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Abstract. In this paper, we are interested in solving an optimization nonlinear programming problem
using a logarithmic barrier interior point method, in which the penalty term is taken as a vector r € RY.
The descent direction has been calculated using a classical Newton method, however the step size has
been calculated with a new technique of majorant functions and a secant technique. The numerical
simulations show us the efficiency of our approach compared to the classical line search method.
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1. Introduction and preliminaries

In this paper, we are interested in the barrier logarithmic penalty method when using a new
majorant function technique instead of the classical line search method to determine the step
size ([1,2,4]).

1.1. The problem formulation

The problem to be studied in this paper is as follows:

{re i (P1)

In which: K = {x € R": Bz =¢, x > 0} is the set of feasible solution of (P1).

1.1.1. Assumptions
A1l g is nonlinear, convex, twice continuously differentiable function on K.
A2 B e R™*"™ is a full rank matrix, ¢ € R™ (m < n).

A3 There exists z° > 0 such that Bz? = c.

*boutheina.fellahiQuniv-setif.dz
Tbmerikhi@univ-setif.dz
© Siberian Federal University. All rights reserved

- 528 —



Boutheina Fellahi, Bachir Merikhi A logarithmic barrier approach via majorant function. ..

A4 The set of optimal solutions of (P1) is nonempty and bounded.

For z* be an optimal solution in the problem (P1), there exists two Lagrange multipliers u* €
R™,v* € RY} such as:
Vg(z*) + Blu* —v* =0
Bz* =c . (1)
<vfx* >=0
We can write ¢* = ¢*(2*) = mingep- g(x) .
In the following, we replace the nonlinear constrained problem (P1) with a perturbed problem.
What is new in our work is that the term of penalty is taken as a vector r € R}.

1.2. The perturbed problem

In this section, we firstly define the function ¢ : R} x R"™ — RU{+oc} which is convex, lower
semicountinuous and proper function.
1 defined as follows:

zn:ri In(r;) — zn:ri In(z;) if z,r>0
P(ryz) =q = = , (2)

0 if r=0,z>0

+o00 if not

Now, the convex, lower semicountinuous and proper function
¢ :RY x R™ — RU {+00} is defined by:

n

g(z) + Zr,; In(r;) — Zm In(z;) if Be=¢; z,r>0
i=1

or(x) = O(r,z) = P . (3)

400 if not
Finally, the convex function m is defined by:

m(r) = inf{o(e); @ € R") (2)

m is clearly convex since of the convexity of ¢,.
We notice that the two problems (P1) and (P2) are coincided when || r ||— 0, then g* = m(0).

Our idea is to develop a new approach, which consist to determine the step size using a
majorant function technique. We begin by studying the existence and the uniqueness of the
optimal solution of the perturbed problem (P2) followed by the convergence study. The resolution
of the perturbed problem is based on the Newton descent direction and the majorant function
technique to determine the step size.

1.2.1. Existence and uniqueness of optimal solution of perturbed problem

In order to prove that (P2) admits one unique optimal solution, suffice it to prove that the
cone of recession of ¢, is reduced to zero.

Proof. According to the fourth assumption, (P1) admits one unique optimal solution then the
cone of recession Cj of g is reduced to zero, we have:

Oy ={d € R" : [glo(d) <0, Bd =0, d >0} = {0}
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[9]oo(d) is the asymptotic function of b, which define by:

[g]oo(d) — lim b(xO + td) — b(xO)

We have:
(6100 = Jool(d) if Bd=0,d>0
ree +o00 if not '

Then we deduce that: {d € R™; [¢,]c < 0} = {0}, wich means that Cy = {0}.

By taking into account that ¢, is strictly convex, we come to conclusion that the perturbed
problem (P2) admits one unique optimal solution which is denoted by z(r) € K, the set of
strictly feasible solution of (P2), in which

K={zeR":Bx=c, x>0}

1.2.2. Convergence of perturbed problem

According to the necessary and sufficient optimality conditions, there exists A(r) € R™ (as-
sumption 2) verify:

Vg(x(r)) —rX, 1+ BA(r) =0
{ g(x(r)) +BA) =0 0

Bz(r)—c=0

In which X is the diagonal matrix with diagonal entries X;; = z; Vi = 1, n.
We impose that

Fla(r), A(r)) = (Vg(x(r)) S Bt)\(r)> L

Bz(r)—c

The two functions » — x(r) and » — A(r) are differentiable on R}, by using the implicit
function theorem, we get

(T ) (@) = (). ®

where R is the diagonal matrix with diagonal entries R;; = 7; Vi = 1,n. And

ory  Org ory, ory Ory ory,

ory  Org ory, ory Ora ory,
Va(r) = , VA(r) =

0r, v, 0n, N O 0N,

ory  Org ory, ory Org ory,

Remember that the function m wich is differentiable on R’} is define by:

n

m(r) = g(x(r)) + Zrz‘ In(r;) — Zri In(z;(r)).

i=1
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We have
Vm(r) = (Vz(r)" (Vg(z(r) — X, 'r) + (e + 21 — 22).

