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Abstract. A new mathematical model is proposed to describe the spatial static state of a cholesteric
liquid crystal. The model is constructed with the assumption of elastic resistance of a liquid crystal
under weak mechanical action or under disturbance of electric field. Along with rotational degrees of
freedom displacements of the centres of mass of the liquid crystal molecules relative to initial positions
are taken into account. Using numerical calculations, the effect of deformation of cholesteric spirals in a
thin layer under the action of electric field of a capacitor is analysed.

Keywords: cholesteric liquid crystal, statics, electric field, Fréedericksz effect.
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Introduction

It is common to divide natural and artificial liquid crystals into three classes. These classes
include nematics, smectics and cholesterics. The centres of mass of molecules are randomly
distributed in space in nematics but the direction vectors of molecules lie in the same plane.
Smectics differ from nematics in a layered structure with abrupt/sharp boundaries of change
in the orientation of molecules when moving from layer to layer. Cholesterics have a helical
structure. The essential difference between these classes from the point of view of mathematical
modelling is that under certain assumptions regarding external actions, two-dimensional models
can be used to analyse nematics and smectics while two-dimensional models are not applicable
to cholesterics. To simulate the deformation of liquid crystals in the cholesteric phase under the
action of homogeneously distributed volumetric and surface forces and moments of forces it is
necessary to use three-dimensional equations.
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Cholesterics are structurally similar to nematics. The molecules in cholesterics are arranged
in thin layers in such a way that their long axes are parallel to each other, that is, a layer-by-layer
orientation order is observed. But the presence of asymmetric (chiral) atoms in the molecules
causes the molecules of the next layer to rotate through a small angle forming a helical structure
(see Fig. 1). If we move along the helix axis then after a certain number of layers the orientation
of the molecules becomes the same as in the first layer. One of the main characteristics of
a cholesteric liquid crystal (ChLC) is the pitch of the cholesteric helix p0, i.e., the distance over
which liquid crystal molecules rotate in space by the angle 2π. Another important characteristic
of a liquid crystal is the director (vector) n⃗ which determines the direction of the preferred
orientation of the long axes of LC molecules.

Fig. 1. Packing of rod-shaped molecules in cholesterics (a) and spiral arrangement of director n⃗ (b)

The interaction of a cholesteric liquid crystal with bounding surfaces leads to the formation of
various structures depending on the boundary conditions and the ratio of the helix pitch and the
thickness of the drop or layer [1]. Various orientations of near-boundary molecules are provided
at the stage of preliminary preparation of liquid crystal with the help of special technological
processes. Orientation structures in cholesteric droplets and their optical textures were studied,
for example, in [2,3]. Oriented ChLCs have a wide area of practical application as highly sensitive
sensors based on colour changes, thermal indicators, reflectors, notch filters, polarizes and optical
rotators, lasers, microlenses, etc. Detailed information about the current state of researche on
physical properties of cholesteric liquid crystals and technical devices based on them can be found
in [4–6].

The theory of Eriksen–Leslie is used for mathematical modelling of liquid crystals (see, for
example, [7]). It is applicable for solving static and non-stationary problems without restrictions
on the flow structure. However, the complexity of non-linear equations of this theory is a sig-
nificant obstacle to the development and justification of methods and algorithms for numerical
implementation. Therefore, it is appropriate to apply approximate models that are based on
simplifying hypotheses to solve specific problems.

We develop one of the approaches to model the behaviour of liquid crystals under the action
of weak thermomechanical and electromagnetic perturbations. The model of acoustic approxi-
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mation for the description of dynamic processes in liquid crystals was proposed [8]. Algorithms
for numerical implementation of this model were developed and computations were performed for
the layer of nematic liquid crystal (NLC) under the action of inhomogeneous electric field [9,10].
Computational algorithms for solving two-dimensional static problems were described [11]. The
purpose of this paper is to create a simplified mathematical model of spatial deformation of a
liquid crystal that is suitable for describing the cholesteric phase.

