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Abstract. The resource constrained project scheduling problem (RCPSP) with the criterion of max-
imizing the net present value (NPV) is considered. We propose two heuristic algorithms for RCPSP
based on idempotent algebra methods. To assess the quality of the algorithms, a zero-one integer linear
programming model was built for the problem under consideration. This model makes it possible to
find exact solutions to the problem using the IBM ILOG CPLEX. Experiments show that the proposed
heuristic algorithms demonstrate high performance. In a series of experiments, schedules corresponding
to exact solutions were obtained, among other things.
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Introduction

The scheduling problem is a classical optimization problem with a wide practical application.
An important version of the scheduling problem is statements in which project resources are
described by cash flows. An overview of such formulations is given in the works [1,2]. One of the
differences in the approaches is the choice of discounting method. However, the continuous and
compound interest formulas used in different works are easily converted into each other. Another
important difference between the approaches is the features of accounting for the components of
cash flows. For example, these cash flows can be considered as regular or irregular. In addition,
there are differences in the choice of the objective function. The profit traditionally used in this
capacity can be adjusted, for example, by the amount of fines for violating the deadlines for
completing work.

The paper considers the resource constrained project scheduling problem (RCPSP) in the
formulation proposed in [3]. The optimality criterion is the profit reduced to the beginning
project implementation. It is assumed that a partial order is given on the set of activities. The
only resource of the project is financial. The stocks of funds, the needs for financing activities
and the income generated by them are known at each of the integer points in time. Money
is a stored resource. In addition, there is the possibility of obtaining additional income from
holding free funds at a given risk-free rate. Restrictions on the stock of funds can be removed
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by introducing the possibility of lending. This also means additional costs associated with the
payment of interest.

The proven NP-hardness of the problem under consideration has led to the popularity of
heuristic methods for solving it [3]. This paper is a continuation of our research on the devel-
opment of effective heuristic algorithms for solving the resource constrained project scheduling
problem with the criterion of maximizing the net present value [4]. The proposed algorithms are
based on the methods of idempotent algebra. It is shown that, in terms of idempotent algebra,
the project schedule can be represented as a solution to a linear equation over an idempotent
semiring. A sufficient condition for the admissibility of the schedule from the point of view of
the partial order of work and the duration of the project is formulated. This fact is a theoret-
ical justification for the use of vectors from an idempotent semimodule in the development of
heuristic algorithms GASPIA and SASPIA.

The first of the proposed algorithms is a modification of the genetic algorithm GASPIA‡ [5].
The use of vectors from an idempotent semimodule in the GASPIA genetic algorithm as indi-
viduals of a population makes it possible to ensure the fulfillment of the conditions of a partial
order of work when applying genetic operators. The modified crossover mechanism is based on
the division of project work into profitable and unprofitable ones.

The second heuristic algorithm for solving this problem is based on the annealing simulation
method. As a rule, the simulated annealing method is used to solve the scheduling problem with
the criterion of minimizing the total project time. For example, [6] considers the application of
the simulated annealing method to a problem with several types of resources. As variables, the
authors consider the priority vectors of project activities. In [7] a hybrid algorithm is proposed
that combines the simulated annealing method and the MINSLK method, which is used to find
the starting solution. The authors conclude that this approach leads to a significant reduction
in the number of steps compared to the standard procedure for generating a random starting
solution. Other well-known heuristics can be used to find the starting solution. For example,
in the work [8] for this purpose, the method ranking works by their duration (SPT) is used. A
feature of our approach to solving RCPSP is the use of vectors from an idempotent semimodule
in a new algorithm for simulating annealing SASPIA§. This allows you to search among schedules
that satisfy the conditions of a partial work order.

The rest of the article is organized as follows. In Section 1, we give the formal definition of
the RCPSP. In 2 we give a zero-one statement of the problem. This allows you to find exact
solutions for small projects using the IBM LOG CPLEX solver. The Sections 4 and 5 describe
the algorithms we developed: the genetic algorithm and the annealing simulation algorithm for
the scheduling problem. The Section 6 presents the results of computational experiments and
characterizes the quality of the algorithms. Our main contribution is the application of idempo-
tent algebra methods in the implementation of heuristic algorithms for solving the problem of
scheduling investment projects.

