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Introduction

Let P (x, s) ∈ R[x] (where x ∈ Rk) be a polynomial with real coefficients s ∈ RN . We consider
the trigonometric integral given by

T (s) =

∫
Q

exp(iP (x, s))dx, (1)

where Q ⊂ Rk is a compact set.
Problems related to such kind of integrals arise in mathematical physics (see [1]), harmonic

analysis (see [2–5]), analytic number theory (see [6–11]) and so on. Surely, the given references
are not complete.
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One of the well known problems related to the trigonometric integrals is the issue on conver-
gence of the special integral of the Tarry problem, which is given by the following:

θ =

∫
RN

|T (s)|pds, with Q = [0, 1]k. (2)

The integral θ arises as the coefficient of asymptotic representation for a number of integer
solutions of a Diophantine system [2, 6, 7]. Therefore, it is important to find a minimal value of
the parameter p, where the special integral is convergent, which is also essential in the Fourier
restriction problem in harmonic analysis [3].

Definition. A real number γ is called to be a convergence exponent of the special integral if for
every p > γ the integral (2) is convergent and for every p < γ it is divergent. In other words
γ = inf{p : T ∈ Lp(RN )}.

It should be noted that the convergence exponent essentially depends on the form of the
polynomials P (x, s). Thus the main problem can be formulated as:

Problem: Find the number γ.
This problem was considered by I. M.Vinogradov [11] in connection with the problems of

analytic number theory. He obtained an upper bound for the number γ in the case k = 1. This
bound was improved in [10].

The exact value of γ was indicated in [6] for the case k = 1. It is interesting to note that in
one-dimensional case depending on form of the polynomial P (x, s) the exact value of γ can be
expressed by the sum of exponents of the non-trivial terms of the polynomial P (x, s). Moreover,
it was proved un upper bound for the number γ in multidimensional cases.

It should be noted that, in [12] a lower bound was found for the number γ. Moreover, it was
found the number γ provided that the coefficients of the polynomial vary in some subspace of
RN . Similar problems were considered in the works [13, 14, 15].

In [7] a lower bound was obtained for γ and also, it was investigated analogical problem for
more subtle object trigonometric sums in the case k = 2. In [7] and [9] a similar problem was
considered in the case k = 2. Moreover, in [7], it is shown that if P is a homogeneous quadratic
polynomial and k = 2, then γ = 4 in the case when Q = [0, 1]2, more precisely, the special
integral θ is convergent if p > 4 and divergent if p 6 4.

It was interesting to extend the results proved by L.G .Arkhipova, V. N.Chubarikov related
to trigonometric integrals to multidimensional case.

In this paper we study the problem in the classical setting. In other words, P is a quadratic
polynomial function and Q = [0, 1]k is the unit cube and also for the case when Q is a compact
domain. Analogical problem was considered by J. Makenhaupt [2], who obtain the number γ in
the case when the polynomial P (x, s) satisfies some "non-degeneracy" condition.

It should be noted that the condition of J. Makenhaupt does not hold for the general case
(see [2]). Actually, J.Mokenhaupt used an interesting approach. He computed the multidi-
mensional trigonometric integral, for which the amplitude function is the gauss function. Then
he be able to get the sharp value of the convergence exponent for some cases. It should be
noted that using the gauss functions to investigate behavior of oscillatory integrals goes back
to E. M. Stein [1]. We obtain the exact value of γ, whenever P is a homogeneous polynomial of
degree two.

We use the idea of J.Makenhaupt and then we able to investigate the obtained integrals. We
observe that the integral over RN can be written as an iterated integral over the orbit of the
orthogonal group and then over the corresponding fundamental domain. It is interesting that the
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integrant in the trigonometric integrals with quadratic phase with special amplitude function,
more precisely gauss functions, is invariant under action of the orthogonal group. Thus, our
approach is natural in this case. Unfortunately, it seems such approach does not work for
trigonometric integrals with more general polynomial phase functions.

The paper is organized as follows in the next Section 1 we formulate our main results. In the
next Section 2 we give some auxiliary results on integrals. In particular, we obtain transformation
of the volume form under the natural action of the orthogonal group. Then we give a proof of
our main results in the next Section 3. Finally, we give some results related to two-dimensional
integrals in the last Section 4.

1. Formulation of the main results

Let P be the polynomial given by

P (x,A, b) = (Ax, x) + (b, x),

where A = (alm)kl,m=1 is a symmetric k × k matrix with real entries, b := (b1, b2, . . . , bk) ∈ Rk

and (·, ·) is the inner product of the corresponding vectors. Consider the trigonometric integral

T (A, b) =

∫
Rk

exp (iP (x,A, b))χQ(x)dx,

where Q is a compact set and χQ(x) is its characteristic function.
Consider the integral

θ =

∫
RN

|T (A, b)|pdb da,

where db = db1db2 . . . dbk and da =
∏

16l6m6k

dalm.

