Journal of Siberian Federal University. Mathematics & Physics 2023, 16(4), 488-497

EDN: SKBBCK
VIIK 517.518.5

On the Convergence Exponent of the Special Integral
of the Tarry Problem for a Quadratic Polynomial

Isroil A.Ikromov*

Institute of Mathematics named after V. I. Romanovsky
Uzbekistan Academy of Sciences
Samarkand, Uzbekistan

Samarkand State University
Samarkand, Uzbekistan

Akbar R. Safarov'
Uzbek-Finnish Pedagogical Institute
Samarkand, Uzbekistan

Samarkand State University
Samarkand, Uzbekistan

Akmal T. Absalamov?

Samarkand State University
Samarkand, Uzbekistan

Received 03.04.2023, received in revised form 05.05.2023, accepted 20.06.2023

Abstract. In this paper it is considered the summation problem for trigonometric integrals with
quadratic phase. This problem was considered in the papers [7-9] in particular cases. Our results
generalize the results of those papers to multidimensional trigonometrical integrals.

Keywords: trigonometrical integral, exponent, sums, phase, polynomial.

Citation: I.A.Ikromov, A.R. Safarov, A.T. Absalamov, On the Convergence Exponent of
the Special Integral of the Tarry Problem for a Quadratic Polynomial, J. Sib. Fed. Univ.
Math. Phys., 2023, 16(4), 488-497. EDN: SKBBCK.

Introduction

Let P(x,s) € R[z] (where 2 € R¥) be a polynomial with real coefficients s € RY. We consider
the trigonometric integral given by

T(s):/Qexp(iP(x,s))dm, (1)

where @ C R¥ is a compact set.

Problems related to such kind of integrals arise in mathematical physics (see [1]), harmonic
analysis (see [2-5]), analytic number theory (see [6-11]) and so on. Surely, the given references
are not complete.
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One of the well known problems related to the trigonometric integrals is the issue on conver-
gence of the special integral of the Tarry problem, which is given by the following:

= s)|Pds, wi = k.
0= [ IT@pds, with Q= [0, 2

The integral 6 arises as the coefficient of asymptotic representation for a number of integer
solutions of a Diophantine system [2,6,7]. Therefore, it is important to find a minimal value of
the parameter p, where the special integral is convergent, which is also essential in the Fourier
restriction problem in harmonic analysis [3].

Definition. A real number ~y is called to be a convergence exponent of the special integral if for
every p > ~ the integral (2) is convergent and for every p < v it is divergent. In other words
y=inf{p: T € L,(RN)}.

It should be noted that the convergence exponent essentially depends on the form of the
polynomials P(z,s). Thus the main problem can be formulated as:

Problem: Find the number .

This problem was considered by I. M. Vinogradov [11] in connection with the problems of
analytic number theory. He obtained an upper bound for the number 7 in the case k = 1. This
bound was improved in [10].

The exact value of v was indicated in [6] for the case k = 1. It is interesting to note that in
one-dimensional case depending on form of the polynomial P(z,s) the exact value of v can be
expressed by the sum of exponents of the non-trivial terms of the polynomial P(z, s). Moreover,
it was proved un upper bound for the number v in multidimensional cases.

It should be noted that, in [12] a lower bound was found for the number . Moreover, it was
found the number v provided that the coefficients of the polynomial vary in some subspace of
RYN. Similar problems were considered in the works [13,14,15].

In [7] a lower bound was obtained for v and also, it was investigated analogical problem for
more subtle object trigonometric sums in the case k = 2. In [7] and [9] a similar problem was
considered in the case k = 2. Moreover, in [7], it is shown that if P is a homogeneous quadratic
polynomial and k = 2, then v = 4 in the case when @ = [0,1]?, more precisely, the special
integral 6 is convergent if p > 4 and divergent if p < 4.

It was interesting to extend the results proved by L. G .Arkhipova, V. N. Chubarikov related
to trigonometric integrals to multidimensional case.

In this paper we study the problem in the classical setting. In other words, P is a quadratic
polynomial function and Q = [0, 1]* is the unit cube and also for the case when Q is a compact
domain. Analogical problem was considered by J. Makenhaupt [2], who obtain the number v in
the case when the polynomial P(z, s) satisfies some "non-degeneracy"” condition.

It should be noted that the condition of J. Makenhaupt does not hold for the general case
(see [2]). Actually, J. Mokenhaupt used an interesting approach. He computed the multidi-
mensional trigonometric integral, for which the amplitude function is the gauss function. Then
he be able to get the sharp value of the convergence exponent for some cases. It should be
noted that using the gauss functions to investigate behavior of oscillatory integrals goes back
to E.M. Stein [1]. We obtain the exact value of «, whenever P is a homogeneous polynomial of
degree two.