1. Mathematical model

The distribution of director in the liquid crystal relative to the Cartesian coordinate system
x1, x2, x3 with basis vectors e⃗1, e⃗2, e⃗3 is given by a field of normals with orientation angles θ
and ψ:

n⃗ = cos θ cosψ e⃗1 + sin θ cosψ e⃗2 + sinψ e⃗3 .

In the initial state of the ChLC layer ψ = ψ0 and θ = ∆θ x3/h that corresponds to helical
structure with a given helix twist angle ∆θ over the layer thickness h (ψ0 = 0 in Fig. 2).

Fig. 2. Kinematic scheme of the rotational motion of director

Deformation caused by inhomogeneous external action at the boundary or inside the layer
can lead to arbitrary change in both angles θ and ψ. Wherein a spatial stress-strain state
is realized that is described on the basis of simplified equations of the Cosserat continuum
under the assumption on hydrostatic state of a medium in the liquid phase. In this case, the
stress tensor is represented by the components σjk = − p δjk + τjk, where p is the hydrostatic
pressure, τjk = − τkj are the components of antisymmetric tensor of tangential stresses, δjk is the
Kronecker delta. Tangential stresses in a medium are due to the rotational degrees of freedom of
the particles. In addition to tangential stresses the rotation of particles leads to the occurrence
of couple stresses µjk which are the components of asymmetric tensor. Differential equations of
equilibrium for an element of the medium take the following form

∂p

∂xk
− ∂τjk
∂xj

= fk ,
∂µjk

∂xj
+ εijk τij = −mk . (1)

Here fk и mk are the projections of vectors of external body force and moment of force, εijk is the
Levi – Civita symbol. Einstein’s summation rule over repeated indices is accepted. Everywhere
below the commonly accepted notations and operations of tensor analysis are used.

The governing equations of the model are obtained using the Castigliano variational prin-
ciple. According to this principle the actual equilibrium state of the medium minimizes the

– 477 –



Vladimir M. Sadovskii. . . Modeling of Electric Field Impact on a Cholesteric Liquid Crystal Layer

potential energy integral on the set of admissible states that satisfies equilibrium equations (1)
and boundary conditions in stresses. These conditions are

− p νk + νj τjk = σ0
k on Sσ , νj µjk = µ0

k on Sµ , (2)

where Sσ and Sµ are the parts of boundary S of domain V (layer, in a particular case), νk are
projections of the outer normal vector to the boundary, σ0

k and µ0
k are the surface stresses given

on Sσ and Sµ. The energy integral takes the form

J =
1

2

∫
V

(
1

κ
p2 +

1

α
τjk τjk +

1

γ
µjk µjk

)
dV +

∫
Su

u0k
(
p νk − νj τjk

)
dS −

∫
Sw

w0
k νj µjk dS .

Here κ, α and γ are phenomenological parameters of the medium: κ is the bulk compression
modulus, α is the modulus of elastic resistance to relative rotation of particles, γ is the modulus of
elastic resistance to curvature change; u0k and w0

k are the displacements and rotations of particles
that are set on the remaining parts of the boundary Su = S \Sσ and Sw = S \Sµ, respectively.

The kinematic characteristics in the state of equilibrium (components of the displacement
vector and the rotation vector in the case of the Cosserat continuum) are the Lagrange multi-
pliers that corresponds to the constraints in the form of equilibrium equations. Therefore, the
Lagrangian in the problem of conditional minimization under consideration can be represented
as follows

L = J +

∫
V

(
−uk

∂p

∂xk
+ uk

∂τjk
∂xj

+ wk
∂µjk

∂xj
+ εijk wi τjk

)
dV .

Equating to zero the variation of Lagrangian δp L = 0, we obtain∫
V

(
1

κ
p δp− uk

∂ δp

∂xk

)
dV +

∫
Su

u0k νk δp dS = 0.

After applying Green’s formula, we have∫
V

(
1

κ
p+

∂uk
∂xk

)
δp dV +

∫
Su

(
u0k − uk

)
νk δp dS = 0.

