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Abstract. Problem of three-dimensional motion of a heat-conducting fluid in a channel with solid

parallel walls is considered. Given temperature distribution is maintained on solid walls. The liquid
temperature depends quadratically on the horizontal coordinates, and the velocity field has a special
form. The resulting initial-boundary value problem for the Oberbeck-Boussinesq model is inverse and
reduced to a system of five integro-differential equations. For small Reynolds numbers (creeping motion),
the resulting system becomes linear. A stationary solution has been found for this system, and a priori
estimates have been obtained. On the basis of these estimates, sufficient conditions for exponential
convergence of a smooth non-stationary solution to a stationary solution have been established. The
solution of the inverse problem has been found in the form of quadratures for the Laplace images under
weaker conditions for the temperature regime on the walls of the layer. Behaviour of the velocity field
for a specific liquid medium have been presented. The results were obtained with the use of numerical
inversion of the Laplace transform.
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Problem statement and derivation of basic equations

Two-dimensional flows of the Himentz type [1] are known as flows near the critical point
and they are characterized by the presence of zones with higher pressure and temperature than
in the surrounding region. Such flows can be observed both in macro-scales (for example, the
use of hydraulic fracturing technologies in the oil industry) and in micro-scales (for example,
liquid biochips in medicine). The study of characteristics of such flows is necessary to assess
the technological parameters, as well as to predict the dynamics and evolution of the liquid
layer. Exact solutions of the defining equations are the most effective way to study processes in a
liquid, as well as to obtain estimated characteristics. At present, solutions of problems describing
Himentz-type flows in various geometries are presented: axisymmetric [2] and three-dimensional
[3,4] analogues of the Himentz solution, including flows in cylindrical geometry [5,6]. A brief
overview of the exact solutions that are close to the Himentz solution is given in [7].

Three-dimensional motion of a viscous incompressible heat-conducting fluid with special ve-
locity field is studied in this paper. The velocity field is of the Himentz type: the horizontal
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components of the velocity field are linear in the corresponding coordinates, temperatures are
set on solid walls.
The system of Oberbeck—Boussinesq equations of three-dimensional motion has the form

1
ut—i—(uV)~u+;Vp:z/Au+g(1—ﬁT), divu =0, (1)

T, +u- VT = YAT, (2)

where u(z,y, z,t) = (u(z,y, z,t),v(x,y, 2, t), w(z,y, 2,t)) is the velocity vector, u, v, w are com-
ponents of the velocity vector in the Cartesian coordinate system; g = (0,0, —g); ¢ is time;
T(xz,y,z2,t) is temperature; positive constants p, v, x, [, ¢g are density, kinematic viscosity,
thermal conductivity coefficient, coefficient of thermal expansion and acceleration of gravity,
respectively. The solution of problem (1), (2) is taken in the following form

u(z,y,2,t) = (f(2,t) + bz, 1)z, v(z,y,2,t) = (f(z,1) — h(z,1))y,
w(az,y,z,t) = _2/0 f(fat)dga p(x,y,z,t) Zﬁ(ﬂf,y,27t) — PYz, (3)
T(a,y, 2,1) = alz, 022 + b(z, )y + ez g + 02, 1)

Relations (3) are interpreted as fluid motion between two flat parallel fixed plates z = 0 and
z =1 (see Fig. 1). Then adhesion conditions are set on fixed plates: u(x,y,0,t) = v(z,y,0,t) =
=w(x,y,0,t) =0, u(x,y,l,t) =v(z,y,l,t) = w(x,y,l,t) = 0. Temperature is given in the form
T(z,y,0,t) = a1 (t)z? + by (t)zy + c1()y?, T(x,y,1,t) = az(t)z? + ba(t)xy + c2(t)y?. Considering
(3), using conditions of adhesion and setting the temperature, boundary conditions for functions
a(z,t), b(z,t), c(z,t) 0(z,t) f(z,t) h(z,t) are derived

£(0,6) = £(1,) = h(0,1) = h(l, ) =0, Af@ﬂ%=&

a(0,t) = ay(t), b(0,t) =by(t), c(0,t)=ci(t), 6(0,t) =0, 4
all,t) = as(t), b(l,t) = by(t), c(l,t) = ca(t), 0(L,¢) =0,

where functions a;(t), ¢;(t), j = 1,2 are set at some interval [0, ¢5]. In addition, initial conditions

are set
a(z,()) - aO(Z)a C(Z> ) = CO(Z)7 b(Z,O) - bO(Z)v 9(2,0) =0,

f(Z,O) = fo Z)v h(Z,O) = h0<z)

(=]

(5)

Remark 1. Since rotu = ((h, — f.)y, (h. + f.)2z,0) # 0, then the motion is vorter.