We use the idea of J. Makenhaupt and then we able to investigate the obtained integrals. We
observe that the integral over RY can be written as an iterated integral over the orbit of the
orthogonal group and then over the corresponding fundamental domain. It is interesting that the
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integrant in the trigonometric integrals with quadratic phase with special amplitude function,
more precisely gauss functions, is invariant under action of the orthogonal group. Thus, our
approach is natural in this case. Unfortunately, it seems such approach does not work for
trigonometric integrals with more general polynomial phase functions.

The paper is organized as follows in the next Section 1 we formulate our main results. In the
next Section 2 we give some auxiliary results on integrals. In particular, we obtain transformation
of the volume form under the natural action of the orthogonal group. Then we give a proof of
our main results in the next Section 3. Finally, we give some results related to two-dimensional
integrals in the last Section 4.

1. Formulation of the main results
Let P be the polynomial given by
Pz, Ab) = (Azx,x) + (b, x),

where A = (ajm) | is a symmetric k x k matrix with real entries, b := (b1, b, ...,b;) € R*

and (+,-) is the inner product of the corresponding vectors. Consider the trigonometric integral

k
l,m=

T(A,b) = /Rk' exp (1P(x, A,b))xo(x)dz,

where @) is a compact set and xg () is its characteristic function.
Consider the integral

0 — / IT(A, b)|Pdb da,
RN

where db = dbidby ... dby, and da =[]  daym.
1<I<m<k
The following is true:

Theorem 1.1. Let Q be a compact set, then the integral 8 converges, whenever p > 2k 4+ 2 and
if Q contains an interior point z° and there exists a line | passing through point £° such that
the boundary of the set {INQ} contains only a finite number of points, then the integral diverges
provided p < 2k + 2. In particular, if Q = [0,1]%, then v = 2k + 2.

1. The case when P is a homogeneous polynomial of the second order

Now suppose that P(x, A) = (Axz,x). In [9] it has been proved that if @ is a quadratic
polynomial in R2, then for p > 4 the 6 integral converges and when p < 4 the 6 integral diverges.
In this paper we extend those results to the case when Q is a polyhedron in R¥.

By polyhedron we mean a finite union of nondegenerate simplexes [5].

Theorem 1.2. If P(z,A) = (Az,x) and Q is a polyhedron, then for p > 2k the integral 0
converges. If Q = [0,1])%, then for p < 2k the integral 0 diverges.

Remark 1. In this case, we cannot apply the results of [3] as the corresponding set {z;z;}/';_;
is not a smooth surface.

Remark 2. Depending on the set ), the exponent p may be smaller than 2k. For example, if
k =2 and @ is a sufficiently small square centered at (1,1), then it can be proved that for p > 3
the integral 6 converges.
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2. Preliminaries

Consider the following integral
T (A,b) = / exp (1P(z, A,b) — (z,x))dx.
Rk‘,

It is easy to check that this integral, whose calculation details are given in [2], is absolutely and
uniformly converges with respect to the parameters A and b.

Lemma 2.1. The following equality holds

(T =iA)b.b)

Too (A, b) = (27) 2 (det(I — iA)) " 2exp (— : ),
where the square root is determined in the following way
(det(T —iA)) ™2 i= (1—iX) "3 - (1—idg) 2 ... (1—idg) "2,

with A1, ..., g being eigenvalues of A. The branch cut of the multiply-valued function 273 s
taken on the complex plane by cutting the negative part of the real axis and 172 = 1.

Lemma 2.1 is proved by reducing A to the diagonal form. Consequently, the calculation of
the integral is reduced to a one-dimensional integral and it is explicitly calculated (see. [1]).
Obviously, the following equations are satisfied:
on—1 p
((I —iA) "b,b)

(1 +A4%) 'b,b)p
T )

= exp(f 4 ),

exp (—

2y~ 1 )% (de 214
[ (AT by o rdetTe h
Rk

Let us introduce the following notation:
R
RN
k(k+2)

2
Proposition 1. The integral 0, converges when p > 2k + 2 and diverges when p < 2k + 2.

where N =

Due to Lemma 2.1, the proof of the Proposition 1 comes by studying the following integral

da
oo = c(p) / (det(T + A2)) 55 ¥

RN—k

where ¢(p) is some positive number.

As the determinant is an invariant of the orthogonal group, it is convenient to integrate it
first by the orbits of the orthogonal group and then by the quotient space, e.g. over fundamental
domain with respect to action of the orthogonal group.

Let M be the set of symmetric matrices with real entries and G = SOy, be a special subgroup
of orthogonal matrices. This group naturally acts in the space M as g(A) = g* Ag, where g€ SOy,
and Ae M.

