) 6 U(0), 0 < t 6 τ

3
. (11)

At the second fractional step
(
τ

3
< t 6 2τ

3

)
we solve equation (8). Since function

b
(
t− τ

3
, x, uτ

(
t− τ

3
, x
)
, ωτ

(
t− τ

3

))
is continuous and it is known from the previous frac-

tional step solution of this equation exists ( [3], item 2.6). Let us consider the characteristic
equation for equation (8)

dx

dt
= −3b

(
t− τ

3
, x, uτ

(
t− τ

3
, x
)
, ωτ

(
t− τ

3

))
.

Let us denote the characteristic function of the resulting characteristic equation by φ(ξ, ζ, η),
that is, x = φ(ξ, ζ, η) is the integral curve passing through the point (ζ, η). Then the solution at
the second fractional step has the form

uτ (t, x) = uτ
(τ
3
, φ
(τ
3
, t, x

))
,

τ

3
< t 6 2τ

3
. (12)

Therefore, the following estimate is true

Uτ
0 (t) 6 Uτ

(τ
3

)
6 U(0),

τ

3
< t 6 2τ

3
. (13)
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Let us differentiate equation (8) with respect to x and introduce the following notations

uτx(t, x) = zτ (t, x),

bτ0(t, x) = 3b
(
t− τ

3
, x, uτ

(
t− τ

3
, x
)
, ωτ

(
t− τ

3

))
,

bτ1(t, x) = 3
∂

∂x
b
(
t− τ

3
, x, uτ

(
t− τ

3
, x
)
, ωτ

(
t− τ

3

))
.

Using new notations, the differentiated equation is written in the form

zτt = bτ0(t, x)z
τ
x + bτ1(t, x)z

τ .

The solution of this equation can be written in the parametric form ( [3], p. 4.3)

zτ (t, x) = eF
τ
0 (t, τ3 ,η)zτ

(τ
3
, η
)
, x = φτ

(
t,
τ

3
, η
)
,

where

F τ
0 = F τ

0 (t, ζ, η) = −
∫ t

ζ

bτ1(ξ, ζ, η)dξ

and x = φτ (ξ, ζ, η) is the characteristic function of the equation

dx

dt
= −bτ0(t, x) = −3b

(
t− τ

3
, x, uτ

(
t− τ

3
, x
)
, ωτ

(
t− τ

3

))
.

Therefore, the following estimate is true

|uτx(t, x)| = |zτ (t, x)| 6 Uτ
1

(τ
3

)
ePγ1

(Uτ (t− τ
3 ))τ 6 Uτ

1

(τ
3

)
ePγ1

(U(0))τ .

Now we take from the left and right parts of the resulting inequality sup for x ∈ E1 and obtain

Uτ
1 (t) 6 Uτ

1

(τ
3

)
ePγ1

(U(0))τ ,
τ

3
< t 6 2τ

3
. (14)

Next, we differentiate equation (8) twice with respect to x and introduce the following notations

uτxx(t, x) = vτ (t, x),

cτ0(t, x) = 3b
(
t− τ

3
, x, uτ

(
t− τ

3
, x
)
, ωτ

(
t− τ

3

))
,

cτ1(t, x) = 6
∂

∂x
b
(
t− τ

3
, x, uτ

(
t− τ

3
, x
)
, ωτ

(
t− τ

3

))
,

cτ2(t, x) = 3
∂2

∂x2
b
(
t− τ

3
, x, uτ

(
t− τ

3
, x
)
, ωτ

(
t− τ

3

))
.

Using new notations, the equation is written in the form

vτt = cτ0(t, x)v
τ
x + cτ1(t, x)v

τ + cτ2(t, x)z
τ (t, x).

The solution of this equation can be written in the parametric form ( [3], p. 4.3)

vτ = eG
τ
0 (t,

τ
3 ,η)
(
vτ
(τ
3
, η
)
+

∫ t

τ
3

cτ2

(
ξ, φ

(
ξ,
τ

3
, η
))

zτ
(
ξ, φ

(
ξ,
τ

3
, η
))

eG
τ
0 (ξ,

τ
3 ,η)dξ

)
,

x = φτ (ξ, ζ, η),
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where

Gτ
0 = Gτ

0(t, ζ, η) = −
∫ t

ζ

cτ1(ξ, ζ, η)dξ.