Since variation δp is arbitrary we obtain equation and boundary condition

p = −κ
∂uk
∂xk

,
(
uk − u0k

)
νk = 0 on Su . (3)

Similarly, the equality δτjkL = 0 implies that∫
V

(
1

α
τjk − ∂uk

∂xj
+ εijk wi

)
δτjk dV +

∫
Su

(
uk − u0k

)
νj δτjk dS = 0 .

Hence, taking into account boundary condition (3) and the antisymmetry of variation δτjk =

= − δτkj , the following equations and boundary condition are obtained

τjk =
α

2

(
∂uk
∂xj

− ∂uj
∂xk

− 2 εijk wi

)
, uk = u0k on Su . (4)

The equality δµjk
L = 0 leads to equations and boundary condition

µjk = γ
∂wk

∂xj
, wk = w0

k on Sw . (5)
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With an appropriate choice of phenomenological parameters of the medium system of equa-
tions and boundary conditions (1)–(5) is a closed mathematical model of the spatial deformation
of the liquid crystal. To reduce it to a compact vector form the antisymmetric tangential stress
tensor  0 − τ21 τ13

τ21 0 − τ32
− τ13 τ23 0

 ,

is identified with the pseudovector

τ⃗ × = τ32 e⃗1 + τ13 e⃗2 + τ21 e⃗3 = − εijk τjk e⃗i .

Then τjk = − εijk τ
×
i , νj τjk e⃗k = − εijk νj τ

×
i e⃗k = εijk νj τ

×
k e⃗i = ν⃗ × τ⃗ ×,

∂τjk
∂xj

e⃗k = − εijk
∂τ×i
∂xj

e⃗k = εijk
∂τ×k
∂xj

e⃗i = ∇× τ⃗ ×, ∇× u⃗ = εijk
∂uk
∂xj

e⃗i .

Using these relations, differential equations included in (1)–(5) are transformed to the following
form

∇p−∇× τ⃗ × = f⃗ , p = −κ∇ · u⃗ , τ⃗ × = α

(
w⃗ − 1

2
∇× u⃗

)
,

−∇ ·µµµ+ 2 τ⃗ × = m⃗ , µµµ = γ∇w⃗ .
(6)

Boundary conditions for displacements and rotation angles obtained from the Castigliano varia-
tional principle have the following vector form

u⃗ = u⃗ 0 on Su , w⃗ = w⃗ 0 on Sw . (7)

Boundary conditions (2) for stresses and couple stresses are as follows

− p ν⃗ + ν⃗ × τ⃗ × = σ⃗ 0 on Sσ , ν⃗ ·µµµ = µ⃗ 0 on Sµ . (8)

Equations (6) with boundary conditions (7), (8) can be used to model the deformation of liquid
crystal occupying an arbitrary domain under sufficiently general external actions of mechanical,
temperature or electromagnetic fields inside the domain and on its boundary.

Let us consider the case of a non-magnetic liquid crystal (dielectric) when the bulk forces and
moments of forces are caused by the action of an inhomogeneous electric field.

2. The action of electric field

The inhomogeneity of electric field is directly connected with the previously unknown ori-
entation of LC molecules in a deformed state. Orientation, in its turn, depends on the electric
field direction. The electric field E⃗ is defined in terms of the spatial distribution of the electric
potential φ: E⃗ = −∇φ. In the absence of bulk electric charges inside domain V , the equation
for the potential takes the form:

∇ · D⃗ = 0 , D⃗ = εεε · E⃗ =⇒ ∇ ·
(
εεε · ∇φ

)
= 0 . (9)

Here D⃗ is the electric induction vector, εεε is the dielectric permittivity tensor. It is defined as

εεε = ε⊥ III +∆ε n⃗ n⃗ ,
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where ε∥ and ε⊥ are permittivities along and across molecules, respectively, III is the unit tensor,
∆ε = ε∥ − ε⊥.