—491 —



Isroil A.Ikromov... On the Convergence Exponent of the Special Integral. ..

It is known that for any real symmetric matrix A, there exists g€ G such that
g(A) = diag(A1, ..., A\x), where diag(A1,..., ;) is a diagonal matrix with diagonal elements
A1,...,Ak. In other words for any matrix A there exists g€ G such that A = gtAg, where
A =diag(A1,..., ). Hence it is possible to define a surjective smooth map

d:RFxG—M

which is defined by the formula ®(A, g) = g'Ag.
Let da = daqiA ... Aday, be the standard volume form in the space M. We can define the
image of this form under the map ®, denoted by ®*dac AN ~*(R¥x SO},).

Lemma 2.2. The following equality holds

o'da= J[ Am—N)dMA.. Ad\Aw,

1<i<m<k
where w is the volume form on the orthogonal group SOy.

Lemma 2.2 can be proved by using the zero sets of the Jacobian of the map ®. Note that the

equality [ (Am — )2 = pa()) holds, where pa()) is the discriminant of the characteristic
1<i<m<k
polynomial of the matrix A.

By Lemma 2.1 the integral (3) can be rewritten as

da 1<zl_I <k|/\m_)\l|

St<ms
/ (det(I +A2) = ) I Q+2)T P A / -
RNk RE 1<k SOk

From the last equality, it follows that the convergence of the integral (3) comes from the inves-
tigation of the convergence of the following integral

[T A=Al
1<l<m<k
= = dMA ... Ndg.
/ I (A= ’
RF 1<I<k

Note that this integral converges when p > 2k 4 2 and diverges when p < 2k + 2 and this proves
the Proposition 1. O

3. Proofs of the main results

Proof of the Theorem 1.1. The upper bound for v follows from the main Theorem 1.1 of paper [3].
Consider the following subset Q(ay1) in RY~1:

I b aiay; 2bjay;
late| + |ars| + - + |awk] < cra11, —5 < — < ——, |a; — <o, | — I< cq,
2 an 4 ain
where [ = 2,...,n and ¢y, ¢y are sufficiently small fixed positive numbers and a1; > 1.

Lemma 3.1. There is a positive number ¢ such that, the following equality holds:

(Qa11)) = - afy,

for the Lebesque measure of p of the set Q(aq1).
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Proof. Consider the following maps:
gll(Aa bla ey bk) = aiy,

fl(Aabla"'7bk) = bl;

2b
€ (A, by, .. by) = by — 2L
aii
a11a14
glj(A’bl"'”bk):alj*&’
ail

i<l §1=2,3,... k.

Jacobian of this map is equal to +1.
Denote by Q(&11) the image of the map. Since the Jacobian is 1, then we have

1(Qa11)) = p(Q(é11))-

It is easy to verify that for the set Q(&;1) with

|2 |+ &3 |+ + [ & |[<er-an,

BRI
2 & 4’
1€ 1< &yl <ea, j<I, 41=23,..k
we have
p(Q2(én) = C‘ffl = c~a’f1.
Hence,

p(Qa11)) = c- afy.
O

Lemma 3.2. There exists a positive number L such that when a1 > L and (A,b)€ Q(a11) for
the integral T(A,b) the following asymptotic equality holds

T(A,b) = C(AL’ ) +0 (1> as ay;—+oo.
af a1

Moreover, there exists a positive number 6 such that for any (A,b)€ Q(a11), the following in-
equality holds:
|e(A,b)| > 6.

Proof. Lemma 3.2 is proved by the method of stationary phases. Note that for the sufficiently

small ¢q, co and for the sufficiently large L, the phase has oscillation only in the x; direction on

the set (A,b) € Q(a11). Consequently, for fixed values of zo, ..., x,€ [0,1], the non-degenerated

critical point x1(A4,b, xa,...,2,) lies in (0, 1). ]
Finally, for integral 8 we have the following lower bound:

0 >/ / IT(A,b)[Pdbda > 5c/ a7 % day,.
L Q(ai1) L

Thus, when p < 2k + 2 the last integral diverges, which proves the Theorem 1.1. m|
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Proof of the Theorem 1.2. We use the classical Young inequality.
Let f€ L,(R*) and g€ L,(R*) be arbitrary functions. The following inequality holds:

1f*gllz, <Ifllz,llgllz.

where fx*g is a convolution of the functions f and g. Moreover, constants 1<p, ¢, r<oo are related
by
1 1 1
—+l==-+-.
q p T

Let @ be a compact polyhedron in R* and

h(b):/ elx‘QXQ(x)efzm(b’I)dx.
Rk

Lemma 3.3. The following relation h€ L11o(R¥) holds true, where Li4o(R¥) := Mp=1L,(RF).