Note that estimate for function zτ (t, x) is already available. Therefore, one can evaluate function
vτ (t, x)

|uτxx(t, x)| = |vτ (t, x)| 6 e2τPγ1 (U(0))
(
Uτ
2

(τ
3

)
+ 3Pγ1

(U(0))e2τPγ1 (U(0))

∫ t

τ
3

Uτ
1 (ξ)dξ)

)
6

6 eCτPγ1
(U(0))

(
Uτ
2

(τ
3

)
+ CτPγ1

(U(0))Uτ
1

(τ
3

)
eτPγ1

(U(0))
)
6

6 eCτPγ1
(U(0))

(
Uτ
2

(τ
3

)
+ CτPγ1

(U(0))Uτ
1

(τ
3

))
6

6 eCτPγ1 (U(0))
(
Uτ
2

(τ
3

)
+ Uτ

1

(τ
3

))
(1 + CτPγ1

(U(0))) 6 eCτPγ1 (U(0))
(
Uτ
2

(τ
3

)
+ Uτ

1

(τ
3

))
.

Now we take from the left and right parts of the resulting inequality sup for x ∈ E1 and obtain

Uτ
2 (t) 6 eCτPγ1 (U(0))

(
Uτ
2

(τ
3

)
+ Uτ

1

(τ
3

))
,

τ

3
< t 6 2τ

3
. (15)

Next, we differentiate equation (8) k = 3, . . . p+2 times with respect to x. Using the Leibniz
formula for the k-th derivative of the product of two functions, we obtain the equation in general
form

∂k

∂xk
uτt = gτ0

∂k

∂xk
uτx + gτ1

∂k

∂xk
uτ +

k∑
j=2

gτj
∂k−j+1

∂xk−j+1
uτ ,

where

gτ0 = 3b
(
t− τ

3
, x, uτ

(
t− τ

3
, x
)
, ωτ

(
t− τ

3

))
,

gτj = 3Cj
k

∂j

∂xj
b
(
t− τ

3
, x, uτ

(
t− τ

3
, x
)
, ωτ

(
t− τ

3

))
.

Writing the solution in explicit form, we obtain the following estimate

∣∣∣∣ ∂k∂xk uτ (t, x)
∣∣∣∣ 6 eCτPγ1

(U(0))

(
Uτ
k

(τ
3

)
+ CPγ1

(U(0))

t∫
τ
3

k−1∑
j=1

Uτ
j (ξ)dξ

)
6

6 eCτPγ1
(U(0))

(
Uτ
k

(τ
3

)
+ CτPγ1(U(0))eCτPγ1

(U(0))
k−1∑
j=1

Uτ
j

(τ
3

))
6

6 eCτPγ1 (U(0))

( k∑
j=1

Uτ
j

(τ
3

))
(1 + CτPγ1

(U(0))) 6

6 eCτPγ1
(U(0))

( k∑
j=1

Uτ
j

(τ
3

))
, k = 3, . . . , p+ 2,

τ

3
< t 6 2τ

3
.

Now we take from the left and right parts of the resulting inequality sup for x ∈ E1 and obtain

Uτ
k (t) 6 eCτPγ1 (U(0))

( k∑
j=1

Uτ
j

(τ
3

))
,

τ

3
< t 6 2τ

3
. (16)
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Combining inequalities (13), (14), (15) and (16), we obtain estimates for the solution at the
second fractional step

Uτ (t) 6 Uτ
(τ
3

)
eCτPγ1

(U(0)),
τ

3
< t 6 2τ

3
. (17)

At the third fractional step
(
2τ

3
<t 6τ

)
we integrate equation (9) with respect to variable

t

uτ (t, x) = uτ
(
2τ

3
, x

)
+ 3

∫ t

2τ
3

f
(
η − τ

3
, x, uτ

(
η − τ

3
, x
)
, ωτ

(
η − τ

3

))
dη.

Condition (2) implies that

Uτ
0 (t) 6 Uτ

0

(
2τ

3

)
+ CτPγ2

(
Uτ

(
2τ

3

))
.

Differentiating equation (9) k times with respect to x, k = 1, . . . , p + 2 and using condition
(2), we obtain

Uτ
k (t) 6 Uτ

k

(
2τ

3

)
+ CτPγ2

(
Uτ

(
2τ

3

))
.

