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Abstract. In this paper, we are interested in solving an optimization nonlinear programming problem
using a logarithmic barrier interior point method, in which the penalty term is taken as a vector r ∈ Rn

+.
The descent direction has been calculated using a classical Newton method, however the step size has
been calculated with a new technique of majorant functions and a secant technique. The numerical
simulations show us the efficiency of our approach compared to the classical line search method.
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1. Introduction and preliminaries
In this paper, we are interested in the barrier logarithmic penalty method when using a new

majorant function technique instead of the classical line search method to determine the step
size ( [1, 2, 4]).

1.1. The problem formulation
The problem to be studied in this paper is as follows:{

min g(x)
x ∈ K ⊆ Rn . (P1)

In which: K = {x ∈ Rn : Bx = c, x > 0} is the set of feasible solution of (P1).

1.1.1. Assumptions

A1 g is nonlinear, convex, twice continuously differentiable function on K.

A2 B ∈ Rm×n is a full rank matrix, c ∈ Rm (m < n).

A3 There exists x0 > 0 such that Bx0 = c.
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A4 The set of optimal solutions of (P1) is nonempty and bounded.

For x∗ be an optimal solution in the problem (P1), there exists two Lagrange multipliers u∗ ∈
Rm, v∗ ∈ Rn

+ such as: 
∇g(x∗) +Btu∗ − v∗ = 0

Bx∗ = c

< v∗, x∗ >= 0

. (1)

We can write g∗ = g∗(x∗) = minx∈B∗ g(x) .
In the following, we replace the nonlinear constrained problem (P1) with a perturbed problem.

What is new in our work is that the term of penalty is taken as a vector r ∈ Rn
+.

1.2. The perturbed problem
In this section, we firstly define the function ψ : Rn

+×Rn → R∪{+∞} which is convex, lower
semicountinuous and proper function.

ψ defined as follows:

ψ(r, x) =


n∑

i=1

ri ln(ri)−
n∑

i=1

ri ln(xi) if x, r > 0

0 if r = 0, x > 0

+∞ if not

. (2)

Now, the convex, lower semicountinuous and proper function
ϕ : Rn

+ × Rn → R ∪ {+∞} is defined by:

ϕr(x) = Φ(r, x) =

 g(x) +

n∑
i=1

ri ln(ri)−
n∑

i=1

ri ln(xi) if Bx = c; x, r > 0

+∞ if not
. (3)

Finally, the convex function m is defined by:

m(r) = inf
x
{ϕr(x); x ∈ Rn} (P2)

m is clearly convex since of the convexity of ϕr.

We notice that the two problems (P1) and (P2) are coincided when ∥ r ∥→ 0, then g∗ = m(0).

Our idea is to develop a new approach, which consist to determine the step size using a
majorant function technique. We begin by studying the existence and the uniqueness of the
optimal solution of the perturbed problem (P2) followed by the convergence study. The resolution
of the perturbed problem is based on the Newton descent direction and the majorant function
technique to determine the step size.

1.2.1. Existence and uniqueness of optimal solution of perturbed problem

In order to prove that (P2) admits one unique optimal solution, suffice it to prove that the
cone of recession of ϕr is reduced to zero.

Proof. According to the fourth assumption, (P1) admits one unique optimal solution then the
cone of recession Cg of g is reduced to zero, we have:

Cg = {d ∈ Rn : [g]∞(d) 6 0, Bd = 0, d > 0} = {0}
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[g]∞(d) is the asymptotic function of b, which define by:

[g]∞(d) = lim
t→+∞

b(x0 + td)− b(x0)

t
.

We have:

[ϕr]∞ =

{
g∞(d) if Bd = 0, d > 0

+∞ if not
.

Then we deduce that: {d ∈ Rn; [ϕr]∞ 6 0} = {0}, wich means that Cϕ = {0}.
By taking into account that ϕr is strictly convex, we come to conclusion that the perturbed

problem (P2) admits one unique optimal solution which is denoted by x(r) ∈ K, the set of
strictly feasible solution of (P2), in which

K = {x ∈ Rn : Bx = c, x > 0}.