Remark 2. Suppose, without the loss of generality, that a;(t) # 0, j = 1,2 and b(z,t) = 0.
Then when a;(t) <0, ¢;(t) < 0 functions Tj(z,y,t) have a mazimum at the point x =0, y =0,
and when a;(t) > 0, ¢;(t) >0 functions Tj(z,y,t) have a minimum. If a;(t) and c;(t) have the
same signs then Tj(z,y,t) is an elliptical paraboloid. If a;(t) and c;(t) have different signs then
T;(z,y,t) is a hyperbolic paraboloid. In other words, the above solution describes the convection
of a liquid near the points of temperature extremes on solid walls. There may be other cases, for
example, the temperature has a maximum on the lower wall and a minimum on the upper wall
or vice versa.

The first step is to derive a system of equations for f, h, a, b, ¢, 6.
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z Solid plate

Fluid

/ Solid plate

X

Fig. 1. Flow area diagram

Taking into account equations (2) and (3), the following relations are obtained
z
ag+2a(f +h) — 2az/ f(&,t)dE = xas,, b(z,t) =0,
0
et +2¢(f —h)— 202/ f(&,t)dE = xczz, (6)
0

0 — 20, /OZ f&t)d€ = 2x(a+c) + x0...

The mass conservation equation is satisfied identically, and momentum equation (1) is equiv-
alent to the following equation

ft + f2 + h2 - 2fz/0 f(f,t)dﬁ = szz - Bg/o [a<§at) + C(f,t)]df +n (t)7
2 2 (7)
ht + 2fh - 2hz /0 f(ﬁ, t)df = thz - ﬁg/o [a(§7 t) - C(f? t)]dg + ’I’Lg(t),

where ny(t), na(t) are arbitrary functions of time that represent incremental pressure gradients.
The modified pressure p(z,y, z,t) is found in the form of quadratures

1 ) : 1
“pl ) = 208 [ alé g = 5m )+ ma(0)+
#2008 [ el g~ Hm(®) - na(0) - 2F (2 0) - g2+
+o [ o€ nac+2 [ - ontends =2 16.0d0? +aol0),

where aq(t) is an arbitrary function of time.

Thus, the Oberbeck—Boussinesq system is reduced to five non-linear integro-differential equa-
tions.
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The following notations are introduced

z X " ] § .
(=7 T=xt a =max(| a;(t) |,| ¢;) ), j=1,2, u*=Ba’lx;

a(z,t) = a"A(&,7); c(z,t) =a"C(E,1); O(2,t) =a*O(,7); [f(z,t) = %ReF(f,T); (8)
22

h(zt) = 3y ReH(E, ) m(t) = 37

- 12 NJ(T>7 .7: 172

Here u* is the characteristic rate of thermal expansion of the fluid, since a*I? is the characteristic
temperature of the walls, e = Ba*I? is the Boussinesq parameter [11], Re = u*l/v is the Reynolds
number, Re = eP, where P = v/x is the Prandtl number.

After substituting (8) into system (6), (7), the initial boundary value problem in dimensionless
form is obtained

3
A, +2ReA(F+ H) — 2R€A§/ F(¢, 7)de = A&g,
0

3
C, +2ReC(F — H) — 2Re A, / F(&,7)d¢ = Cee,
0

13
O, — 2ReO; / F(&,7)d¢ = 2(A+ C) + Og, (9)
0

3 €
F, + ReF? + ReH? — 2ReF; / F(¢,7)dé = PFee — P / [A(E,7) + C(&,T)]dE + Ny(T),
0 0
3 3
H, +2ReFH — 2ReH; / F(&,7)d¢ = PHee — P / [A(E,7) — C(&, P))dE + Na(7).
0 0
Parameter 7 = gl®(vx)~! plays an important role in the theory of micro convection [11].

In system (9) 7 € [0,79 = xtol 2], £ € [0,1]. To fully define unknowns A, C, ©, F, H, Ny,
Ny it is necessary to consider initial and boundary conditions

A(£,0) = Ao(§), C(§,0) = Co(§), O(E,0) =0,

(10)
A(0,7) = Ay(7), C(0,7)=Cy(r), ©(0,7)=F(0,7) = H(0,7) =0, ()
A(l,7) = As(7), C(1,7)=Cq(1), ©(L,7)=F(1,7)=H(1,7)=0
/ F(& 1)d¢ =0, / H(¢,7)dE =0. (12)
0 0

Let us note that problem (9)—(12) is the inverse problem, since functions N;(t) are unknown.

Remark 3. Conditions (12) actually mean that motion is considered in some cell bounded by x
and y.