The spatial distribution of the director n⃗ depends on the electric field indirectly through the
molecular rotation vector w⃗. When rotating through an infinitesimal angle, one can write

n⃗ = n⃗ 0 + w⃗ × n⃗ 0. (10)

This relation has a simple geometric interpretation (see Fig. 2). The projection wn = w⃗ ·n⃗ 0 of the
rotation vector onto the initial direction of the director describes the rotation of a medium around
the n⃗ 0 axis. Such rotation has no effect on the distribution of mechanical stresses and electric
field since individual LC molecules are represented as rectilinear rigid needles of nanoscale length
with negligible thickness. Vector w⃗−wn n⃗

0 is orthogonal to the direction n⃗ 0 and it describes the
rotation of director from the initial position to the current one. Therefore, w⃗−wn n⃗

0 = n⃗ 0 × n⃗.
It is consistent with relation (10):

n⃗ 0 × n⃗ = n⃗ 0 × n⃗ 0 + n⃗ 0 ×
(
w⃗ × n⃗ 0

)
= w⃗

(
n⃗ 0 · n⃗ 0

)
− n⃗ 0

(
n⃗ 0 · w⃗

)
= w⃗ − wn n⃗

0.

For finite rotations relation (10) is not applicable because condition n⃗ 2 = 1 is violated. In this
case, n⃗ = RRR · n⃗ 0, where RRR is the rotation tensor that is defined in terms of the unit vector of the
rotation axis

q⃗ =
w⃗

|w⃗|
=

n⃗ 0 × n⃗

|n⃗ 0 × n⃗|

and the rotation angle ϕ as follows

RRR = III + sinϕQQQ+ (1− cosϕ)QQQ2 , QQQ =

 0 − q3 q2
q3 0 − q1
− q2 q1 0

 .

If rotation occurs in the positive direction of vector w⃗ then ϕ = |w⃗|. If rotation takes place in
the negative direction then ϕ = −|w⃗|.

Contrary to traditional mathematical models of LC deformation in this model the director
n⃗, which is required to calculate the dielectric permittivity tensor, does not belong to the main
required functions. It is determined using rotation vector w⃗ by relation (10) or by the more
precise relation n⃗ = RRR · n⃗ 0.

Let us note that differential equation (9) is not sufficient to uniquely define the electric
potential in V since the electric potential must be determined in the entire space including the
exterior of V . If there are no bulk electric charges in the surrounding space and if it is filled
with air or other rarefied gas with dielectric permittivity close to unity then the potential in it
satisfies the Laplace equation ∇2φ = 0. Moreover, it tends to zero at infinity. At the same time,
conditions for continuity of the electric potential and the component of the electric induction
vector normal to the interface are satisfied at the interface between the dielectric and the gas.
It is also necessary to add to equation (9) boundary conditions on boundary S or on its part
simulating the occurrence of non-zero electric field.

When potential is given the vector of bulk forces caused by the inhomogeneity of electric field
is determined as follows

f⃗ =
(
P⃗ · ∇

)
E⃗ , P⃗ = ε0χχχ · E⃗ , χχχ = εεε− III ,
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where χχχ is the dielectric susceptibility tensor, P⃗ is the polarization vector, ε0 = 8.854 ·10−12 F/m
is the electrical constant. In expanded form it becomes

f⃗ = ε0

(
(ε⊥ − 1)∇φ · ∇+∆ε (n⃗ · ∇φ) n⃗ · ∇

)
∇φ . (11)

To determine the vector of moment of bulk forces the following relation is used

m⃗ = P⃗ × E⃗ =⇒ m⃗ = ε0 ∆ε (n⃗ · ∇φ) n⃗×∇φ (12)

It follows from (11) and (12) that LC molecules are subjected to bulk moments of forces in
an arbitrary electric field, not excluding the case when field vector E⃗ is constant everywhere in
V , while bulk forces appear only with a non-uniform distribution of this vector.

3. One-dimensional problem

Let us consider LC layer of thickness h infinite in the plane x1, x2 between extended capacitor
plates. Initial distribution of molecular orientation angles inside the layer is known: θ0(x3) =

∆θ x3/h, ψ0 = ψ0(x3). It corresponds to the cholesteric phase with the turn of spirals across
the layer at an angle ∆θ. Molecules are reoriented when charges appear on the capacitor plates
under the action of electric field.

