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Abstract. Problem of three-dimensional motion of a heat-conducting fluid in a channel with solid
parallel walls is considered. Given temperature distribution is maintained on solid walls. The liquid
temperature depends quadratically on the horizontal coordinates, and the velocity field has a special
form. The resulting initial-boundary value problem for the Oberbeck–Boussinesq model is inverse and
reduced to a system of five integro-differential equations. For small Reynolds numbers (creeping motion),
the resulting system becomes linear. A stationary solution has been found for this system, and a priori
estimates have been obtained. On the basis of these estimates, sufficient conditions for exponential
convergence of a smooth non-stationary solution to a stationary solution have been established. The
solution of the inverse problem has been found in the form of quadratures for the Laplace images under
weaker conditions for the temperature regime on the walls of the layer. Behaviour of the velocity field
for a specific liquid medium have been presented. The results were obtained with the use of numerical
inversion of the Laplace transform.
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Problem statement and derivation of basic equations

Two-dimensional flows of the Himentz type [1] are known as flows near the critical point
and they are characterized by the presence of zones with higher pressure and temperature than
in the surrounding region. Such flows can be observed both in macro-scales (for example, the
use of hydraulic fracturing technologies in the oil industry) and in micro-scales (for example,
liquid biochips in medicine). The study of characteristics of such flows is necessary to assess
the technological parameters, as well as to predict the dynamics and evolution of the liquid
layer. Exact solutions of the defining equations are the most effective way to study processes in a
liquid, as well as to obtain estimated characteristics. At present, solutions of problems describing
Himentz-type flows in various geometries are presented: axisymmetric [2] and three-dimensional
[3, 4] analogues of the Himentz solution, including flows in cylindrical geometry [5, 6]. A brief
overview of the exact solutions that are close to the Himentz solution is given in [7].

Three-dimensional motion of a viscous incompressible heat-conducting fluid with special ve-
locity field is studied in this paper. The velocity field is of the Himentz type: the horizontal
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components of the velocity field are linear in the corresponding coordinates, temperatures are
set on solid walls.

The system of Oberbeck–Boussinesq equations of three-dimensional motion has the form

ut + (u∇) · u +
1

ρ
∇p = ν∆u + g(1− βT ), divu = 0, (1)

Tt + u · ∇T = χ∆T, (2)

where u(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) is the velocity vector, u, v, w are com-
ponents of the velocity vector in the Cartesian coordinate system; g = (0, 0,−g); t is time;
T (x, y, z, t) is temperature; positive constants ρ, ν, χ, β, g are density, kinematic viscosity,
thermal conductivity coefficient, coefficient of thermal expansion and acceleration of gravity,
respectively. The solution of problem (1), (2) is taken in the following form

u(x, y, z, t) = (f(z, t) + h(z, t))x, v(x, y, z, t) = (f(z, t)− h(z, t))y,

w(x, y, z, t) = −2

∫ z

0

f(ξ, t)dξ, p(x, y, z, t) = p̄(x, y, z, t)− ρgz,

T (x, y, z, t) = a(z, t)x2 + b(z, t)xy + c(z, t)y2 + θ(z, t).

(3)

Relations (3) are interpreted as fluid motion between two flat parallel fixed plates z = 0 and
z = l (see Fig. 1). Then adhesion conditions are set on fixed plates: u(x, y, 0, t) = v(x, y, 0, t) =

= w(x, y, 0, t) = 0, u(x, y, l, t) = v(x, y, l, t) = w(x, y, l, t) = 0. Temperature is given in the form
T (x, y, 0, t) = a1(t)x

2 + b1(t)xy + c1(t)y
2, T (x, y, l, t) = a2(t)x

2 + b2(t)xy + c2(t)y
2. Considering

(3), using conditions of adhesion and setting the temperature, boundary conditions for functions
a(z, t), b(z, t), c(z, t) θ(z, t) f(z, t) h(z, t) are derived

f(0, t) = f(l, t) = h(0, t) = h(l, t) = 0,

∫ l

0

f(ξ, t)dξ = 0,

a(0, t) = a1(t), b(0, t) = b1(t), c(0, t) = c1(t), θ(0, t) = 0,

a(l, t) = a2(t), b(l, t) = b2(t), c(l, t) = c2(t), θ(l, t) = 0,

(4)

where functions aj(t), cj(t), j = 1, 2 are set at some interval [0, t0]. In addition, initial conditions
are set

a(z, 0) = a0(z), c(z, 0) = c0(z), b(z, 0) = b0(z), θ(z, 0) = 0,

f(z, 0) = f0(z), h(z, 0) = h0(z).
(5)

Remark 1. Since rotu = ((hz − fz)y, (hz + fz)x, 0) ̸= 0, then the motion is vortex.