Conditions for matching the input data are satisfied for a smooth solution

Ap(0) = A1(0), Co(0) = C1(0), Ao(1) = A2(0), Co(1) = C2(0), (13)

1 1
/ Fo(¢)de = 0, / Ho(€)de = 0, (14)
0 0

Remark 4. Taking into account (8), it is assumed that a;(t) = a*A; (1), ¢;(t) = a*C;(7).
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For most liquid media, the Boussinesq number is € < 1. Therefore, one can look for a solution
of the inverse initial-boundary value problem in the form of a series with respect to the Reynolds
number Re. The main terms of the decomposition satisfy the linear system of equations (the
designations of the desired functions are left the same)

A = Agg, C, = CEE’ 0, = 2(A+C) + @55,

3

F, = PR =P [ 1A(€.7) + (6 m}de + (7). 15)
3

H, = PHee =P [ [A(€.7) = C(€mlde + Na(r).

The initial and boundary conditions remain unchanged (see (4), (5)). The problem describes
the so-called "crawling" movements and it is the subject of study of this work.

Stationary creeping motion

In this case, all functions do not depend on the dimensionless time 7 and initial data (5) is
not taken into account. Let us assume that A*(§), C*(€), ©%(§), F* (&), H* (&), Ni (&), N3 is the
required solution, A}, C7 are the given constants. Without the loss of of generality, it is assumed
that Af # 0. Simple mathematical treatment shows that there are relations

A*(§) = Al(1+ an), C°(§) = Af(az + asf),
_ A3 — A _G _G -G

aq Ai , Q2 = Aii, as Ai
0°(6) = A (1 + ax)(6 — ) + 52 - €);
AP
P = T 0+ an)(a - 36 + 9+ E et 02 4 4g)| 16)
i) = 1417 [(1 —ag)(267 — 86+ ) + T (56" - 067 + 45)}

1 3
le = 5,,714‘1§P2 |:1 —+ g + E(Oél + Oég)il,

N; = %’I]A‘;PQ |:1 — Qg + %(0&1 — 043):| .

When A7 = C7 there is radial heating of the fluid on the wall. If A5, C] < 0 then heating is
maximal at the point z = 0,y = 0. If A7, CT > 0 then heating is minimal. If A} = —C7 then
heating of the fluid on the wall has the form of a hyperbola.

The characteristic vertical velocity profile W*(¢) = w®(¢)/W° is shown in Fig. 2
(W0 = —nAifx)

Physical constants were taken for water at a temperature of 20°C: P ~ 7, Re ~ 25.5-1074,
values A3, C7, j = 1,2 are shown in Fig. 2.

The solid line shows the case of radial heating of the fluid on the walls with a minimum of
its value at the point x = 0, y = 0 while the fluid in the layer moves upwards.

The dashed line shows the vertical velocity profile when distribution of the fluid temperature
has the form of a hyperbola on the lower wall and weak elliptical heating on the upper wall.
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g 2 mbin = g Bn g ABLE A
A1-0 7 C‘-U,T,Az-ﬂ,ﬁ. CZ-G 3;

o _ASZ0.7-C%=-0.7- AS=0.3: C5=0:
A1-07 ()‘-l)T,A2 UE.CZ 0;

S_q.A5<. S_.43.0% 1
A= CI=2TIAS=1.3,Co=01;

=== AJ=1; C]=15,A3=-2.5,C}=1.5;

Fig. 2. Vertical velocity W*# as a function of dimensionless coordinate &.

In other cases, heating on both walls has the form of a hyperbola. The dotted line corresponds
to such a temperature distribution that fluid in the lower part of the layer moves down, and in
the upper part it moves up.

A priori estimates

The purpose of this paragraph is to establish sufficient conditions for the input data A;(¢),
C;(t), under which the solution of non-stationary problem converges to stationary solution (16)
when dimensionless time increases. Functions A(,t), C(&,t), ©(¢,t) are solutions of the first
initial boundary value problem. They can be found in the form of trigonometric Fourier series.
Using methods proposed in [12], it is possible to obtain a priori estimates of solutions. However,
here it is easier to use results presented in [13] (pp. 201, 209). In fact, if A,;(7), C;(r) are
continuous for any 7 > 0 and

lim A;(r) = A3

Rl
T—00 J

lim Cj(7) = Cj, (17)

T—>00

then
lim A;(6,7) = A°(6), lim Cy(E.7) = C°(6).
uniformly for any £ € [0, 1], where A®(§), C*(€) is stationary solution (16). If
[Aj(7) = A7 [<d(L+7)7", [Cy(r) = CF [<d(1+7)7", (18)
with positive coeflicients d, p then
|A%(&,7) =A%) IS (L +7)7F, [CP(E,7) = C°(§) [S da (T +7)7H, (19)
dy > 0 is a constant, £ € [0, 1]. Considering inequalities
| Aj(7T) = A |[< dae™7, | Cj(7) = CF [< dae™7, (20)

estimates

|A%(&, 1) — A%(&) |< dze ™17, |C%(&,7) — C%(§) |< dze 47, (21)

are obtained with constants ds > 0, 0 < puy < p.
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These estimates can be interpreted as the stability conditions of stationary solution A%(&),
C* (&) under conditions (17), (18), (20).