In which ¢ = (1,1,...,1)t, 21 = (Inry,Inrs,....Inr,)" and 20 = (Inzy,Inz,,. .., Inx,)t.
According to (4) and (5), we get

Vm(r) =—(Va(r)'BAr) + (e + 21 — 22) =
= —(BVz(r))'A(r) + (e + 21 — 22) =
=e—+ 21 — 29.

For z(r) € K and since of the convexity of m, we get:

m(0) = m(r) —r'Vm(r) >

> g(z(r)) + Zm Inr; — Zri Inz;(r) —ri(e+ 21 — 20) >
i=1 i=1

> g(z(r)) + iri Inr; — iri Inz;(r) — Zri - iri Inr; + i” Inz;(r) >
i=1 i=1 i=1 i=1 i=1
n

> gla(r) - 3 ore
i=1

Taking into account that: ¢* = m(0) = min, g(x(r)).

Then, we come conclusion ¢* < g(z(r)) < g*+ i T

For the rest, we are interesting on the trajectory (;f: u}r(r) when || 7 || tends to zero.
a) The case in which g is only convex.

This case is a little complicated, we impose that ||r]|s < 1, and for that we note

NN

xz(r) €{x; Bt =¢, x>0, g(z) < n+g"}.

This set is convex, bounded and non empty, its cone of recession is reduced to zero.
It follows that each accumulation point of z, is an optimal solution of (P1) only if |r|| — 0.

b) The case in which ¢ is strongly convex with coefficient v strictly positif.
We have

r; = g(x(r)) —g(@*) > < Vg(z*),z(r) —z* > —|—g | 2(r) —2* ||.

K2

Using (1), we obtain

Then

1
n 2

e (2%
| z(r) —2* || < (,yz_; 1,)

1
We come to conclusion that the convergence of z(r) to z* is of order 3

Remark 1.1. If the problem (P1) or the perturbed problem (P2) will have an optimal solution
and the values of their objective functions are equal and finite, the other problem has an optimal
solution.
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The general prototype of our method is as follows:
0 Starting by (ro,z0) € R} x K.
1 Find an approximate solution of (P2) has been noted by xy1 such that:

O(ris Thg1) < O(re, Tr)-

2 Take: ||75+1loo < |7k ||0o-

The iterations continue until we obtained the approximate solution.

2. Some useful inequalities

Taking into consideration the statistical serie of n real numbers {z1, ..., z,}, we define their
arithmetic mean Z and their standard deviation o,. These quantities are defined as follows:

P IR YR

For the following result see [3, 6]

3\'—‘

Proposition 2.1.

_ . _ 0z
z—o,¥Vn—1 < minz; < 7Z— ,
7

Vvn—1

o
24—\/7271 < maxz < Z24+o0,vVn—1.
n — i

In the case where z; are all positifs, we deduce that:
ln(E—Uz Zlnxl <1 z—l—azx/n—l).
Theorem 2.1 ([2]|). Assume that z; > 0 for all i = 1,n, then:

Z A27

with:

Alz(n—l)ln(z—i— \/%) +In(z-0.vVn-1),

A=l (Z+o.v/n—1)+(n—1)ln (z— \/7%)

3. Solving the perturbed problem

Consider the following perturbed problem defined as follows:

m(r)zm@in{(/br =g(x —|—Zw Tiy i) :c,x20}.

In this section we are interested in the numerical solution of the problem (P1), we begin our
work by calculate the descent direction and the step size in which we use a new technique of
majorant functions.
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3.1. The descent direction and line search function

A descent direction d can be computed by various methods, in this task we choose the
Newton’s method and therefore d is given by solving the following quadratic convex minimization
problem:

{ ming (% < V2¢,(x)d,d > + < Vp(z),d > ) .
Bd=0

According to the necessary and sufficient optimality conditions, there exists p € R™ such
that:
V¢ (x)d + Vo (x) + B =0
Bd=0 '

Which is equivalent to

(Vzg(x);— RX2 %) (Z) _ <X‘1TBV9(:E)> .