The following is true:

Theorem 1.1. Let Q be a compact set, then the integral θ converges, whenever p > 2k + 2 and
if Q contains an interior point x0 and there exists a line l passing through point x0 such that
the boundary of the set {l∩Q} contains only a finite number of points, then the integral diverges
provided p 6 2k + 2. In particular, if Q = [0, 1]k, then γ = 2k + 2.

1. The case when P is a homogeneous polynomial of the second order

Now suppose that P (x,A) = (Ax, x). In [9] it has been proved that if Q is a quadratic
polynomial in R2, then for p > 4 the θ integral converges and when p 6 4 the θ integral diverges.
In this paper we extend those results to the case when Q is a polyhedron in Rk.

By polyhedron we mean a finite union of nondegenerate simplexes [5].

Theorem 1.2. If P (x,A) = (Ax, x) and Q is a polyhedron, then for p > 2k the integral θ
converges. If Q = [0, 1]k, then for p 6 2k the integral θ diverges.

Remark 1. In this case, we cannot apply the results of [3] as the corresponding set {xixj}ni6j=1

is not a smooth surface.

Remark 2. Depending on the set Q, the exponent p may be smaller than 2k. For example, if
k = 2 and Q is a sufficiently small square centered at (1, 1), then it can be proved that for p > 3

the integral θ converges.
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2. Preliminaries

Consider the following integral

T∞(A, b) =

∫
Rk

exp (iP (x,A, b)− (x, x))dx.

It is easy to check that this integral, whose calculation details are given in [2], is absolutely and
uniformly converges with respect to the parameters A and b.

Lemma 2.1. The following equality holds

T∞(A, b) = (2π)
k
2 (det(I − iA))

− 1
2 exp

(
− ((I − iA)

−1
b, b)

4

)
,

where the square root is determined in the following way

(det(I − iA))
− 1

2 := (1− iλ1)
− 1

2 · (1− iλ2)
− 1

2 · . . . · (1− iλk)
− 1

2 ,

with λ1, . . . , λk being eigenvalues of A. The branch cut of the multiply-valued function z−
1
2 is

taken on the complex plane by cutting the negative part of the real axis and 1−
1
2 = 1.

Lemma 2.1 is proved by reducing A to the diagonal form. Consequently, the calculation of
the integral is reduced to a one-dimensional integral and it is explicitly calculated (see. [1]).

Obviously, the following equations are satisfied:∣∣∣∣∣exp (− ((I − iA)
−1

b, b)

4

)∣∣∣∣∣
p

= exp(− ((I +A2)
−1

b, b)p

4
),

∫
Rk

exp
(
− ((I +A2)

−1
b, b)p

4

)
db =

(8π)
k
2 (det(I +A2))

1
2

p
k
2

.

Let us introduce the following notation:

θ∞ =

∫
RN

|T∞(A, b)|pdb da,

where N =
k(k + 2)

2
.

Proposition 1. The integral θ∞ converges when p > 2k + 2 and diverges when p 6 2k + 2.

Due to Lemma 2.1, the proof of the Proposition 1 comes by studying the following integral

θ∞ = c(p)

∫
RN−k

da

(det(I +A2))
p−2
4

, (3)

where c(p) is some positive number.
As the determinant is an invariant of the orthogonal group, it is convenient to integrate it

first by the orbits of the orthogonal group and then by the quotient space, e.g. over fundamental
domain with respect to action of the orthogonal group.

Let M be the set of symmetric matrices with real entries and G = SOk be a special subgroup
of orthogonal matrices. This group naturally acts in the space M as g(A) = gtAg, where g∈ SOk

and A∈ M .
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It is known that for any real symmetric matrix A, there exists g∈ G such that
g(A) = diag(λ1, . . . , λk), where diag(λ1, . . . , λk) is a diagonal matrix with diagonal elements
λ1, . . . , λk. In other words for any matrix A there exists g∈ G such that A = gtΛg, where
Λ = diag(λ1, . . . , λk). Hence it is possible to define a surjective smooth map

Φ : Rk×G 7→M

which is defined by the formula Φ(Λ, g) = gtΛg.
Let da = da11∧ . . .∧dakk be the standard volume form in the space M . We can define the

image of this form under the map Φ, denoted by Φ∗da∈∧N−k(Rk×SOk).

Lemma 2.2. The following equality holds

Φ∗da =
∏

16l<m6k

(λm − λl)dλ1∧ . . .∧dλk∧ω,

where ω is the volume form on the orthogonal group SOk.