Initial-boundary inverse problems for functions F(&,7), Ni(7) and H(&,7), N2(7) are non
classical (A(§, 1), C(&,7) are known). Therefore, a priori estimates of their solutions have to be
obtained.

Multiplying the last equation of system (15) by H({,7) and integrating with respect to &
from zero to one, the following identity is obtained

1d [, L, B 1 ¢
34 /O H(¢,7)d§ + P /0 H¢(&,7)d§ = —nP /O H(¢,T) /O (A(e,7) — C(e, 7))dEde. (22)

Here, boundary conditions (11) and redefinition condition (12) are taken into account. Since
Steklov’s inequality takes place

1 1 1
| e < 5 [ e e

then the left part of (22) is greater than or equal to

1 d 1 1
5%/0 H2(§,T)df+7r2p/o H?(&,7)d€.

The right part of (22) does not exceed

nP( / 1 H%ﬂ)é { / 1 / “(Aem) - Ol T>>2d£de] g

1
Now for E(7) = ( [ H?(¢, T)) the following inequality is obtained
0

[SE

dE

1ot 3
- +7m?PE < UP{/O /0 (A(e,7) — C(e,r))gdfde} .

Therefore,

e mae < ([ i) e [ [ e
J ([ o) wor [Fe | [0

) (23)
—0(6,7’))2d§d€:| dr} e 2™ PT = Gl(T)eﬂTQPT

for any 7 € [0, 79]. Now recall that functions A(E,7), C(, 7) satisfy estimates (19) or (21), where
A€) =0, C*(§) = 0.
Function H (£, 7) also satisfies the following identity

1 Pd [} 1 ¢
| e+ 5 [ me e =—ap [ e i [ (Ao - Cler)isde

Using the elementary inequality ab < €;a?/2 + b?/(2¢;1) when €; = (2nP)~!, one can obtain
from the previous identity that

/01 HE (&, 7)dE < 20 P? /OT /01 [/OE(A(G,T) - 0(677))4 2d§d7+
+/01 Hgg(f)dﬁ = Ga(7)
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Since H(0,7) = 0 then
£
A (6r) =2 [ HEenHee e <

1 % 1 %
< 2(/ H2(£,7)d£> (/ Hg(g,T)dg“) < 2/ () Ga(r)e P
0 0
due to inequalities (23), (24) and

| H(E,7) [< V2(G1(7)Ga(r) Fe= 2" (25)

for any £ € [0,1], T € [0, 79].
Similar estimate holds for F(&,7) if A(,7) — C(&,7) is replaced with A(¢,7) + C(&,7) in
expressions G1(7), G2(7), and they are denoted by G3(7) and G4(7). Therefore

| F(6,7) |< V2(G(r)Ga(r)) F e =557 (26)

Let us start first with the evaluation of No(7). Multiplying the equation for H (&, 7) by € — &2,
integrating over the interval [0, 1] and using the boundary conditions, one can obtain

1 1 13
No(r) = 6 / (€ — E)H, (E,7)d¢ + 6 / (€ &) / (A(e,7) — Cle,r))dede,  (27)

0

1

since [(£ — €2)Hee(€,7)dé = 0. To evaluate N(7) it is necessary to obtain an estimate of
0

| Hr(&7) [ at £ € [0,1], 7 € [0,70]. T

| Aj(7) |< dee™7, [ C5(7) [< dae™7,

(28)
| Ajr(7) [S dae™7, | Cjr(7) |< dae™7,

dy > 0 then
| A(&T) |< dSe_HlT’ | C(&T) |< dSe_mT’

(29)
| AT(&T) |< dSe_MT7 | CT(&T) |< d5e_N1T

for any & € [0,1], 7 € [0,79]. The first two equations of system (15) provide estimates of
derivatives
| Age(§,7) < dse™7, | Cee(§,7) |< dse™ 7. (30)

To obtain estimates of derivatives (29), (30) it is enough to differentiate with respect to
7 the corresponding initial boundary value problems, and use the results presented in [13].
Similarly, differentiating with respect to 7 the last equation of system (15), a problem on H. (&, T)
is obtained. It is similar to the problem on H({,7) when A(€,7) — C(€,7) is replaced with
A (&, 7)—Cr(&,7) and No(7) is replaced with Na, (7). Therefore, there is an estimate (see (25))

| Ho(€,7) |< V2(Ga(r)Ga(r)) e 257, (31)

£ €[0,1], 7 € [0,70], where Hy(&) is replaced with H,(&,0) in relation for G5(7) (see (23)). Then
3
H(6.0) = 5 Huce() = 1P [ (40(€) = Col€))de + Na(0) (32)

— 448 —



Andrei A. Azanov Creeping Three-dimensional Convective Motion. ..