From which we get

(@ o) (VQg(ngXQ Jf)t> (Z>:( & o) (XerVg(I))

Then
< V%g(2)d,d >+ < Vg(z),d >=<r, X 'd>—- < RX'd, X 'd>. (6)

This system is equivalent to

<Xv2ggc;(X +R XOBt) (X/jd) _ <r - X()Vg(x)) | -

The Newton descent direction being calculated.

3.2. Computation of the step size

Generally, the most used methods in the search line are the classical itterative methods as
Armijo—Goldstein, Wolfe, Fibonnaci, . .., but the computational cost in there becomes high when
n is very large.

In this part, we are interested to avoid this difficulty. The method that we use bellow is simple
and more effective than the first, it consists on the use of majorant function of the function 6.
The choice of the step size t* > 0 must give us a significant decrease of the convex function 6,

we have:
eo(t) = ¢r (x + td) ¢7( ) =
=g(z +td) — Zrlln (1 + ty;), y=X"td.

3

According to Proposition 2.1, we have: p < min;r; <r; Vi=1,n.

In which p=7—-0,v/n—1.
Then, we obtain
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‘We have

1

o' (t) = p<<Vg(x+td)d> Z”Ht%)
_ 1
p

2 Yi
<< Vig(x +td)d,d > +ZT171 n ty¢)2> :
And

n

1 Yi
— < Vg(z+td),d > — ,
p g( ) ;1“%
Y2

s
=~
—~

~
~

I

1" 1
0 - 2 td)d, d i
L(t) = p<v g(z + td) >+Zl—|—tyz)

We deduce from (6), that 6’ (O)+9 "(0) = 0, and we have 8" (0) > 0 wich give us that 6" (0) < 0.
Now it must to prove that 6;(0) < 0, we have:

a If y; > 0, it is clearly that 6;(0) <

b Ify; < 0, we deduce from (6) that 6} (0) 46, (0) < 0 and as 6, (0) > 0 we come conclusion
that 6,(0) <0

What is prove the significant decrease of 6.

3.3. The first majorant function

The choice of t* in which 6 (£*) = 6 (to:) = 0 consists of some numerical complications, so
generally we can’t obtain t* directly. To solve this problem, we propose to find an approximation
function of 6.

This method is based on the use of a majorant function 65 of the function 6.
In the following, we take: x; =1+ ty;, T =14ty, and o, = to,.

Applying the inequality Y In(z;) > A; (Theorem 2.2), we get that 6(¢) < 02(t) such that

i=1
1

02(6) = - (9(a -+ td) = g(x)) = (n = Vin(1 + ta) = In(L +15).

In which .
a=y+ yl, 5—y_0y\/m.
n—

‘We have

/ 1 a 8

92(t)—;<V9($+td),d> _(n_l)l—i—ta “ Ty

) =L < Vgl tddd> +(n—1)—" 4

2 = P g\ 5 n (1+to¢)2 (1+t[3)2

The domains of 63 is Hy =]0,T[ in which T = max{t : 1+ t8 > 0}, this domain is content
in the domain of the line search function 6.

We notice that : 6(0) = 01(0) = 05(0) = 0, 0;(0) = 05(0) < 0 and 6, (0) = 6, (0) > 0.

We prove that the strictly convex function 6 is a good approximation of #; in a neighbourhood

of 0, hence the unique minimum t* of 05 guarantee a significant decrease of the function 6;, and
we have the follows inequalities:

0(t*) < 01(t*) < O2(t7) < 0.
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3.4. Case when g is linear

We impose that g(z) = ctz, x,c € R”, the auxiliary function w is given by the following
form:
w(t) = mt — (n — Din(1 +ta) — In(1 + 1)

t
c'd
in which: n = —.
n
w have the same properties as 3, the unique root of w (t) = 0 is the minimum of #3. The
unique ¢ that we have guarantee a significant decrease of the function ¢, along the newton descent
direction d.

3.5. Case when g is only convex

In this case, the equation 9/2 (t) = 0 is no longer reduces to an equation of second degree, we
thought to look at another function greater than s, for this we use the secant technique. Given
t €]0,T] for all ¢ €]0, ¢, we have

gz +td) —g(x) _ gle+1d) - 9(@),

P D ot
Then the auxiliary function w is define as follows:
w(t) =nnt — (n — 1)in(1 +ta) — In(1 +¢B).