1. Problem formulation
Consider an investment project consisting of a set of activities V = {1, 2, . . . , N}. Partial

order relations E are given on the set V . The timing of the activities is known and set as an

‡GASPIA — Genetic Algorithm for Resource-constrained Project Scheduling Problem Using Idempotent
Algebra Methods

§SASPIA — Simulated Annealing for Resource-constrained Project Scheduling Problem Using Idempotent
Algebra Methods

– 640 –



Aleksandr M.Bulavchuk, Daria V. Semenova Two Heuristic Algorithms for RCPSP . . .

integer number of time periods (months, years, etc.) — Q = (q1, q2, . . . , qN ). We assume that the
budget, costs and income of the project can be measured in monetary units. For each moment
of time t ∈ {0, 1, . . . , T − 1}, the amount of money Kt at the disposal of the organization is
known. These funds, as well as income from previous periods, are the source of financing for
the project. In addition, it is possible to reinvest free funds at the rate of r0. Each of the
activities j is characterized by the balance of income and expenses cj(τ) at the beginning of
the period τ ∈ {0, 1, . . . , qj}. To evaluate the results of the project implementation, we will use
the net present value indicator (NPV). This indicator represents the value of the profit from
all planned activities, discounted to the time the investment was started. Thus, the problem of
scheduling investment project that we are considering is to find the optimal start time for each
of the activities, at which the restrictions on the sufficiency of funds, the relationship of activities
are met and the maximum NPV. Taking into account the introduced notation, the RCPSP with
the NPV maximization criterion will take the following form [3,5].

NPV (S) =
∑
j∈V

qj∑
τ=0

cj(τ)

(1 + r0)τ+sj
→ max

S
, (1)

si + qi 6 sj , (i, j) ∈ E, (2)
t∗∑
t=0

Kt

(1 + r0)t
+

t∗∑
t=0

∑
j∈Nt

cj(t− sj)

(1 + r0)t
> 0, t∗ = 0, 1, . . . , T − 1, (3)

where S = (s1, s2, . . . , sN ) is the project schedule consisting of the start times of activities, and
Nt is the set of activities performed in the interval [t; t + 1). Constraints (2) correspond to
conditions of partial order, and constraints (3) formalize the requirements for positive balance
of funds, taking into account the possibility of reinvestment at time t∗. An RCPSP problem of
the form (1)–(3) is NP-hard in the strong sense [3].

2. Zero-one model

To find the exact solution of the problem under consideration, we proposed a zero-one for-
mulation. The Tab. 1 contains a description of the variables for the zero-one model.

Taking into account the introduced notation, the binary model of the RCPSP problem can
be represented in the following form.

NPV (X) =
T−1∑
t=0

N∑
j=1

ztj · xtj → max
X

, (4)

T−1∑
t=0

xtj · t 6 T − qj , j = 1, . . . , N, (5)

T−1∑
t=0

(xti − xtj) · t 6 −qi, (i, j) ∈ E, (6)

T−1∑
t=0

N∑
j=1

G∗
tj(t

∗)xtj > −k∗t∗ , t∗ = 0, 1, . . . , T. (7)

This model makes it possible to find exact solutions to the problem of non-high dimension using
the IBM ILOG CPLEX.
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Table 1. Notation

Symbol Meaning

X a zero-one matrix, where xtj = 1 if sj = t for j ∈ {1, . . . , N},
t ∈ {0, 1, 2, . . . , T − 1}

k∗t =
t∑

τ=0

K(τ)

(1 + r0)τ
cumulative discounted budjet at time t ∈ {0, 1, 2, . . . , T − 1}

ztj =
NPVj

(1 + r0)t
NPV of activity j started at time t ∈ {0, 1, 2, . . . , T − 1}

G matrix of discounted cash flows, where gtj =
cj(t− sj)

(1 + r0)t
, if t 6 sj+qj

and gtj = 0 otherwise

G∗
tj(t

∗) =
t∗∑

τ=0
Gtj(τ) cumulative discounted cash flows for periods t∗ = 0, 1, . . . , T , where

Gtj = Gj(s1, . . . , sj−1, t, sj+1, . . . , sN )

3. A sufficient condition for admissibility of a schedule

In terms of idempotent algebra, the space of admissible project schedules by RCPSP deadlines
in the form (1)–(3) is determined by solving a linear equation over an idempotent semiring [5].
The definitions and notation of idempotent algebra used in this paper

Consider an idempotent semiring Rmax,+ with operations ⊕ = max and ⊙ = +. This semiring
contains the zero element 0 = −∞ and the identity element 1 = 0.

The partial order relations of project activities can be represented as a weighted directed
graph with an adjacency matrix A = (aij)

N
i,j=1, where

aij =


qj if (i, j) ∈ E,

0 if (i, j) /∈ E and i = j,

−∞ if (i, j) /∈ E and i ̸= j.