The value of N5(0) can be found from another representation of Na(7):

Nalr) = B (He0,7) ~ Helm) 0 [ [ (A - ot e
Thus
NQ(O)Z%(H%(O) Hog +77P/ / (Ao(¢ (&))dEde.

Considering (27) and using inequalities (31), (29), the following estimate is obtained

| No(7) |< —=[(Ga(r)Ga(r)) ie™ 57 4+ ddse=17], 7 € [0, 70)- (33)

f
A similar assessment takes place for H, (&, 1), Ni(7)

1 =2p

|F (&7) |< V2(Gs(1)Ge(7))7e 2 7,
[(Gs(7)Go(r)) Fe™ ™25 4 ddge™ 7], 7 € [0, 0],

(34)
| Ni(7) [< f
where G5(7) and Gg(7) follow from G3(7) and G4(7) when the term A(§, 7) + C(€, 7) is replaced
with A, (&, 7) + C-(&,7), and Fy(§) is replaced with F,(&,0). Moreover (see (32))

3
FL€.0) = 5Rie© —nP [ (40(6) + Co(€))de + M 0),

M(0) = (Fic(0) ~ Fuel0) 1P [ [ (4al€) + Cof@))ace

Thus, if A;(7), C;(1) € C[0,7] and inequalities (28) are satisfied then solution of inverse
initial boundary value problem (15), (10) and (14) satisfies a priori estimates (25), (26), (30)—
(34). In addition, similarly to estimates (30), Fee(§,7), Hee(€, 7) are bounded for any £ € [0, 1],
T E [0, T()].

Remark 5. If A;(t), C;(t) € C'0,70], Ao(€), Co(§) € C?[0,1] then it follows from the
maximum principle for parabolic equations that

A7) [< max | max | Ao©) |, max | 4;(r) ||,

<
| C(E 7)< max | max | Co(€) |, max | C5(7) ],

<
[ Ar(,m) 1< ma | mae [ Aoge(€) |, max | Aje(r) ],

| Cr(67) 1< max [ ma | Coge(€) |, max | Cyr() | ]

Therefore, the boundedness of | F(&,7) |, | H, 1) |, | Fr(&,7) |, | H-(§&,7) |, | Fee(&,7) |,
| Hee(€,7) |, | Ni(7) |, | No(7) |, with & € [0,1], 7 € [0,70] takes place for weaker conditions on
functions A; (1), C;(1).

Relations for G (7), Gs(7), G5(7) contain integrals of exponent e™ 7. Therefore, the use of
a priori estimates for the behaviour of the solution at 7 > 1 requires the fulfilment of conditions
(28), so that there are estimates (29) with some constant ¢ > 0. Let us assume that A;(7),
C;(1), Ajr (1), Aj; (1) are defined and continuously differentiable for all 7 > 0. If y; = Pr? +1,
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v > 0 then the specified integrals in relations for G1(7), G3(7), G5(7) and in the right-hand sides
of inequalities (25), (26), (30)—(34) converge exponentially to zero.

Let us assume that inequalities (28) and estimates for derivatives (29) are satisfied. Consider-
ing the differences F'(§,7) — F**(§), H(§,7) — H*(§), Nj(7) — N7, j = 1,2, let us ensure that they
satisfy the same initial boundary value problems as F(§,7), H(§,7), N;(r). The difference is
only in the initial conditions. They are replaced with Fo(§) — F*(§), Ho(§) — H*(§), Nj(0) — N7,
respectively. Therefore, the estimates follow from given above inequalities (11 = 72 + )

(|F(§77—) _FS<£) |7 |H(577-) _HS(E) |’ ‘FT(E’T) |’ |HT(€’T) |a

2

| N;j(T) = N} |) < Dem =7

with some constant D > 0.
Therefore, stationary solution (15) is exponentially stable under the given above conditions.

Solution of non-stationary problem by the Laplace method

Non-stationary solution of problem (10)—(12), (15) is found using the integral Laplace trans-
form [14]. In our case, the method reduces the solution of non-stationary partial differential
problem to the solution of a system of ordinary differential equations (ODESs).