Lemma 2.2 can be proved by using the zero sets of the Jacobian of the map Φ. Note that the
equality

∏
16l<m6k

(λm −λl)
2 = ρA(λ) holds, where ρA(λ) is the discriminant of the characteristic

polynomial of the matrix A.
By Lemma 2.1 the integral (3) can be rewritten as

∫
RN−k

da

(det(I +A2))
p−2
4

=

∫
Rk

∏
16l<m6k

|λm − λl|∏
16l6k

(1 + λl
2)

p−2
4

dλ1∧ . . .∧dλk

∫
SOk

ω.

From the last equality, it follows that the convergence of the integral (3) comes from the inves-
tigation of the convergence of the following integral

∫
Rk

∏
16l<m6k

|λm − λl|∏
16l6k

(1 + λl
2)

p−2
4

dλ1∧ . . .∧dλk.

Note that this integral converges when p > 2k + 2 and diverges when p 6 2k + 2 and this proves
the Proposition 1. 2

3. Proofs of the main results

Proof of the Theorem 1.1. The upper bound for γ follows from the main Theorem 1.1 of paper [3].
Consider the following subset Ω(a11) in RN−1:

|a12|+ |a13|+ · · ·+ |a1k| < c1a11, −1

2
<

b1
a11

< −1

4
, |alj −

a1la1j
a11

|6 c2, |bl −
2bla1l
a11

|6 c2,

where l = 2, . . . , n and c1, c2 are sufficiently small fixed positive numbers and a11 > 1.

Lemma 3.1. There is a positive number c such that, the following equality holds:

µ(Ω(a11)) = c · ak11,

for the Lebesgue measure of µ of the set Ω(a11).
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Proof. Consider the following maps:

ξ1l(A, b1, . . . , bk) = a1l,

ξ1(A, b1, . . . , bk) = b1,

ξl(A, b1, . . . , bk) = bl −
2b1a1l
a11

,

ξlj(A, b1, . . . , bk) = alj −
a1la1j
a11

,

j 6 l, j, l = 2, 3, . . . , k.

Jacobian of this map is equal to ±1.
Denote by Ω(ξ11) the image of the map. Since the Jacobian is ±1, then we have

µ(Ω(a11)) = µ(Ω(ξ11)).

It is easy to verify that for the set Ω(ξ11) with

| ξ12 | + | ξ13 | + · · ·+ | ξ1k |< c1 · a11,

−1

2
<

ξ1

ξ11
< −1

4
,

| ξl | 6 c2, | ξlj | 6 c2, j 6 l, j, l = 2, 3, . . . , k

we have
µ(Ω(ξ11) = c · ξk11 = c · ak11.

Hence,
µ(Ω(a11)) = c · ak11.

2

Lemma 3.2. There exists a positive number L such that when a11 > L and (A, b)∈ Ω(a11) for
the integral T (A, b) the following asymptotic equality holds

T (A, b) =
c(A, b)

a
1
2
11

+O

(
1

a11

)
as a11→+∞.

Moreover, there exists a positive number δ such that for any (A, b)∈ Ω(a11), the following in-
equality holds:

|c(A, b)| > δ.

Proof. Lemma 3.2 is proved by the method of stationary phases. Note that for the sufficiently
small c1, c2 and for the sufficiently large L, the phase has oscillation only in the x1 direction on
the set (A, b) ∈ Ω(a11). Consequently, for fixed values of x2, . . . , xn∈ [0, 1], the non-degenerated
critical point x1(A, b, x2, . . . , xn) lies in (0, 1). 2

Finally, for integral θ we have the following lower bound:

θ >
∫ ∞

L

∫
Ω(a11)

|T (A, b)|pdb da > δc

∫ ∞

L

a
k− p

2
11 da11.

Thus, when p 6 2k + 2 the last integral diverges, which proves the Theorem 1.1. 2
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Proof of the Theorem 1.2. We use the classical Young inequality.
Let f∈ Lp(Rk) and g∈ Lr(Rk) be arbitrary functions. The following inequality holds:

∥f∗g∥Lq 6 ∥f∥Lp∥g∥Lr ,

where f∗g is a convolution of the functions f and g. Moreover, constants 16p, q, r6∞ are related
by

1

q
+ 1 =

1

p
+

1

r
.

Let Q be a compact polyhedron in Rk and

h(b) =

∫
Rk

e|x|
2

χQ(x)e
−2πi(b,x)dx.

Lemma 3.3. The following relation h∈ L1+0(Rk) holds true, where L1+0(Rk) := ∩p>1Lp(Rk).

Proof. Note that, for any ε > 0, χ̂Q ∈ L1+ε(Rk) (see. [4]). Then the statement of Lemma 2.1
easily follows from the Young’s inequality.