In the semiring Rmax,+, the elements of the matrix A are described by the relations

aij =


qj if (i, j) ∈ E,

1 if (i, j) /∈ E and i = j,

0 if (i, j) /∈ E and i ̸= j.

Let us formulate a sufficient condition for the admissibility of the project schedule in terms
of the idempotent algebra [5].

Theorem 3.1. Let A be the partial work order matrix of the investment project in normal form,
Q = (q1, q2, . . . , qN ) be the vector of work durations, and T be the target completion date of the
project. Then the schedule S = A+υ will be admissible from the point of view of the partial order
and duration of the project, if for all j = 1, . . . , N

υmin
j 6 υj 6 υmax

j , (8)

– 642 –



Aleksandr M.Bulavchuk, Daria V. Semenova Two Heuristic Algorithms for RCPSP . . .

where υmin = (0, . . . , 0), υmax = (b−A+)− and b — a string of length N and bj is equal to T −qj.

The proof of the theorem is based on the fact that the partial order matrix of the investment
project is decomposable, and its normal form has a lower triangular form. For such a matrix,
the linear equation A · S = S has a nontrivial solution represented as S = A+υ, where υ is an
arbitrary vector from RN [5].

The sufficient condition for the admissibility of the project schedule in terms of timing
(Theorem 3.1.) is fundamental in the two heuristic algorithms proposed below.

4. Description of the GASPIA algorithm

The genetic algorithm is a heuristic optimization method based on modeling the evolution of a
population. Each individual in the population will be characterized by genotype and phenotype.
A genotype is a set of independent characteristics of an individual that interests us in the context
of the problem. A phenotype is a characteristic of an individual, defined as a function of its
genotype. Let the individuals of the population represent the admissible schedules of activities
for the project. Then the vectors S = (s1, s2, . . . , sN ) could be considered as a genotype, the
components of which determine the start time of the corresponding work. However, such a
variant of the genotype makes crosses difficult, since the components of the parental genotypes
cannot be arbitrarily mixed without violating the partial order conditions. In this regard, as the
genotype of individuals, we will consider vectors υ, whose coordinates satisfy the relations (8).

Such vectors allow you to obtain schedules that meet the requirements of the order of work
and the deadline for completing the project. In the process of forming the initial population, it is
necessary to generate the required number of vectors that satisfy the relations (8). The schedule
S corresponding to the vector υ will be determined using the formula S = A+υ.

This can be achieved, for example, by including a constraint violation penalty in the fitness
function. Then the phenotype will be the NPV of the project adjusted for the penalty:

F
(
S(υ)

)
=

N∑
j=1

qj∑
τ=0

cj(τ)

(1 + r0)sj+τ
+ αL ·min

{
0, L

(
S(υ)

)}
, (9)

where αL > 0 is a configurable parameter, and L
(
S(υ)

)
is the cumulative deficit of funds needed

to complete the work for this schedule. The use of a penalty makes it possible to separate
schedules that are inadmissible according to the budget from those that are admissible during
the algorithm execution.

If the budget constraints are not too strict, then this approach will make it possible to exclude
budget-inadmissible schedules at the stage of selecting individuals with the highest value of the
fitness function. With a small number of schedules allowed by the budget, the application of the
genetic algorithm will be difficult due to the lack of genetic diversity.

Crossover. Crossover is one of the basic operations of the genetic algorithm. The mechanism
of crossing should ensure the growth of the fitness function in the population. The version of the
algorithm considered in this paper differs from that described in [5] by the crossing procedure.

The project activities can be divided into profitable and unprofitable by the value of NPVj .
Let’s calculate the auxiliary vector η with coordinates:
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ηj =


1− α ·

(
1− NPVj

max{NPV1, NPV2, . . . , NPVN}

)
if NPVj > 0,

α ·
(
1− NPVj

min{NPV1, NPV2, . . . , NPVN}

)
if NPVj < 0,

(10)

where α is a custom parameter.
For a pair of parents υk, υl and a random number p ∈ [0, 1], the genotype of the offspring

will be given by the vector υk×l with coordinates

υk×l
j =

{
min

{
υk
j , υ

l
j

}
if ηj > p,

max
{
υk
j , υ

l
j

}
if ηj < p.

(11)

This modification of crossover makes it possible to take into account not only the profitability of
activities, but the differences within the groups of profitable and unprofitable activities.