Applying the Laplace transform to the initial boundary value problem

Ar = Age,
A(f, 0) = A0(£)7
A(Oﬂ T) = Al(T)a A(]-aT) = AQ(T)v
the following system of ODEs for the Laplace images is obtained

Age = sA = —Ao(6), (35)
A(Oa s) = Al(s)v A(la s) = AQ(S)

Taking into account (35), one can find A(¢, s)

Sh(y3E) ;| sh(VE(L— ) ;
SN NV R

! £
Zlamis ) M@ -y~ | Ao(s)sh(\/g(g—g))dg]_

Similarly, function C(z, s) is defined as

sh(y/s¢) - sh(vs(1 — &) »
sh(\/E) CQ(S)+ Sh(\/g) Cl( )+

Sh(\/gf) ! _ — ¢ £)s S — & 3
M [ e sn(va -1 - [ aoepshivate ))d]

A(g,s) =
1 {sh(\/gf)

1(8)+
(36)

0(67 S) =

L
NG
Therefore, A(¢,s) and C(€,s) are known functions. Similarly, function O(€, s) is

2 (Sh(\/gﬁ)

o) = 7\ aivs)

€ R
- [ CGers) + Clespsuite - e))de).

/0 (A(&,5) + C(€. 5)) sh(v/3(1 - €))de—
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Equation for function F(¢,7) in Laplace images has the form

~ S & N 1 -
Fe=5F = [ (AGe.3) + C(e,9)de = 5(s) = Fo(e),

P (39)
F(0,5) = F(1,5) = 0.
Then solution of problem (39) is
. \Fn sh(y/s/P¢)
) = Vs sh(y/s/P) / / )
x sh(y/s/P(€ — ¢ d(jd5+—//A ¢,8) + C(C, ) x
x sh(y/s/P(€ — €))d¢de — VS/‘% (s) — PFy(€)) + P> VS/Pg / Fo(€)de+
sh (v/s/PE) ch(y/s/P)—1 sh (v/8/P&) sh( \/S/P
T W) - PRE) - P S [ moeae. (
40)
Let us find Ny (s) from (12). Introducing
T:(Sh\/S/P/\/S/P—l)/P\/]S—((Ch\/S/P—1)/\/8/P)2/@Sh\/S/P,
one can obtain
Ni(s) [/ // s)+ C(¢, 5))sh(y/s/P(1 — ¢))d(dedé—
n\/ﬁch V/s/P) -1
N R / / (e, 5) sh(y/s/P(1 — €))dedé — (41)
sh(y/s/P¢)
~PEy(€) + PR / Fo@)d«s]
Similarly, find function H (£, s)
~ \/>n sh(y/s/P¢)
H(E ) = Vs sh(y/s/P) / / ) >
x sh(y/s/P(€ — ¢ d§d€+—// ) X
< sh(TPIE - o — VTR0 6) - pry(e)) + PRSI / o(E)det
sh(y/s/P&) ch(y/s/P) —1 3 sh s/P¢) sh(/s/P S/P
s ) - PHyE) - VW / Hol
Function Ny(s) is defined from (12) as follows
(s) [ / / / (€.5) sh(v/s/P(1 — &))dCdedé —
n\/lsch s/P —1
S e / / (e, 5) sh(+/5/P(1 — €))dedé— (43)

—PHy(¢) + P° ng/P ) /0 Ho(é)dé}.
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Conditions for tendency of non-stationary solution
to a given stationary solution

Suppose there are limits

)
T—00 J

lim Cj(r)=CY, j=1,2, (44)

T—00

/

and derivatives A;» (1), C;(7) have Laplace images. Then [14]

lim sA;(s) = lim A;(r) = CY

)
s—0 T—00 J

lim sCj(s) = lim Cj(r) = CY. (45)

T—r00 J

Next, asymptotic expressions when ¢t — 0 for functions sh(t) and ch(t) are used: sh(t) ~
t+13/6, ch(t) ~ 1 +12/2.
The proof is given for function é)(§ ,8). The following relation is obtained for s — 0

(Vs(1—¢)°

s(6.5) ~ 22 (¢ [ (sl + st o | (i - gy + WU

s
_ /0 “(sA(e, )+ 50(,5)) [(ﬁ(é—e» + W]‘k) -

o

1
~ (FUB s - b e+ a2+ e

(51848 - b+ O + 142+ € ) = %6,

Lemma 1. Under conditions (44), (45) the non-stationary solution of problem (10),(11), (12),
(15) approaches stationary solution (16) when dimensionless time T increases.

Finding the originals of required functions

Functions (36), (37) are Laplace images. The inverse Laplace transform is used to determine
the originals.
It is assumed that A;(7), C;(7) have the form

Aj(r) = Ag + €;1 exp [—yi7]sin(wiT), Cj(1) = CJQ + €2 exp [—yj27] sin(waT).
Then, their images are easily found from the Laplace transform table [15]

. AY , A co ,
Ais) =T+ o i G =L

: - S o 16
s (s+v1)?+wi s (s+72)?+ws (46)

where ;1 > 0, vj2 > 0, i.e., the boundary mode is stabilized with time according to Lemma, 1.
If one of the values of v;1, ;2 is negative then there is no stabilization effect of the solution.