1.2.2. Convergence of perturbed problem

According to the necessary and sufficient optimality conditions, there exists λ(r) ∈ Rm (as-
sumption 2) verify: {

∇g(x(r))− rX−1
r +Btλ(r) = 0

Bx(r)− c = 0
. (4)

In which X is the diagonal matrix with diagonal entries Xii = xi ∀i = 1, n.
We impose that

F (x(r), λ(r)) =

(
∇g(x(r))− rX−1

r +Btλ(r)

Bx(r)− c

)
= 0.

The two functions r → x(r) and r → λ(r) are differentiable on Rn
+, by using the implicit

function theorem, we get(
∇2g(x(r)) +RX−2

r Bt

B 0

)(
∇x(r)
∇λ(r)

)
=

(
X−1

r

0

)
, (5)

where R is the diagonal matrix with diagonal entries Rii = ri ∀i = 1, n. And

∇x(r) =



∂x1
∂r1

∂x1
∂r2

· · · ∂x1
∂rn

∂x2
∂r1

∂x2
∂r2

· · · ∂x2
∂rn

...
...

. . .
...

∂xn
∂r1

∂xn
∂r2

· · · ∂xn
∂rn


, ∇λ(r) =



∂λ1
∂r1

∂λ1
∂r2

· · · ∂λ1
∂rn

∂λ2
∂r1

∂λ2
∂r2

· · · ∂λ2
∂rn

...
...

. . .
...

∂λm
∂r1

∂λm
∂r2

· · · ∂λm
∂rn


.

Remember that the function m wich is differentiable on Rn
+ is define by:

m(r) = g(x(r)) +

n∑
i=1

ri ln(ri)−
n∑

i=1

ri ln(xi(r)).
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We have
∇m(r) = (∇x(r))t

(
∇g(x(r))−X−1

r r
)
+ (e+ z1 − z2).

In which e = (1, 1, . . . , 1)t, z1 = (ln r1, ln r2, . . . , ln rn)
t and z2 = (lnx1, lnx2, . . . , lnxn)

t.
According to (4) and (5), we get

∇m(r) = −(∇x(r))tBtλ(r) + (e+ z1 − z2) =

= −(B∇x(r))tλ(r) + (e+ z1 − z2) =

= e+ z1 − z2.

For x(r) ∈ K and since of the convexity of m, we get:

m(0) > m(r)− rt∇m(r) >

> g(x(r)) +

n∑
i=1

ri ln ri −
n∑

i=1

ri lnxi(r)− rt(e+ z1 − z2) >

> g(x(r)) +

n∑
i=1

ri ln ri −
n∑

i=1

ri lnxi(r)−
n∑

i=1

ri −
n∑

i=1

ri ln ri +

n∑
i=1

ri lnxi(r) >

> g(x(r))−
n∑

i=1

ri.

Taking into account that: g∗ = m(0) = minx g(x(r)).

Then, we come conclusion g∗ 6 g(x(r)) 6 g∗ +
n∑

i=1

ri.

For the rest, we are interesting on the trajectory of x(r) when ∥ r ∥ tends to zero.

a) The case in which g is only convex.
This case is a little complicated, we impose that ∥r∥∞ 6 1, and for that we note

x(r) ∈ {x; Bx = c, x > 0, g(x) 6 n+ g∗} .

This set is convex, bounded and non empty, its cone of recession is reduced to zero.
It follows that each accumulation point of xr is an optimal solution of (P1) only if ∥r∥ → 0.

b) The case in which g is strongly convex with coefficient γ strictly positif.
We have

n∑
i=1

ri > g(x(r))− g(x∗) > < ∇g(x∗), x(r)− x∗ > +
γ

2
∥ x(r)− x∗ ∥2 .

Using (1), we obtain
n∑

i=1

ri > < v∗, x(r) > > 0.

Then

∥ x(r)− x∗ ∥ 6
(
2

γ

n∑
i=1

ri

) 1
2

.

We come to conclusion that the convergence of x(r) to x∗ is of order
1

2
.

Remark 1.1. If the problem (P1) or the perturbed problem (P2) will have an optimal solution
and the values of their objective functions are equal and finite, the other problem has an optimal
solution.
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The general prototype of our method is as follows:

0 Starting by (r0, x0) ∈ Rn
+ ×K.

1 Find an approximate solution of (P2) has been noted by xk+1 such that:

ϕ(rk, xk+1) 6 ϕ(rk, xk).