Components of the dielectric permittivity tensor εjk = ε⊥ δjk + ∆ε nj nk in the considered
Cartesian coordinate system are

ε11 = ε⊥ +∆ε cos2 θ cos2 ψ , ε12 =
1

2
∆ε sin 2θ cos2 ψ ,

ε22 = ε⊥ +∆ε sin2 θ cos2 ψ , ε23 =
1

2
∆ε sin θ sin 2ψ ,

ε33 = ε∥ sin2 ψ + ε⊥ cos2 ψ , ε13 =
1

2
∆ε cos θ sin 2ψ .

In addition to reorientation, the layer is deformed under the action of electromagnetic forces.
Taking into account the symmetry of the problem, we have

E⃗ = −φ′ e⃗3 , P⃗ = − ε0 φ
′
(
ε13 e⃗1+ε23 e⃗2+(ε33−1) e⃗3

)
, f1 = f2 = 0 , f3 = ε0 (ε33−1)φ′φ′′,

and the prime denotes the derivative with respect to x3. The rotation of molecules is due to the
action of moments of forces. Non-zero projections of the vector of moments are

m1 =
ε0 ∆ε

2
(φ′)2 sin θ sin 2ψ , m2 = − ε0 ∆ε

2
(φ′)2 cos θ sin 2ψ .

Vector m⃗ at each point of the layer is turned out to be directed perpendicular to the plane
passing through the director n⃗ and the axis x3. This follows from the equality to zero of the
scalar products m⃗ · n⃗ = m⃗ · e⃗3 = 0. Thus, the reorientation of molecules occurs only due to the
change in angle ψ while angle θ = θ0(x3) remains unchanged.

The differential equations of equilibrium for the layer take the form

− p′ = f3 , µ′
31 − 2 τ×1 = −m1 , µ′

13 − 2 τ×2 = −m2 .

Non-zero projections of the rotation vector are

w1 = ∆ψ sin θ , w2 = −∆ψ cos θ (∆ψ = ψ − ψ0) .
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Constitutive equations for pressure, moment stresses and tangential stresses are

p = −κu′3 , µ31 = γ w′
1 , µ32 = γ w′

2 , τ×1 = αw1 , τ×2 = αw2.

They allow one to transform the equilibrium equations to the following system of equations for
displacement u3 and rotation angle ψ

κu′′3 = ε0 (ε33 − 1)φ′φ′′ , − 2 γ
(
ψ′′ − ψ′′

0

)
+ 4α (ψ − ψ0) = ε0 ∆ε (φ

′)2 sin 2ψ . (13)

Equation (9) for the electric potential is integrated as follows

(ε33 φ
′)′ = 0 =⇒ φ′ =

C1

ε33
.

The next condition is used to determine constant C1

C1

∫ h

0

dx3
ε33

= ∆φ
(
ε33 = ε∥ sin2 ψ + ε⊥ cos2 ψ

)
, (14)

where ∆φ is the difference of potentials on the capacitor plates.
After substituting expression for φ′ and integrating the first equation (13), the system is

transformed into

κu′3 = − ε0 C
2
1

1− 2 ε33
2 ε233

+ C2 , − 2 γ∆ψ′′ + 4α∆ψ = ε0 C
2
1 ∆ε

sin 2(ψ0 +∆ψ)

ε233
. (15)

The boundary conditions ∆ψ(0) = ∆ψ(h) = 0 are added to the equation for the angle of
rotation. Such problem is solved numerically. The distribution ψ0(x3) = ψ0(x3) is taken as
the initial distribution of angles. According to the given distribution ψn(x3), the approximate
value of constant Cn

1 is calculated using (14). New approximation ψn+1(x3) is determined using
three-point sweep method based on the iterative algorithm

− 2 γ
∆ψn+1

j+1 − 2∆ψn+1
j +∆ψn+1

j−1

∆x23
+ 4α∆ψn+1

j = ε0 C
2
1 ∆ε

sin 2(ψ0 j +∆ψn
j )

(εn33 j)
2

. (16)

The process is stopped when the condition ||∆ψn+1−∆ψn||/||∆ψn|| < δ is fulfilled, where ||∆ψ||
is a uniform difference norm, δ is a given calculation error.