Such as, we take -
_ gle+7d) — g()
npt

)

and we calculate t* the root of the equation w'(t) = 0.

1. If £ =1 and T > 1 then ¢ is the optimal solution.
2. If t # 1, then

a If t* < t, in this case we have 6(t*) < 61(t*) < 62(t*) < w(t*), which means that we
assure a significant decrease of the function ¢, along the direction d.

b If t* > ¢, we must to choose another ¢ €]t*, T and calculate t* for the new auxiliary
function and repeat this until we have that t* < ¢, for example we choose

T=t 4+ (T —t); Celo1].

3.6. Minimization of the auxiliary function w

We have
w(t) =nnt — (n — D)in(l + ta) — In(1 4+ tB).

It is easy to calculate

’ - _ B (6% . ﬂ
) =m = (=)

2 2

V)= m-1)— 4 P

(1+ta)?2  (1+1t8)2

/ "

Then: w(0)=0, w(0)=n(n-7), w (0)=nF +03)=[yl>
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We impose that w'(0) < 0 and w” (0) > 0.
For getting t*, we need to calculate the root of the equation w' () =0 :
Equivalent to

naft® + (mla+B) —ap)t +1-7=0

L ifn=0,1t"= 2,
(0%

2. ifa=0,t=2""1
n

3. ifg=0,t-=2""1
770[

4. if naf # 0, in this case we have two roots of the equation of the second degree but there
is just only root ¢t* which belongs to the domain of definition of w, both roots are:

In which

3.7. The second majorant function

Here, we thought to find another approximation of #; simpler than 65 and has one logarithm.
Remember that:

01(t) = — (g(z + td) — g(x)) — Zln(l +ty); p=T—opvVn— 1.

D=

Using the inequality:
D Il +ty) = (ly | +ny)t+ It —¢ |y |).
i=1

Then, we get a second majorant function of 6 noting by 63 such that:

0s(t) = % (9(z +td) —g(z)) = (| y [ +ny)t —In(1 —¢ [ y [|)

e 1 Iyl
, _ Y
05(t) = - < Vglx+td),d>— ||y || —ny+ ———,
0g(t):1<Vg(x+td)d,d>+%.
p (I=tlyl)

The domains of 03 is Hz = [0, T3], with T35 = max{t;1 —1¢ || y ||> 0}.
We remark that:

o 05(0) = 61(0) =0,

’

1 /
o 65(0) = P < Vyg(z),d > —ny = 6,(0) <0,
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1 ]_ 1"
¢ 05(0) = < Vg(e)d.d > + |y |P= 0 (0) >0,

The strictly convex function 03 is a good approximation of #; in a neighbourhood of 0, the unique
minimum t* of 3 guarantee a significant decrease of the function #;, and we have:

0,(t") < 0:(t") < 05(%).

3.7.1. Minimization of an auxiliary function

Let us define the convex function ws, where it’s minimum is reached at t*.

wa(t) = nnt — (| y [ +ny)t —In(1 =t [l y |).
It is easy to calculate

Ly |l

wy(t) =nn— || y || —nf + ——,
2 T—tllyll

T
@O =TTy e

Then: wp(0) =0, wh(0) =n(n—7), ws(0) =] y]>
We impose that w,(0) < 0 and w, (O) > 0.
For getting t*, we need to calculate the root of the equation w,(t) = 0.

4. Description of the algorithm

In this part, we present the algorithm which resume our study to obtain the optimal solution
x* of the problem (P1).

4.1. Algorithm
1. Input € >0, 7, >0, xg € K, X with X (i,1) = zo(i), r € R}, 6 € [0,1]".
2. Iteration

* Calculate d and y = X ~'d

(a) If |y ||> e do
al Calculate n, a, 8 and solve the equation W (t) = 0 for obtain t*.
a2 Calculate = z + t*d, and return to ().

(b) If | y ||< €, we obtained a good approximation of m(r).

i If ||r]] = rs, » =9 x r and return to (x).
With § x 7= (61 X 71,...,00 X T0).
ii If ||r|| < rs, Stop. We have a good approximation of the optimal solution.

5. Numerical tests
In the tables bellow, Iter represents the number of iterations to obtain x*, Min represents
the minimum and T(s) represents the time in seconds. Method 1 corresponds to the method of

majorant function introduced in this work, method 2 corresponds to the method of majorant
function introduced in [1] and method 3 corresponds to the classical line search method.
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5.1. Examples with variable size

Example 1. Quadratic case [4]
We consider the following quadratic problem with n =m + 2

g" =min{b(z) : Bx = ¢,z > 0}.