2 Take: ∥rk+1∥∞ 6 ∥rk∥∞.

The iterations continue until we obtained the approximate solution.

2. Some useful inequalities
Taking into consideration the statistical serie of n real numbers {z1, . . . , zn}, we define their

arithmetic mean z and their standard deviation σz. These quantities are defined as follows:

z =
1

n

n∑
i=1

zi, σ2
z =

1

n

n∑
i=1

z2i − z2 =
1

n

n∑
i=1

(zi − z)2.

For the following result see [3, 6]

Proposition 2.1.
z − σz

√
n− 1 6 min

i
zi 6 z − σz√

n− 1
,

z +
σz√
n− 1

6 max
i
zi 6 z + σz

√
n− 1 .

In the case where zi are all positifs, we deduce that:

ln
(
z − σz

√
n− 1

)
6

n∑
i=1

ln(xi) 6 ln
(
z + σz

√
n− 1

)
.

Theorem 2.1 ( [2]). Assume that zi > 0 for all i = 1, n, then:

A1 6
n∑

i=1

ln(zi) 6 A2,

with:
A1 = (n− 1) ln

(
z +

σz√
n− 1

)
+ ln

(
z − σz

√
n− 1

)
,

A2 = ln
(
z + σz

√
n− 1

)
+ (n− 1) ln

(
z − σz√

n− 1

)
.

3. Solving the perturbed problem
Consider the following perturbed problem defined as follows:

m(r) = min
x

{
ϕr(x) = g(x) +

n∑
i=1

ψ(ri, xi) : Bx = c, x > 0

}
.

In this section we are interested in the numerical solution of the problem (P1), we begin our
work by calculate the descent direction and the step size in which we use a new technique of
majorant functions.
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3.1. The descent direction and line search function

A descent direction d can be computed by various methods, in this task we choose the
Newton’s method and therefore d is given by solving the following quadratic convex minimization
problem: {

mind

(1
2
< ∇2ϕr(x)d, d > + < ∇ϕr(x), d >

)
Bd = 0

.

According to the necessary and sufficient optimality conditions, there exists µ ∈ Rm such
that: {

∇2ϕr(x)d+∇ϕr(x) +Btµ = 0
Bd = 0

.

Which is equivalent to(
∇2g(x) +RX−2 Bt

B 0

)(
d
µ

)
=

(
X−1r −∇g(x)

0

)
.

From which we get

(
dt 0

)(∇2g(x) +RX−2 Bt

B 0

)(
d
µ

)
=
(
dt 0

)(X−1r −∇g(x)
0

)
.

Then

< ∇2g(x)d, d > + < ∇g(x), d >=< r,X−1d > − < RX−1d,X−1d > . (6)

This system is equivalent to(
X∇2g(x)X +R XBt

BX 0

)(
X−1d
µ

)
=

(
r −X∇g(x)

0

)
. (7)

The Newton descent direction being calculated.

3.2. Computation of the step size

Generally, the most used methods in the search line are the classical itterative methods as
Armijo–Goldstein, Wolfe, Fibonnaci, . . . , but the computational cost in there becomes high when
n is very large.

In this part, we are interested to avoid this difficulty. The method that we use bellow is simple
and more effective than the first, it consists on the use of majorant function of the function θ.
The choice of the step size t∗ > 0 must give us a significant decrease of the convex function θ,
we have:

θ0(t) = ϕr(x+ td)− ϕr(x) =

= g(x+ td)− g(x)−
n∑

i=1

riln(1 + tyi), y = X−1d.

According to Proposition 2.1, we have: ρ 6 mini ri 6 ri ∀i = 1, n.
In which ρ = r − σr

√
n− 1.

Then, we obtain

θ(t) =
θ0(t)

ρ
6 θ1(t) =

1

ρ
(g(x+ td)− g(x))−

n∑
i=1

ln(1 + tyi).
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We have

θ
′
(t) =

1

ρ

(
< ∇g(x+ td), d > −

n∑
i=1

ri
yi

1 + tyi

)
,

θ
′′
(t) =

1

ρ

(
< ∇2g(x+ td)d, d > +

n∑
i=1

ri
y2i

(1 + tyi)2

)
.