At this point, for simplicity, it is assumed that motion arises from the state of rest
and Ag(€) = Cp(§) =0. In this case, compatibility conditions (13) are violated since
A1(0) # Ap(0) =0, C1(0) # Cp(0) = 0, that is, there are discontinuities of the 1st kind. This
is acceptable since the integral Laplace transform is applicable for functions that have a finite
number of discontinuities of the 1st kind [15].

— 452 —



Andrei A. Azanov Creeping Three-dimensional Convective Motion. ..

Expressions for A(¢,s), C(€,5), FI(€,s), Ni(s) are simplified as

~ §) = Afg €12W1 Sh(\/gf) i? €11W1 Sh(\/g(].*g))
ieo = (3 + prmmra) a5 )

. (< €99W9 sh(/s€) g? €21W2 sh(v/s(1—¢))
C(,s) = ( s + (5 + 722)? +w§> sh(y/s) + ( s * (54 721)? “V‘w%) sh(v/s) ’

. € e .
Fle.s) = sp[ [0 + o shi/7PLE - eyacae-
ShVS/P ¢) / / $)+C(Cs)s ws/P(g—s))dcds]—

C

NO

\/s/P)
7ch (\/s/P¢) _1N ) sh(y/s/P¢) ch(y/s/P) _lN .
s 1( )+ (\/8/7P) s 1( )a
1 13 €
\ = 77 A S 5 S S S — —
N1(8)—T SP[ [ [ Gtcs) + Ccopsnit/srpa - epacaeds

~ S/jp / / (€,5) + C(e, ) sh(v/5/P(1 — €))dede|.

Expressions for H(£,s), N(s) have the same form only terms A(C,s) + C(C, s) are replaced

by A(C,5) = C(C.s).
Function ©(&, s) has the following form

- —iSh(\/gf)lAs ~(n,s))sh(v/s(1 — -
6165 = o= (508 [ (A9 + Cons) st - mydy

€ .
- [ €9+ a9 sutvte - n))dn>.

After numerical inversion of the Laplace transform functions N;(7) are obtain (see Fig. 3),
where A9=1.3, AV=1, C9=2.7, CY=2, e12=12, €11 = 1, €22 = 1.6, €21 = 1.8, w1 = 0.1,
wo = 0.2, 712 = 0.04, 711 = 0.03, o5 = 0.07, 721 = 0.06, x = 0.00143 m2 /sec, v = 0.01006 m? /sec,
B=1.82-10"*1/deg, [ =10"* m, g = 9,81 m/sec?.

0.5} i

N4

Func

-0.5 ===
Fig. 3. Functions N;(7) versus dimensionless time
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Dimensionless velocities

timeu(§,7) = éu =(F+H)z, v¢71)= ﬁu = (F - H)y,

are shown in Fig. 4,5 (Z =gy =1).

stationary solution
P ™y —-—-—7=20
a2t il s — — —r=60
Y =250

Func
o

2t .

Fig. 4.

stationary solution
20

Func

Fig. 5. Velocity v(§, 7) as a function of dimensionless coordinate
Fig. 3 clearly shows that functions N;(7) approach constant values with increasing time.

Figs. 4 and 5 show velocities along the = and y axes. One can see that distribution of velocities
practically coincides with stationary distribution of velocities for large 7.

— 454 —



Andrei A.Azanov Creeping three-dimensional convective motion...

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry

of Science and Higher Education of the Russian Federation in the framework of the establish-
ment and development of regional Centres for Mathematics Research and Education (Agreement
no. 075-02-2023-912).

References

[1]

2]

13l

4]

[5]

[6]

17l

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

K.Hiemenz, Die Grenzschicht an einem in den gleichférmigen Fliissigkeitsstrom einge-
tauchten geraden Kreiszylinder, Dinglers Poliytech, 326(1911), 321-440.

F.Howann, Der Einfluss grosser Zahigkeit bei der Stromung um den Zylinder und um die
Kugel, Zeitschrift fir Angewandte Mathematik und Mechanik, 16(1936), 153-164.

L.Howarth, The boundary layer in three-dimensional flow. Part II. The flow near a stagna-
tion point, Lond. Edinb. Dubl. Phil. Mag.: Series 7, 42(1951), no. 335, 1433-1440.

A.Davey, Boundary-layer flow at a saddle point of attachment, J. Fluid Mech, 10(1961),
no. 4, 593-610.

C.Y . Wang, Axisymmetric stagnation flow on a cylinder, Q. Appl. Math., 32(1974), no. 2,
207-213.

R.S.R.Gorla, Unsteady laminar axisymmetric stagnation flow over a circular cylinder, De-
velop. Mech, 9(1977), 286-288.