Combining the obtained inequalities, we have

Uτ (t) 6 Uτ

(
2τ

3

)
+ CτPγ2

(
Uτ

(
2τ

3

))
6 1 + Uτ

(
2τ

3

)
+ Cτ

(
1 + Uτ

(
2τ

3

))γ2

− 1 6

6
(
1 + Uτ

(
2τ

3

))(
1 + Cτ

(
1 + Uτ

(
2τ

3

))γ2−1
)

− 1 6

6
(
1 + Uτ

(
2τ

3

))
eCτ(1+Uτ( 2τ

3 ))
γ2−1

− 1. (18)

Using estimates (11), (17), (18), the following inequality holds at the zero time step t ∈ [0, τ ]

Uτ (t) 6
(
1 + U(0)eCτPγ1 (U(0))

)
eCτ[1+U(0)eCτPγ1 (U(0))]

γ2−1

− 1 6

6 (1 + U(0))eCτPγ1
(U(0))+Cτ(1+U(0))γ2−1e(γ2−1)CτPγ1

(U(0))

− 1 6

6 (1 + U(0))eCτ[Pγ1 (U(0))+(1+U(0))γ2−1]e(γ2−1)CτPγ1
(U(0))

− 1.

Let us choose γ3 = max{γ1; γ2 − 1} then

Uτ (t) 6 (1 + U(0))eCτPγ3
(1+U(0))eγ3CτPγ3

(U(0))

− 1.

Let τ be such that inequality
eγ3CτPγ3

(U(0)) 6 2

is satisfied then
Uτ (t) 6 (1 + U(0))e2CτPγ3 (1+U(0)) − 1, t ∈ [0, τ ].

Using the same line of reasoning, at the first time step (τ < t 6 2τ), we obtain the estimate

Uτ (t) 6 (1 + Uτ (τ))e2CτPγ3
(1+Uτ (τ)) − 1 6

6
(
1 + (1 + U(0))e2CτPγ3

(1+U(0)) − 1
)
e2CτPγ3

[1+(1+U(0))e2CτPγ3 (1+U(0))−1] − 1 6

6 (1 + U(0))e2CτPγ3
(1+U(0))+2CτPγ3

(1+U(0))e2Cτγ3Pγ3
(1+U(0))

6

6 (1 + U(0))e2CτPγ3
(1+U(0))[1+e2Cτγ3Pγ3 (1+U(0))] − 1.
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Let τ be such that inequality
e2Cτγ3Pγ3

(1+U(0)) 6 2

is true, then
Uτ (t) 6 (1 + U(0))e6CτPγ3

(1+U(0)) − 1, t ∈ [0, 2τ ].

At the second time step (2τ < t 6 3τ) we obtain the estimate

Uτ (t) 6 (1 + Uτ (2τ))e2CτPγ3
(1+Uτ (2τ)) − 1 6

6
(
1 + (1 + U(0))e6CτPγ3 (1+U(0)) − 1

)
e2CτPγ3 [1+(1+U(0))e6CτPγ3

(1+U(0))−1] − 1 6

6 (1 + U(0))e6CτPγ3
(1+U(0))+2CτPγ3

(1+U(0))e6Cτγ3Pγ3
(1+U(0))

6

6 (1 + U(0))e2CτPγ3 (1+U(0))[3+e6Cτγ3Pγ3
(1+U(0))] − 1.

Let τ be such that inequality
e6Cτγ3Pγ3

(1+U(0)) 6 2

is satisfied, then
Uτ (t) 6 (1 + U(0))e10CτPγ3

(1+U(0)) − 1, t ∈ [0, 3τ ].

Continuing given above argument, at the i-th time step we obtain the estimate

Uτ (t) 6 (1 + U(0))e(4i+2)CτPγ3
(1+U(0)) − 1, t ∈ [0, iτ ].

Let t∗ (0 < t∗ 6 T ) be such that
et

∗Cγ3Pγ3
(1+U(0)) 6 2.

Then for all i > 0 such that (4i+ 2)τ 6 t∗ the following estimate holds

Uτ (t) 6 (1 + U(0))e(4i+2)CτPγ3 (1+U(0)) − 1 6 (1 + U(0))et
∗CPγ3 (1+U(0)) − 1.