And

θ
′

1(t) =
1

ρ
< ∇g(x+ td), d > −

n∑
i=1

yi
1 + tyi

,

θ
′′

1 (t) =
1

ρ
< ∇2g(x+ td)d, d > +

n∑
i=1

y2i
(1 + tyi)2

.

We deduce from (6), that θ
′
(0)+θ

′′
(0) = 0, and we have θ

′′
(0) > 0 wich give us that θ

′
(0) 6 0.

Now it must to prove that θ
′

1(0) 6 0, we have:

a If yi > 0, it is clearly that θ
′

1(0) 6 0.

b If yi < 0, we deduce from (6) that θ
′

1(0)+ θ
′′

1 (0) 6 0 and as θ
′′

1 (0) > 0 we come conclusion
that θ

′

1(0) 6 0.

What is prove the significant decrease of θ1.

3.3. The first majorant function
The choice of t∗ in which θ

′
(t∗) = θ

′
(topt) = 0 consists of some numerical complications, so

generally we can’t obtain t∗ directly. To solve this problem, we propose to find an approximation
function of θ.

This method is based on the use of a majorant function θ2 of the function θ.
In the following, we take: xi = 1 + tyi, x = 1 + ty, and σx = tσy.

Applying the inequality
n∑

i=1

ln(xi) > A1 (Theorem 2.2), we get that θ1(t) 6 θ2(t) such that

θ2(t) =
1

ρ
(g(x+ td)− g(x))− (n− 1)ln(1 + tα)− ln(1 + tβ).

In which
α = y +

σy√
n− 1

, β = y − σy
√
n− 1.

We have

θ
′

2(t) =
1

ρ
< ∇g(x+ td), d > −(n− 1)

α

1 + tα
− β

1 + tβ
,

θ
′′

2 (t) =
1

ρ
< ∇2g(x+ td)d, d > +(n− 1)

α2

(1 + tα)2
+

β2

(1 + tβ)2
.

The domains of θ2 is H2 =]0, T [ in which T = max{t : 1 + tβ > 0}, this domain is content
in the domain of the line search function θ.

We notice that : θ(0) = θ1(0) = θ2(0) = 0, θ
′

1(0) = θ
′

2(0) < 0 and θ
′′

1 (0) = θ
′′

2 (0) > 0.
We prove that the strictly convex function θ2 is a good approximation of θ1 in a neighbourhood

of 0, hence the unique minimum t∗ of θ2 guarantee a significant decrease of the function θ1, and
we have the follows inequalities:

θ(t∗) 6 θ1(t
∗) 6 θ2(t

∗) < 0 .

– 534 –



Boutheina Fellahi, Bachir Merikhi A logarithmic barrier approach via majorant function . . .

3.4. Case when g is linear
We impose that g(x) = ctx, x, c ∈ Rn, the auxiliary function ω is given by the following

form:
ω(t) = nηt− (n− 1)ln(1 + tα)− ln(1 + tβ)

in which: η =
ctd

n
.

ω have the same properties as θ2, the unique root of ω
′
(t) = 0 is the minimum of θ2. The

unique t that we have guarantee a significant decrease of the function ϕr along the newton descent
direction d.

3.5. Case when g is only convex
In this case, the equation θ

′

2(t) = 0 is no longer reduces to an equation of second degree, we
thought to look at another function greater than θ2, for this we use the secant technique. Given
t ∈]0, T [ for all t ∈]0, t], we have

g(x+ td)− g(x)

ρ
6 g(x+ td)− g(x)

ρt
t.

Then the auxiliary function ω is define as follows:

ω(t) = nηt− (n− 1)ln(1 + tα)− ln(1 + tβ).

Such as, we take

η =
g(x+ td)− g(x)

nρt
,

and we calculate t∗ the root of the equation ω
′
(t) = 0.

1. If t = 1 and T > 1 then t is the optimal solution.

2. If t ̸= 1, then

a If t∗ 6 t, in this case we have θ(t∗) 6 θ1(t
∗) 6 θ2(t

∗) 6 ω(t∗), which means that we
assure a significant decrease of the function ϕr along the direction d.

b If t∗ > t, we must to choose another t ∈]t∗, T [ and calculate t∗ for the new auxiliary
function and repeat this until we have that t∗ 6 t, for example we choose

t = t∗ + ζ(T − t∗); ζ ∈ [0, 1].