Proof. Note that, for any € > 0, Yo € L11<(R¥) (see. [4]). Then the statement of Lemma 2.1
easily follows from the Young’s inequality.
Now let us return to the proof of Theorem 1.2. According to the Plancherel theorem we have:

T(A):/ ei(Ax’I)dx:/ ei(Aw’m)XQ(x)dx:/ ei(A””’g”)_Iw‘QeWXQ(x)dac:/ f(A,b)g(b)db,

where f(A,b) = [ eiltAvm)—lel*=2mi®0) gy and G(b) = [ elol e=2mi(@) gy,
RF RF
Let ¢ > 1 be a fixed number. Then, using the Holder inequality, we have:

T < IFA e, @91z, @),

1 1
where — + — = 1.

According to Lemma 2.1 | we have

T(4)] < ="

(det(I + A2))* =24
. / D k .p 1 k
Thus, if p > 2k, then we can choose ¢ > 1 such that = — — > —. It follows that if = — — > —,
4 2q 2 4 2 2

then T € L,(R).
It remains to prove the sharpness of the result. Consider the following subset Q% (a;1) in

k(k+1
RN717 where N = %
a11015
air >0, laie| + |aws| + - + |awk| < cra11,  |ay; — TJ < cg,a1; <0
11
where [ < j=2,n, [ =2,...,n and ¢y, co are sufficiently small fixed positive numbers.

According to the Lemma 3.1 there exist positive numbers ¢; and ¢y such that the following
equality holds for the Lebesgue measure of Q% (aj1):

p(QF (an)) = c-afy . o
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Lemma 3.4. There exists a positive number L such that when a;; > L and (A,b)e Q(ay1) for
the integral T(A) the following asymptotic equality holds

A 1

T(A) = C(l) +0 (a

2 11
aj

) as ai1—-+o0.

Moreover, there exists a positive number § such that for any (A,b)e Q% (a11) the inequality
le(A)|>d>0
holds true.

Lemma 3.4 is proved by the method of stationary phases. Note that if do > 0 and §; < 0 are
fixed numbers then the following relation holds true
S2V/X
/ cosy?dy = c(81, 02, \)
LIRVAN

and there exist Ao, € > 0 such that the inequality ¢(d1, 2, \) = & > 0 holds for all A > A.
Indeed, we have the following relation

S2v/A
. ’ 9 V2T
lim cosy“dy = —.
A—+oo 2
LIRVON
Note that, for sufficiently small ¢1, c3 at A € Q% (a11) and for sufficiently large L, the phase has
oscillations only in the z; direction. Also, for fixed values x5, ..., x,€ [0, 1], the nondegenerate
critical point z1(A,b, xa,...,x,) lies inside (0, 1).
Finally, for the integral 8, we have the following lower bound:
9] [eS) kP _1
0> / / |T(A)Pda > 50/ ay; 2 daqs.
L Ja(an) L
Thus, the last integral diverges, whenever p < 2k. The Theorem 1.2 is proved. O

4. Two-dimensional case

Note that in the homogeneous case the results of [3] are not applicable. The proof of
Theorem 1.2 essentially uses the property Yo € Li4o(RF).

In Lebedev’s paper, it is given an example of the domain 9D € C''*, where w is the continuity
module of the gradient ¢ that locally defines 0D, such that Xo € Li40(R¥). Therefore, we can
assume that D is a compact domain with sufficiently smooth boundary.

The following is true

Theorem 4.1. Let D be a compact domain such that Xp € Ly(R?) and T(A) = [ 'A% dy,
D

2

Then T € Lp(R3) for p > 6 — =. Moreover, if Xp € L1,0(R?), then for any p > 4, the inclusion
q

T € L,(R3) is valid.

Remark 3. From the results given in [4] it follows that there exists a domain D other than a
polygon such that Yo € L140(R?).

Corollary 1. If D ¢ R? is a compact set such that 9D C C!, then for p > 4.5 the relation
T € L,(R?) holds.
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Amnnoranus. B crarbe paccmarpuBaercs npobsieMa CyMMUPYEMOCTH JJjIsi TPUTOHOMETPHYIECKUX HHTE-
I'PAJIOB € KBaIpaTu4HOi ¢dazoii. AHajOrmIHAs 33298 PACCMOTPEHA B paborax [7-9] B 4acTHBIX Cirydasix.
Hain pesymbraTsr 0000IaI0T Pe3yabTATH 9TUX PAOOT Ha KPATHBIE TPUTOHOMETPUYIECKIE MWHTETPAJIBI.

KurodyeBrle ciioBa: TPUTOHOMETPUYECKUN HHTErpaJ, SKCIIOHEHT, CyMMa, (a3a, MHOTOUJIEH.
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