Mutation. The mutation operator is intended to introduce diversity into the population
in order to avoid premature convergence of the algorithm. In the algorithm settings, we set
the proportion of individuals in the population whose genotype will undergo mutation. During
the application of the mutation operator, we will replace one randomly selected element of the
genotype so that the relations (8) are satisfied. This procedure also does not violate the partial
order conditions. Schedules that do not meet budget constraints will be screened out at the stage
of selecting the best individuals. The mutation algorithm can be described as follows.

1. Choose a vector υ in the population.

2. Generate a random number rnd_υ ∈ [0, 1].

3. If rnd_υ < p_mutation, where p_mutation is the given mutation probability, choose a
random element of the vector υj .

4. Replace the element υj with the random number υmin
j 6 rnd_υj 6 υmax

j .

5. Repeat for all individuals in the population.

Selection. After the application of genetic operators, the number of individuals in the pop-
ulation is guaranteed to increase. In addition, the characteristics of some individuals that have
undergone fixed mutations change. To determine the most viable individuals, we sort the pop-
ulation in descending order of the fitness function (9). A given number of the best individuals
enter the next generation population. Since the fitness function includes a penalty for violating
the budget constraint, the next generation will predominantly include individuals for which the
constraint is not violated. We will consider the given number of generations as the criterion for
stopping the algorithm.

5. Description of the SASPIA

Simulated annealing is an ordered random search method. The method was created on the
basis of a substance crystallization model and has found application in solving various optimiza-
tion problems. Application of the method to a specific problem involves the description of the
following components [9]:

– 644 –



Aleksandr M.Bulavchuk, Daria V. Semenova Two Heuristic Algorithms for RCPSP . . .

– variables;

– objective function;

– cooling schedule;

– acceptance probability;

– generation rule for new configurations.

Let us characterize these components in the context of the model (1)–(3).
As variables in the developed annealing simulation algorithm, vectors υ from the idempotent

semimodule XN are used. As an objective function, consider the NPV of the project, adjusted
by the amount of the penalty for violating budget constraints:

F
(
S(υ)

)
=

N∑
j=1

qj∑
τ=0

cj(τ)

(1 + r0)sj+τ
−M · δ(S), (12)

where M > 0 is a sufficiently large number, and δ(S) equals 1 if at least one of the constraints
(3) is not satisfied. Otherwise δ(S) = 0. This function assumes a more significant penalty than
function (9).

In practice, various cooling schedules are used, which differ in the rate of temperature de-
crease [9]. Consider the following scheme:

T (k) =
T0
k
, (13)

where T0 is the initial temperature value and k is the step number.
As a function of the acceptance probability we will use the following:

h(∆F, T ) = exp(∆F/T ).

For positive values of ∆F , the value of h(∆F, T ) will be greater than 1. This guarantees a
transition to a solution with a large value of the function F (S(υ)). In order to get a new solution
υ′, let’s change the randomly chosen coordinate of the vector υ. This transformation makes it
possible to obtain schedules S(υ) satisfying the constraints (2).

6. Computational experiments

To evaluate the quality of the proposed heuristic algorithms, a program was written in Python.
All experiments were carried out on a personal computer with a 2.3 GHz CPU and 8 Gb RAM
with Windows 10. When constructing the network diagram of the project, examples from the
PSLIB [10] test database were used. The maximum size of projects is 120 activities. A discount
rate of 10 % per annum was used in the calculations. Payment flows for projects were generated
in such a way that among the activities there were both profitable and unprofitable ones.

In the GASPIA experiments, a population of np = 100 individuals was modeled. The termi-
nation condition of the algorithm was the number of generations ng = 500. Experiments with
the annealing simulation algorithm were carried out for cooling schedule (13). The termination
condition was the nk = 10000 steps. The temperature was updated even if there was no transi-
tion to a new solution at the current step. The exact solution for a project of 120 activities was
found using the IBM ILOG CPLEX solver.
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The Tab. 2 shows the results of 100 experiments on finding a solution using the proposed
algorithms for the examples j120 [10]. Exact solutions are marked with asterisks.