3.6. Minimization of the auxiliary function ω

We have
ω(t) = nηt− (n− 1)ln(1 + tα)− ln(1 + tβ).

It is easy to calculate

ω
′
(t) = nη − (n− 1)

α

1 + tα
− β

1 + tβ
,

ω
′′
(t) = (n− 1)

α2

(1 + tα)2
+

β2

(1 + tβ)2
.

Then: ω(0) = 0, ω
′
(0) = n(η − y), ω

′′
(0) = n(y2 + σ2

x) =∥ y ∥2.
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We impose that ω
′
(0) 6 0 and ω

′′
(O) > 0.

For getting t∗, we need to calculate the root of the equation ω
′
(t) = 0 :

Equivalent to
ηαβt2 + (η(α+ β)− αβ)t+ η − y = 0

1. if η = 0, t∗ =
−y
αβ

,

2. if α = 0, t∗ =
y − η

ηβ
,

3. if β = 0, t∗ =
y − η

ηα
,

4. if ηαβ ̸= 0, in this case we have two roots of the equation of the second degree but there
is just only root t∗ which belongs to the domain of definition of ω, both roots are:

t∗1 =
1

2

(
1

η
− 1

α
− 1

β
−
√
∆

)
, t∗2 =

1

2

(
1

η
− 1

α
− 1

β
+

√
∆

)
.

In which

∆ =
1

η2
+

1

α2
+

1

β2
− 2

αβ
−
(
2n− 4

nη

)(
1

α
− 1

β

)
.

3.7. The second majorant function

Here, we thought to find another approximation of θ1 simpler than θ2 and has one logarithm.
Remember that:

θ1(t) =
1

ρ
(g(x+ td)− g(x))−

n∑
i=1

ln(1 + tyi); ρ = r − σr
√
n− 1.

Using the inequality:

n∑
i=1

ln(1 + tyi) > (∥ y ∥ +ny)t+ ln(1− t ∥ y ∥).

Then, we get a second majorant function of θ noting by θ3 such that:

θ3(t) =
1

ρ
(g(x+ td)− g(x))− (∥ y ∥ +ny)t− ln(1− t ∥ y ∥)

and
θ
′

3(t) =
1

ρ
< ∇g(x+ td), d > − ∥ y ∥ −ny + ∥ y ∥

1− t ∥ y ∥
,

θ
′′

3 (t) =
1

ρ
< ∇g(x+ td)d, d > +

∥ y ∥2

(1− t ∥ y ∥)2
.

The domains of θ3 is H3 = [0, T3[, with T3 = max{t; 1− t ∥ y ∥> 0}.
We remark that:

• θ3(0) = θ1(0) = 0,

• θ
′

3(0) =
1

ρ
< ∇g(x), d > −ny = θ

′

1(0) < 0,
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• θ
′′

3 (0) =
1

ρ
< ∇2g(x)d, d > + ∥ y ∥2= θ

′′

1 (0) > 0.

The strictly convex function θ3 is a good approximation of θ1 in a neighbourhood of 0, the unique
minimum t∗ of θ3 guarantee a significant decrease of the function θ1, and we have:

θ1(t
∗) 6 θ2(t

∗) 6 θ3(t
∗).

3.7.1. Minimization of an auxiliary function

Let us define the convex function ω2, where it’s minimum is reached at t∗.

ω2(t) = nηt− (∥ y ∥ +ny)t− ln(1− t ∥ y ∥).

It is easy to calculate

ω
′

2(t) = nη− ∥ y ∥ −ny + ∥ y ∥
1− t ∥ y ∥

,

ω
′′

2 (t) =
∥ y ∥2

(1− t ∥ y ∥)2
.

Then: ω2(0) = 0, ω
′

2(0) = n(η − y), ω
′′

2 (0) =∥ y ∥2.
We impose that ω

′

2(0) 6 0 and ω
′′

2 (O) > 0.
For getting t∗, we need to calculate the root of the equation ω

′

2(t) = 0.

4. Description of the algorithm
In this part, we present the algorithm which resume our study to obtain the optimal solution

x∗ of the problem (P1).

4.1. Algorithm
1. Input ϵ > 0, rs > 0 , x0 ∈ K, X with X(i, i) = x0(i), r ∈ Rn

+, δ ∈ [0, 1]n.