After finding constant C1 using the trapezoid rule, potential φ is calculated from relation

φ(x3) = C1

∫ x3

h/2

dx3
ε33

.

The equation for displacement is integrated numerically for boundary conditions of two types:
u3(0) = u3(h) = 0 and u3(0) = 0, u′3(h) = 0. In the first case, constant C2 is determined as

C2 =
ε0 C

2
1

2h

∫ h

0

1− 2 ε33
ε233

dx3,

and in the second case as

C2 = ε0 C
2
1

1− 2 ε33
2 ε233

∣∣∣∣
x3=h

.
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When initial angle ψ0 = 0 is equal to zero equation (15) for the rotation angle describes
the Fréedericksz effect of the loss of equilibrium of LC molecules in electric field. As a result of
linearisation of the equation, the problem is reduced to the boundary value problem

γ h2 ψ′′ =
(
2αh2ψ − ε0 ∆ε∆φ

2
)
ψ , ψ(0) = ψ(h) = 0 .

After substituting the solution ψ = A sinπx3/h, where A is an arbitrary constant, we obtain the
formula for the difference of potentials at which the trivial solution becomes unstable

∆φ0 =

√
π2 γ + 2h2 α

ε0 ∆ε
. (17)

In comparison with the classical formula for the Fréedericksz transition threshold, which takes
into account only moment interactions, it contains a correction accounting the resistance to
rotation of particles due to tangential stresses and it shows that such resistance prevents the loss
of stability.

Formula (17) is used for verification of the algorithm and program. According to the results of
computations of the liquid crystal with parameters ε∥ = 16.7, ε⊥ = 7, α = 2.45Pa, γ = 6·10−12 N
and κ = 3.12GPa the value of potential difference ∆φ = 1.27V is obtained which is close to the
threshold value corresponding to the transition of the layer into unstable state. At smaller values
of ∆φ the orientation of molecules calculated by scheme (16) with ψ0 = 0 remains unchanged
and ψ = 0. The electric potential is distributed linearly over the layer: φ = (x3/h − 0.5)∆φ.
For larger values of the difference of potentials the transition occurs from initial unstable state
to a stable one which is characterized by inhomogeneous distribution of angle ψ and non-linear
distribution of potential φ over the layer. There are two stable states that differ in the sign of
the molecular orientation angle. The positive or negative sign is realized in computations. It
depends on the small perturbation of the initial angle ψ0.

Let us note that the sequence of approximations of the orientation angle in the numerical
implementation of scheme (16) is rapidly converges (number of iterations is about 10) if the
resulting value of angle ψ at the layer centre is away from 90◦, i.e., differs from the orientation
angle of the electric field. When the value of angle ψ approaches 90◦ the convergence of the iter-
ative process slows down with the transition to the divergent regime. In addition, the expansion
of non-linear right-hand side (16) according to the Newton method does not allow one to expand
the range of admissible setting of potential difference ∆φ in which the approximations converge
but, on the contrary, leads to a significant narrowing this range.

4. Numerical results

The results of computations for the layer of thickness h = 4 µm with potential difference
∆φ = 1.28 V (it is close to the threshold value) are shown in Figs. 3– 6. The curves of red, green,
blue and violet colours in Fig. 3 demonstrate diagrams of the distribution of the orientation angle
over the layer for initial values ψ0 ≈ 0, ψ0 = 5◦, 10◦ and 15◦. Deviations of potential from the
linear distribution δφ(x3) = φ(x3) − (x3/h − 0.5)∆φ corresponding to these values are shown
in Fig. 4. Results of computations demonstrate that potential distribution for small values of
initial angle ψ0 is close to linear distribution but it changes significantly with a slight change in
this parameter.