Table 2. Results of experiments for the GASPIA and tha SASPIA algorithms

Algorithm Set Maximum
NPV

Average
NPV

Deviation from
maximum, %

G
A

SP
IA

j120_1 13.791* 11.347 17.720
j120_2 40.711* 39.369 3.298
j120_3 18.646 16.050 14.027
j120_4 9.249 8.509 12.029
j120_5 36.770 34.342 8.155
j120_6 22.329* 20.859 6.585
j120_7 16.722 15.245 8.899
j120_8 32.952 29.750 10.445
j120_9 26.839 26.220 8.559
j120_10 40.191 39.428 7.819

SA
SP

IA

j120_1 13.791* 10.852 21.310
j120_2 40.711* 39.559 2.832
j120_3 18.669* 18.097 3.063
j120_4 9.625 8.687 10.196
j120_5 37.391* 35.798 4.261
j120_6 22.329* 21.624 3.158
j120_7 16.725 15.293 8.610
j120_8 33.220* 31.284 5.830
j120_9 28.674* 27.488 4.137
j120_10 41.409 39.626 7.356

Fig. 1 shows a graph of the maximum value of NPV depending on the generation number
for project j120_2. The algorithm demonstrates a stable growth of the value of the objective
function. Fig. 2 shows NPV graph for SASPIA steps. This figure also shows an increase in the
NPV value when moving to the next steps of the algorithm.

Fig. 3 shows box plots for set j120_2. Both algorithms provide an exact solution (dashed
line), but the scatter of NPV values for algorithms is significantly different. The experimental
results for the SASPIA have a higher median value than for the GASPIA algorithm. The same
can be said about the minimum NPV values. We also note a significantly larger number of
outliers for results of applying the GASPIA algorithm.

Thus, based on the results of the experiments, we can conclude that the proposed algorithms
allow finding optimal or close to optimal solutions to the problem. The considered versions of
the algorithms demonstrate similar quality, however, the smallest deviation from the maximum

is provided by the annealing simulation algorithm with the cooling schedule T (k) =
100

k
.

7. Discussion

The proposed algorithms were also tested on projects of other dimensions. For small projects,
high accuracy solutions can be obtained in a small number of iterations. Comparison of the re-
sults for projects of different sizes allows us to conclude that it is necessary to determine the
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Fig. 1. Dynamics of NPV depending on the generation for GASPIA (set j120_2)

Fig. 2. The value of NPV at each step of the algorithm for SASPIA (set j120_2)

termination condition. The number of steps or generations, as well as the size of the population,
should be larger for the larger the project size. In addition, it is required to select other param-
eters of the algorithms. For example, the probability of mutation or crossover, cooling schedule,
etc.

Another important feature of the application of the considered heuristic algorithms is the
dependence of their efficiency on the hardness of budget constraints. Fig. 4 shows how the share
of schedules that are inadmissible according to the budget behaves in the process of population
evolution in the GASPIA algorithm. However, if a significant proportion of schedules in the
population turns out to be unacceptable in terms of the budget, then applying genetic operators
to them does not give the desired effect.

The paper considers a deterministic formulation of the problem, however, in practice, many
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Fig. 3. Box plots for experimental results using the GASPIA and SASPIA algorithm for set
j120_2

project parameters may be uncertain. This is especially true for components of cash flows.
There are stochastic and fuzzy RCPSP models [11, 12]. In the paper [13] it was shown that
the GASPIA algorithm can also be successfully used for problems in fuzzy formulation. The
algorithm can be adapted for various fuzzy number ranking functions [14]. Note that only cases
of independent activities were considered. In the future, it is planned to study the formulations
in which the components of the cash flows for different activities are interconnected. In stochastic
formulations, one can single out such a direction of analysis as determining the level of risk of
NPV deviation from the planned values. The proposed algorithms can be easily modified to
solve the risk minimization problem.

Fig. 4. The share of schedules that are inadmissible according to the budget

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation (Agreement no. 075-02-2023-936).
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О двух эвристических алгоритмах для задачи
календарного планирования инвестиционных проектов
с ограниченными ресурсами и NPV-критерием

Александр М. Булавчук
Дарья В. Семенова

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. Рассматривается задача календарного планирования инвестиционных проектов с
ограниченными ресурсами (RCPSP) и критерием максимизации чистой приведенной стоимости
(NPV). Мы предлагаем два эвристических алгоритма для RCPSP, основанных на методах идем-
потентной алгебры. Для оценки качества работы алгоритмов была построена бинарная модель
целочисленного линейного программирования для рассматриваемой задачи. Эта модель позволяет
находить точные решения задачи с помощью программного комплекса IBM ILOG CPLEX. Экспе-
рименты показывают, что разработанные нами эвристические алгоритмы демонстрируют высокую
результативность. В серии экспериментов были получены в том числе расписания, соответствую-
щие точным решениям.

Ключевые слова: задача календарного планирования, инвестиционный проект, NPV, идемпо-
тентная математика, генетический алгоритм, имитация отжига.
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