Now let us return to the proof of Theorem 1.2. According to the Plancherel theorem we have:

T (A) =

∫
Q

ei(Ax,x)dx =

∫
Rk

ei(Ax,x)χQ(x)dx =

∫
Rk

ei(Ax,x)−|x|2e|x|
2

χQ(x)dx =

∫
Rk

f̂(A, b)g(b)db,

where f̂(A, b) =
∫
Rk

ei(Ax,x)−|x|2−2πi(x,b)dx and ĝ(b) =
∫
Rk

e|x|
2

e−2πi(x,b)dx.

Let q > 1 be a fixed number. Then, using the Hölder inequality, we have:

|T (A)| 6 ∥f̂(A, ·)∥L
q
′ (Rk)∥g∥Lq(Rk),

where
1

q
+

1

q′ = 1.

According to Lemma 2.1 , we have

|T (A)| 6 cq

(det(I +A2))
p
4−

1

2q
′
.

Thus, if p > 2k, then we can choose q
′
> 1 such that

p

4
− 1

2q′ >
k

2
. It follows that if

p

4
− 1

2q′ >
k

2
,

then T ∈ Lp(Rk).

It remains to prove the sharpness of the result. Consider the following subset Ω+(a11) in

RN−1, where N =
k(k + 1)

2
.

a11 > 0, |a12|+ |a13|+ · · ·+ |a1k| < c1a11,

∣∣∣∣alj − a1la1j
a11

∣∣∣∣6 c2, a1l < 0

where l 6 j = 2, n, l = 2, . . . , n and c1, c2 are sufficiently small fixed positive numbers.
According to the Lemma 3.1 there exist positive numbers c1 and c2 such that the following

equality holds for the Lebesgue measure of Ω+(a11):

µ(Ω+(a11)) = c · ak−1
11 . 2
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Lemma 3.4. There exists a positive number L such that when a11 > L and (A, b)∈ Ω(a11) for
the integral T (A) the following asymptotic equality holds

T (A) =
c(A)

a
1
2
11

+O

(
1

a11

)
as a11→+∞.

Moreover, there exists a positive number δ such that for any (A, b)∈ Ω+(a11) the inequality

|c(A)| > δ > 0

holds true.

Lemma 3.4 is proved by the method of stationary phases. Note that if δ2 > 0 and δ1 < 0 are
fixed numbers then the following relation holds true

δ2
√
λ∫

δ1
√
λ

cos y2dy = c(δ1, δ2, λ)

and there exist λ0, ε > 0 such that the inequality c(δ1, δ2, λ) > ε > 0 holds for all λ > λ0.

Indeed, we have the following relation

lim
λ→+∞

δ2
√
λ∫

δ1
√
λ

cos y2dy =

√
2π

2
.

Note that, for sufficiently small c1, c2 at A ∈ Ω+(a11) and for sufficiently large L, the phase has
oscillations only in the x1 direction. Also, for fixed values x2, . . . , xn∈ [0, 1], the nondegenerate
critical point x1(A, b, x2, . . . , xn) lies inside (0, 1).

Finally, for the integral θ, we have the following lower bound:

θ >
∫ ∞

L

∫
Ω(a11)

|T (A)|pda > δc

∫ ∞

L

a
k− p

2−1
11 da11.

Thus, the last integral diverges, whenever p 6 2k. The Theorem 1.2 is proved. 2

4. Two-dimensional case

Note that in the homogeneous case the results of [3] are not applicable. The proof of
Theorem 1.2 essentially uses the property χ̂Q ∈ L1+0(Rk).

In Lebedev’s paper, it is given an example of the domain ∂D ∈ C1,ω, where ω is the continuity
module of the gradient φ that locally defines ∂D, such that χ̂Q ∈ L1+0(Rk). Therefore, we can
assume that D is a compact domain with sufficiently smooth boundary.

The following is true

Theorem 4.1. Let D be a compact domain such that χ̂D ∈ Lq(R2) and T (A) =
∫
D

ei(Ax,x)dx.

Then T ∈ Lp(R3) for p > 6− 2

q
. Moreover, if χ̂D ∈ L1+0(R2), then for any p > 4, the inclusion

T ∈ Lp(R3) is valid.

Remark 3. From the results given in [4] it follows that there exists a domain D other than a
polygon such that χ̂Q ∈ L1+0(R2).

Corollary 1. If D ⊂ R2 is a compact set such that ∂D ⊂ C1, then for p > 4.5 the relation
T ∈ Lp(R3) holds.
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О показателях сходимости особого интеграла проблемы
Терри для квадратичного многочлена
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Аннотация. В статье рассматривается проблема суммируемости для тригонометрических инте-
гралов с квадратичной фазой. Аналогичная задача рассмотрена в работах [7–9] в частных случаях.
Наши результаты обобщают результаты этих работ на кратные тригонометрические интегралы.

Ключевые слова: тригонометрический интеграл, экспонент, сумма, фаза, многочлен.
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