Figs. 5 and 6 show diagrams of strain distribution ϵ33 = u′3 for two types of boundary
conditions on the sides of the layer (on capacitor plates). In both cases, the level of strains is
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Fig. 3. Distribution of the rotation angles of molecules over the LC layer
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Fig. 4. Deviation of the electric potential from linear distribution

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5. Strain distribution over the LC layer for fixed sides

negligible (about 10−7 %) since the electric field in the problem under consideration is practically
uniform. Its inhomogeneity is determined by a slight change in the LC dielectric permittivity due
to relative rotation of molecules. Nevertheless, the following characteristic qualitative features
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Fig. 6. Strain distribution over the LC layer for free surface

can be noted. If both sides are fixed, the layer is stretched near boundaries and compressed in
the centre. Thus, the pitch of cholesteric helices of the liquid crystal is increased in comparison
with the initial pitch near capacitor plates, and it is decreased in the middle part of the layer.
Under the condition of a free surface, the layer is compressed everywhere but the pitch of helices
is decreased in the centre, and it remains practically the same as in the initial undeformed state
near the sides.

Results of computations presented in Fig. 7 correspond to the LC layer that consists of two
sublayers of equal thickness. The initial orientation angles are ψ0 = 0 (in the lower sublayer)
and ψ1 = 5◦, 10◦, 15◦, 20◦ (in the upper sublayer). Considering results of computations, one can
see that jump in the orientation angle of molecules at the interface between sublayers after the
application of constant electric field remains the same as it was set in the initial state. This
follows directly from the analysis of equation (15) for the rotation angle. The right-hand side of
the equation is discontinuous function with discontinuity of the first kind at the interface between
sublayers.
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Fig. 7. Distribution of the rotation angles of molecules over the LC layer consisting of two
sublayers

Performed computations demonstrate the applicability of the proposed mathematical model
for calculating liquid crystals of a layered smectic phase.
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Conclusion

To describe the static deformed state of the liquid crystal under the action of weak external
perturbations a simplified mathematical model is proposed. The liquid crystal is considered as
structurally inhomogeneous continuum with translational and rotational degrees of freedom of the
micro-structure particles (LC molecules). This model is applicable to the analysis of cholesteric
liquid crystals with spatial helical orientation of molecules. To demonstrate implementation of
the model the problem of deformation of a cholesteric liquid crystal layer in the electric field of
a capacitor was considered. The state of the liquid crystal in the vicinity of the Fréedericksz
transition was studied numerically. Distributions of the orientation angle, electric potential
and strain over the layer were obtained for various initial orientation angles. Analysis of the
results of computations demonstrates that predominant compression of cholesteric spirals under
the electric field action (its inhomogeneity over the layer is determined by the change in the
dielectric permittivity due to the rotation of molecules) occurs in the middle part of the ChLC
layer.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
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ment and development of regional Centers for Mathematics Research and Education (Agreement
no. 075-02-2023-912).

References

[1] P.Oswald, P.Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical
Properties Illustrated by Experiments, Liquid Crystals Book Ser., Taylor and Francis,
Boca Raton, CRC Press, 2005. DOI: 10.1201/9780203023013.

[2] Y.Zhou, E.Bukusoglu, J.A.Mart́ınez-González, M.Rahimi, T.F.Roberts, R.Zhang, X.Wang,
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Моделирование действия электрического поля
на жидкокристаллический слой холестерика

Владимир М. Садовский
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация
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Ирина В. Смолехо

Институт вычислительного моделирования СО РАН
Красноярск, Российская Федерация

Аннотация. В рамках предположения об упругом сопротивлении холестерического жидкого кри-
сталла слабым механическим воздействиям или возмущениям электрическим полем строится новая
математическая модель для описания пространственного статического состояния. Наряду с вра-
щательными степенями свободы учитываются смещения центров масс молекул жидкого кристалла
относительно начального положения. С помощью численных расчетов в задаче для тонкого слоя
анализируется эффект деформации холестерических спиралей под действием электрического поля
конденсатора.

Ключевые слова: холестерический жидкий кристалл, статика, электрическое поле, эффект Фре-
дерикса.
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