2. Iteration

* Calculate d and y = X−1d

(a) If ∥ y ∥> ϵ do

a1 Calculate η, α, β and solve the equation ω
′
(t) = 0 for obtain t∗.

a2 Calculate x = x+ t∗d, and return to (∗).
(b) If ∥ y ∥6 ϵ, we obtained a good approximation of m(r).

i If ∥r∥ > rs, r = δ × r and return to (∗).
With δ × r = (δ1 × r1, . . . , δn × rn).

ii If ∥r∥ 6 rs, Stop. We have a good approximation of the optimal solution.

5. Numerical tests
In the tables bellow, Iter represents the number of iterations to obtain x∗, Min represents

the minimum and T(s) represents the time in seconds. Method 1 corresponds to the method of
majorant function introduced in this work, method 2 corresponds to the method of majorant
function introduced in [1] and method 3 corresponds to the classical line search method.
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5.1. Examples with variable size

Example 1. Quadratic case [4]
We consider the following quadratic problem with n = m+ 2

g∗ = min{b(x) : Bx = c, x > 0}.

In which:
g(x) =

1

2
< x,Qx > .

With

Q[i, j] =


2 if i = j = 1 or i = j = m
4 if i = j and i ̸= {1,m}
2 if i = j − 1 or i = j + 1
0 otherwise

, B[i, j] =


1 if i = j
2 if i = j − 1
3 if i = j − 2
0 otherwise

.

gi = 1 ∀i = 1, n, ∀j = 1,m.
We test this example for different value of n.

Example 2. Erikson’s problem [5]
Consider the following convex problem:

g∗ = min[g(x) : Bx = c, x > 0].

Where g(x) =
n∑

i=1

xi ln
(xi
ai

)
, ai, bi ∈ R are fixed, and

B[i, j] =

{
1 if i = j or j = i+m
0 if not .

We test this example for different values of n, ai and bi.

6. Tables

Table 1. Numerical simulations for Example 1

Method 1 Method 2 Method 3
n Min Iter T(s) Min Iter T(s) Min Iter T(s)
4 0.285 8 0.0061 0.285 9 0.007 0.285 14 0.019
50 5.37 6 0.019 5.372 7 0.021 5.374 14 0.053
100 10.924 6 0.065 10.927 7 0.08 10.93 14 0.188
500 55.3722 8 14.5 55.372 7 13.8 55.374 14 29.815

Table 2. The case where ai = 1 and bi = 6,∀i = 1.n (Example 2)

Method 1 Method 2 Method 3
n Min Iter T(s) Min Iter T(s) Min Iter T(s)
10 32.94 3 0.0038 32.95 3 0.004 32.95 4 0.018
50 164.79 4 0.026 164.79 4 0.025 164.79 6 0.082
500 329.57 5 0.1 329.58 5 0.076 329.58 6 0.23
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Table 3. The case where ai = 2 and bi = 5,∀i = 1.n (Example 2)

Method 1 Method 2 Method 3
n Min Iter T(s) Min Iter T(s) Min Iter T(s)
10 0.62× 10−8 2 0.0021 0.66× 10−7 2 0.002 9.09× 10−6 3 0.01
50 0.1× 10−7 3 0.0028 0.11× 10−8 3 0.003 1.86× 10−4 4 0.07
500 0.75× 10−7 3 0.0045 0.76× 10−7 3 0.04 1.03× 10−4 5 0.22

Conclusion
The effective numerical simulations show that our approach is a very important alternative

and gives an encouraging results compared to the classical line search method. However, it
competes with the method introduced in [1] where r ∈ R.
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Сетиф 1, Сетиф, Алжир

Аннотация. В данной статье нас интересует решение оптимизационной задачи нелинейного про-
граммирования с использованием метода внутренних точек с логарифмическим барьером, в кото-
ром штрафной член берется в виде вектора r ∈ Rn

+ . Направление спуска было рассчитано с ис-
пользованием классического метода Ньютона, однако размер шага был рассчитан с использованием
новой техники мажорантных функций и техники секущих. Численное моделирование показывает
нам эффективность нашего подхода по сравнению с классическим методом линейного поиска.

Ключевые слова: нелинейное выпуклое программирование, метод логарифмических штрафов,
линейный поиск, мажорантная функция, метод секущих.
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