V.B.Bekezhanova, V.K.Andreev, I.A.Shefer, Influence of heat defect on the characteristics of
a two-layer flow with the Hiemenz-type velocity, Interfacial Phenomena and Heat Transfer,
7(2019) no. 4, 345-364. DOI: 10.1615/InterfacPhenomHeat Transfer.2020032777

V.K.Andreev and etc., Mathematical Models of Convection, Berlin, Boston: De Gruyter,
2020.

S.N.Aristov, D.V.Knyazev, A.D.Polyanin, Exact solutions of the Navier-Stokes equations
with linear dependence of the velocity components on two spatial variables, Theoretical foun-
dations of chemical technology, 43(2009), no. 5, 547-566. DOT: 10.1134/S0040579509050066

C.C.Lin, Note on a class of exact solutions in magneto hydrodynamics, Arch. Rational Mech.
Anal., 1(1958), 391-395.

V.A.Ilyin, On the solvability of mixed problems for hyperbolic and parabolic equations, Rus-
sian Math. Surveys, 15(1960), no. 2, 201-209. DOI: 10.1070/RM1960v015n02ABEH004217

A Friedman, Partial differential equations of parabolic type, Mir, 1968 (in Russian).

M.A.Lavrentiev, Methods Of The Theory Of Functions Of A Complex Variable, 4-th ed.,
rec. and aug., Moscow, Nauka, 1973 (in Russian).

G.Carslow, Thermal conductivity of solids, Moscow, Nauka, 1964 (in Russian).
F.R.Hoog, An improved method for numerical inversion of Laplace transforms, STIAM J.

Sci. Stat. Comp., (1992), no. 3, 357-366.

— 455 —



Andrei A.Azanov Creeping three-dimensional convective motion...

Ilo3ydyee TpexMepHOEe KOHBEKTHUBHOE JIBU>KEHHE B CJIOE
C II0JIEM CKOPOCTEN CIIenaJIbHOTO BHJIA

Annpeit A. Azanos
MNucruryT Bhraucanrensaoro mogenuposanns CO PAH
Kpacnosipck, Poccuiickass Peiepariyst

AnHoTauusd. VccienoBana 3a1a4da 0 TPEXMEPHOM JIBUYKEHUH TEILJIOMPOBO/IHOM KUIKOCTH B KAHAJIE TBEP-
JBIMH TIAPAJIJIEIbHBIMU CTEHKAMU, HA KOTOPBIX IOJJIEPKUBAETCS 3aJIaHHOE PACIIPEIe/IEeHUEe TeMIIepaTy-
pot. Temneparypa B 2KUAKOCTSIX KBAIPATUIHO 3aBUCUT OT TOPU3OHTATBHBIX KOODIMHAT, & ITOJIE CKOPOCTEI
UMeeT CIeNuaJIbHbBIN Bul. Bo3HuKalomas HadaJlbHO-KpaeBast 3aa4a it mojenn O6epbeka—bByccunecka
SABJIIETCS OOPATHOI W peaylMpOoBaHa K CHCTeMe IATH UHTerpoguddepeHnalibubix ypaBuenuii. [1pu
MaJIBIX 9HCIax PefiHosbaca (MOM3yIme JBUKEHUs) MOy IeHHAs CUCTEMa CTAHOBUTCSA JMHEHHOH. Jlys
9TOU CHCTEMBbI HAMJIEHO CTAIMOHAPHOE DPEIeHUe, MOJIYyYeHbl anpuopHble OoneHKH. Ha mx ocHOBe ycra-
HOBJIEHBI JIOCTATOYHBIE YCJIOBUSI SKCIOHEHIIMAJIHLHON CXOAUMOCTHU IJIAJKOTO HECTAIIMOHAPHOI'O PeIeHUs
K CTAIlMOHAPHOMY pexkuMmy. B m3obparkenusix mo Jlamracy penrenne oOpaTHON 3a/1a9u OCTPOEHO B BU-
e KBaJpaTyp, npu Oojiee CabbIX YCIOBUSX HA TEMIIEPATYPHBIN PEXKMM Ha CTEHKax cJyos. llpuBeseHb
pe3yabTaThl pacdueToB, Ha OCHOBE YHCJIEHHOI'O oOpallleHus rpeobpa3oBanus Jlaraca, MOBeIEHUS T10OJIs
CKOPOCTeH [1j11 KOHKPETHON KUIKOU Cpeabl.

KuroueBslie cioBa: mojens Ob6epbeka—Byccunecka, TpexmepHoe ABUXKeHue, obparHas 3a/a4da, allpu-
OpHBIE OIEHKHU, yCTOWINBOCTD, Ipeobpa3oBanue Jlammaca.

— 456 —