In which: 1
g(x):§<:c,Qx>.
With
2 ifi=j=1 or i=j=m 1 if 1=
.. )4 if i=j and ¢ #{l,m} o )2 ifdi=5-1
QU= 2 it i=j—1 or i=j+1 » BEI=V3 izj 2"
0 otherwise 0 otherwise

g =1Vi=1,n, Vj=1,m.
We test this example for different value of n.

Example 2. Erikson’s problem [5]
Consider the following convex problem:

¢g" =minf[g(z) : Bx =¢, z > 0].
Where g(z) = Y z;In (;), a;,b; € R are fixed, and
i=1 i
. 1 if i=j or j=i+m
B[Z’]}{ 0 if not '

We test this example for different values of n, a; and b;.

6. Tables

Table 1. Numerical simulations for Example 1

Method 1 Method 2 Method 3

n Min  Tter  T(s) Min  Tter T(s) Min  Iter  T(s)

4 0.285 8 0.0061 0.285 9 0007 028 14 0.019

50 5.37 0.019  5.372 0.021 5.374 14 0.053

6 7
100  10.924 6 0.065 10.927 7 0.08  10.93 14 0.188
500 553722 8 14.5 55372 7 13.8 55374 14  29.815

Table 2. The case where a; = 1 and b; = 6,Vi = 1.n (Example 2)

Method 1 Method 2 Method 3
n Min  Tter  T(s) Min  Tter T(s) Min  Tter T(s)
10 32.94 3 0.0038 32.95 3 0.004 3295 4 0.018
50  164.79 4 0.026  164.79 4 0.025 164.79 6 0.082
500 329.57 5 0.1 32958 5  0.076 32958 6 0.23
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Table 3. The case where a; = 2 and b; = 5,Vi = 1.n (Example 2)

Method 1 Method 2 Method 3
n Min Iter  T(s) Min Iter T(s) Min Iter T(s)
10 0.62x10=% 2 0.0021 0.66x10~7 2 0.002 9.09x10% 3 0.01
50 0.1x10°7 3  0.0028 0.11x108% 3 0.003 18 x10* 4 0.07
500 0.75x 107 3  0.0045 0.76 x 10~7 3 004 1.03x107%* 5 0.22

Conclusion

The effective numerical simulations show that our approach is a very important alternative
and gives an encouraging results compared to the classical line search method. However, it
competes with the method introduced in [1] where r € R.
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JlorapudmMnyeckuii 6apbepHbIil I10X0/JI C NCIOJIb30BaHUEM

Ma>KOpaHTHOUN (PYyHKIINM JIJIsT HeJIMHEITHOTO
MIporpaMMUPOBAHUSA

Byreiina ®ennaxn
Bauup Mepuxn

Jlaboparopusi pyHIaMEHTAILHON U BHIYUCIUTEIHHON MaTeMaTHKU
Yuusepcurer Pepxara Abbaca
Cerud 1, Cerud, Amxup

Awnnoranusi. B manHoil crarbe HAC MHTEpECyeT pellleHre ONTUMU3AIMOHHON 3aa9i HeJIMHEHHOrO 1IPOo-
rpaMMHUPOBaHUS C UCIIOJb30BAHUEM METO/A BHYTPEHHUX TOYEK C JIOrapudMUUeCKUM OapbepoM, B KOTO-
pom mrpadHoil wien 6epercsa B Bune BekTopa T € R’} . Hampasiemnue crmycka OBLIO PacCIMTAHO C HC-
[I0JIb30BaHUEM KJlaccuyeckoro Merona Hpiorona, oiHako pa3Mep ara 6bL1 PACCIUTAH C UCIIOJIb30BAHUEM
HOBOI TEXHUKN MaKOPAHTHBIX (DYHKIUN M TEXHUKU CEKYIINX. UUCIEHHOE MOJETUPOBAHNE MOKA3BIBAET
HaM 3P HEKTUBHOCTD HAIIETO MTOX0/Ia 0 CPABHEHUIO C KJIACCHIECKUM METOJOM JIMHEWHOTO MTOMCKA.

KuroueBrble ciioBa: HeJWHENHOE BBIIYKJ/IOE MPOrPAMMUPOBAHUE, METOJI JOrapudMUIECKUX IITPadOB,
JINHEHHBIH ITONCK, MAa>KOPAHTHAs (DYHKIUS, METOJ, CEKYIITIX.
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