Since t∗, C, γ3 and U(0) depend on the input data but do not depend on τ we obtain∣∣∣∣ ∂k∂xk uτ (t, x)
∣∣∣∣ 6 Uτ (t) 6 (1 + U(0))et

∗CPγ3
(1+U(0)) − 1 = K, t ∈ [0, t∗]. (19)

This implies that function uτ (t, x) and its derivatives with respect to x are bounded uniformly
in terms of variable τ up to order p+ 2 inclusive in the strip G[0,t∗].

By virtue of equations (7)–(9) it also follows that derivatives are bounded uniformly in terms
of variable τ

∂

∂t

∂kuτ

∂xk
, k = 0, . . . , p. (20)

Taking into account the boundedness of derivatives
∂

∂x

∂kuτ

∂xk
, k=1, . . . , p, it guarantees equicon-

tinuity in GN
[0,t∗] = {(t, x)|0 6 t 6 t∗, |x| 6 N} of sets of functions

{
∂kuτ

∂xk

}
, k = 0, . . . p for any

fixed constant N .
By virtue of the Arzela theorem some subsequence uτk(t, x) of the sequence uτ (t, x) of solu-

tions of split problem (7)–(10) converges together with derivatives with respect to x up to order
p inclusive to function u(t, x) ∈ C1,p

t,x

(
G[0,t∗]

)
. By virtue of the convergence theorem for the

weak approximation method [1], u(t, x) is a solution of original problem (1), (2). Moreover, for
(t, x) ∈ G[0,t∗] the following estimate is satisfied

p∑
k=0

∣∣∣∣∂ku(t, x)∂xk

∣∣∣∣ 6 C.

Thus, u(t, x) ∈ Zp
x([0, t

∗]). The theorem is proved.
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2. Example

Let us consider an example of application of Theorem (1) to the proof of the solvability of
one inverse coefficient problem for a parabolic type equation.

Let us consider the Cauchy problem

ut(t, x) = a2uxx(t, x) + (u(t, x) + λ1(t))ux(t, x) + λ2(t)f(t, x), (21)

u(0, x) = u0(x). (22)

that is posed in the domain G[0,T ] = {(t, x) | 0 6 t 6 T, x ∈ E1}. Functions λ1(t), λ2(t) are to
be determined simultaneously with solution u(t, x) of problem (21), (22) satisfying redefinition
conditions

u(t, α) = φ1(t), (23)

ux(t, α) = φ2(t) (24)

and conditions of agreement

u(0, α) = φ1(0), (25)

ux(0, α) = φ2(0). (26)

Regarding functions φ1(t), φ2(t), u0(x), f(t, x), we assume that they are sufficiently smooth,
and they have all continuous derivatives that satisfy the following inequality for all (t, x) ∈ G[0,T ]

|φ1(t)| + |φ′
1(t)| + |φ2(t)| + |φ′

2(t)| +
∣∣∣∣ dkdxk u0(x)

∣∣∣∣ + ∣∣∣∣ ∂k∂xk f(t, x)
∣∣∣∣ 6 C, k = 0, . . . , 5. (27)

Let us also assume that for all t ∈ [0, T ] the following inequality is satisfied

φ2(t)fx(t, α)− f(t, α)
∂2

∂x2
u0(α) > δ > 0. (28)

The original problem is reduced to the auxiliary direct problem

ut = a2uxx +

[
u+

(ψ1(t)− a2uxx(t, α))fx(t, α)

φ2fx(t, α)− uxx(t, α)f(t, α)
−

− (ψ2(t)− a2uxxx(t, α)− φ1uxx(t, α))f(t, α)

φ2fx(t, α)− uxx(t, α)f(t, α)

]
ux +

+

[
(ψ2(t)− a2uxxx(t, α)− φ1uxx(t, α))φ2

φ2fx(t, α)− uxx(t, α)f(t, α)
−

− (ψ1(t)− a2uxx(t, α))uxx(t, α)

φ2fx(t, α)− uxx(t, α)f(t, α)

]
f(t, x), (29)

u(0, x) = u0(x), (30)

where
ψ1(t) = φ′

1(t)− φ1(t)φ2(t), ψ2(t) = φ′
2(t)− φ2

2(t).

In order to guarantee that denominator of expression (29) does not vanish we introduce the cut-off
function Sδ(y). It is differentiable as many times as needed and has the following properties

Sδ(y) >
δ

3
> 0, ∀y ∈ E1, (31)
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Sδ(y) =


y, y > δ

2
;

δ

3
, y 6 δ

3
.

(32)

Let us substitute the cut-off function into the denominator of fractional expressions

ut = a2uxx +

[
u+

(ψ1(t)− a2uxx(t, α))fx(t, α)

Sδ(φ2fx(t, α)− uxx(t, α)f(t, α))
−

− (ψ2(t)− a2uxxx(t, α)− φ1uxx(t, α))f(t, α)

Sδ(φ2fx(t, α)− uxx(t, α)f(t, α))

]
ux +

+

[
(ψ2(t)− a2uxxx(t, α)− φ1uxx(t, α))φ2

Sδ(φ2fx(t, α)− uxx(t, α)f(t, α))
−

− (ψ1(t)− a2uxx(t, α))uxx(t, α)

Sδ(φ2fx(t, α)− uxx(t, α)f(t, α))

]
f(t, x), (33)

u(0, x) = u0(x). (34)

The resulting direct problem (33), (34) is a problem of form (1), (2). Let us check the
conditions of Theorem (1) for p = 3,

b = u+
(ψ1(t)− a2uxx(t, α))fx(t, α)− (ψ2(t)− a2uxxx(t, α)− φ1uxx(t, α))f(t, α)

Sδ(φ2fx(t, α)− uxx(t, α)f(t, α))
,

f =
(ψ2(t)− a2uxxx(t, α)− φ1uxx(t, α))φ2 − (ψ1(t)− a2uxx(t, α))uxx(t, α)

Sδ(φ2fx(t, α)− uxx(t, α)f(t, α))
.

Condition (1) is satisfied due to assumption (27), and condition (2) becomes
5∑

k=0

∣∣∣∣ ∂k∂xk b(t, x, u(t, x), ω(t))
∣∣∣∣ 6 P1(U(t)),

5∑
k=0

∣∣∣∣ ∂k∂xk f(t, x, u(t, x), ω(t))
∣∣∣∣ 6 P2(U(t)).

Thus, all conditions of Theorem (1) are satisfied for p = 3, γ1 = 1, γ2 = 2. Therefore,
there exists a constant t∗ : 0 < t∗ 6 T depending on the constants that constrain the input data
such that classical solution u(t, x) of problem (33), (34) exists in the class Z3

x(G[0,t∗]).
Note that at this point, the existence of a solution of direct problem is proved but not the

existence of a solution of inverse problem. After that, we need to remove the cut-off function
from the denominators of fractional expressions. In order to guarantee that conditions imposed
on cut-off function (31)–(32) are satisfied it is necessary to use inequality (28).

Then, using the agreement conditions and redefinition conditions, one can show that solution
of the inverse problem also exists, and function u(t, x) which is the solution of direct problem
(33), (34) is also the solution of inverse problem (21)–(22). Parameters λ1(t), λ2(t) are defined
as follows

λ1(t)=
(ψ1(t)−a2uxx(t, α))fx(t, α)−(ψ2(t)−a2uxxx(t, α)−φ1uxx(t, α))f(t, α)

φ2fx(t, α)− uxx(t, α)f(t, α)
,

λ2(t)=
(ψ2(t)−a2uxxx(t, α)−φ1uxx(t, α))φ2−(ψ1(t)−a2uxx(t, α))uxx(t, α)

φ2fx(t, α)− uxx(t, α)f(t, α)
.
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О разрешимости уравнения типа Бюргерса
с нелинейностью специального вида

Игорь В. Фроленков
Роман В. Сорокин

Иван Е. Зубров
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. В данной работе рассматривается одномерное параболическое уравнение Бюргерса
специального вида с данными Коши. При доказательстве теоремы о разрешимости этой задачи ис-
пользуется метод слабой аппроксимации, разработанный Ю.Я.Беловым. Результаты, полученные
в данной работе, усиливают результаты, полученные в [2].

Ключевые слова: обратная задача, параболическое уравнение, уравнение типа Бюргерса, задача
Коши, метод слабой аппроксимации.
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