Remark 2. Suppose, without the loss of generality, that aj(t) ̸= 0, j = 1, 2 and b(z, t) = 0.
Then when aj(t) < 0, cj(t) < 0 functions Tj(x, y, t) have a maximum at the point x = 0, y = 0,
and when aj(t) > 0, cj(t) >0 functions Tj(x, y, t) have a minimum. If aj(t) and cj(t) have the
same signs then Tj(x, y, t) is an elliptical paraboloid. If aj(t) and cj(t) have different signs then
Tj(x, y, t) is a hyperbolic paraboloid. In other words, the above solution describes the convection
of a liquid near the points of temperature extremes on solid walls. There may be other cases, for
example, the temperature has a maximum on the lower wall and a minimum on the upper wall
or vice versa.

The first step is to derive a system of equations for f , h, a, b, c, θ.
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Fig. 1. Flow area diagram

Taking into account equations (2) and (3), the following relations are obtained

at + 2a(f + h)− 2az

∫ z

0

f(ξ, t)dξ = χazz, b(z, t) = 0,

ct + 2c(f − h)− 2cz

∫ z

0

f(ξ, t)dξ = χczz,

θt − 2θz

∫ z

0

f(ξ, t)dξ = 2χ(a+ c) + χθzz.

(6)

The mass conservation equation is satisfied identically, and momentum equation (1) is equiv-
alent to the following equation

ft + f2 + h2 − 2fz

∫ z

0

f(ξ, t)dξ = νfzz − βg

∫ z

0

[a(ξ, t) + c(ξ, t)]dξ + n1(t),

ht + 2fh− 2hz

∫ z

0

f(ξ, t)dξ = νhzz − βg

∫ z

0

[a(ξ, t)− c(ξ, t)]dξ + n2(t),

(7)

where n1(t), n2(t) are arbitrary functions of time that represent incremental pressure gradients.
The modified pressure p̄(x, y, z, t) is found in the form of quadratures

1

ρ
p̄(x, y, z, t) = x2(gβ

∫ z

0

a(ξ, t)dξ − 1

2
(n1(t) + n2(t)))+

+y2(gβ

∫ z

0

c(ξ, t)dξ − 1

2
(n1(t)− n2(t)))− 2νf(z, t)− gz+

+gβ

∫ z

0

θ(ξ, t)dξ + 2

∫ z

0

(z − ξ)ft(ξ, t)dξ − 2(

∫ z

0

f(ξ, t)dξ)2 + α0(t),

where α0(t) is an arbitrary function of time.
Thus, the Oberbeck–Boussinesq system is reduced to five non-linear integro-differential equa-

tions.
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The following notations are introduced

ξ =
z

l
; τ =

χ

l2
t; a∗= max(| aj(t) |, | cj(t) |), j = 1, 2, u∗ = βa∗lχ;

a(z, t) = a∗A(ξ, τ); c(z, t) = a∗C(ξ, τ); θ(z, t) = a∗Θ(ξ, τ); f(z, t) =
χ

l2
ReF (ξ, τ);

h(z, t) =
χ

l2
ReH(ξ, τ); nj(t) =

χ2

l4
Nj(τ), j = 1, 2.

(8)

Here u∗ is the characteristic rate of thermal expansion of the fluid, since a∗l2 is the characteristic
temperature of the walls, ϵ = βa∗l2 is the Boussinesq parameter [11], Re = u∗l/ν is the Reynolds
number, Re = ϵP , where P = ν/χ is the Prandtl number.

After substituting (8) into system (6), (7), the initial boundary value problem in dimensionless
form is obtained

Aτ + 2ReA(F +H)− 2ReAξ

∫ ξ

0

F (ξ, τ)dξ = Aξξ,

Cτ + 2ReC(F −H)− 2ReAξ

∫ ξ

0

F (ξ, τ)dξ = Cξξ,

Θτ − 2ReΘξ

∫ ξ

0

F (ξ, τ)dξ = 2(A+ C) + Θξξ,

Fτ +ReF 2 +ReH2 − 2ReFξ

∫ ξ

0

F (ξ, τ)dξ = PFξξ − ηP

∫ ξ

0

[A(ξ, τ) + C(ξ, τ)]dξ +N1(τ),

Hτ + 2ReFH − 2ReHξ

∫ ξ

0

F (ξ, τ)dξ = PHξξ − ηP

∫ ξ

0

[A(ξ, τ)− C(ξ, τ)]dξ +N2(τ).

(9)

Parameter η = gl3(νχ)−1 plays an important role in the theory of micro convection [11].
In system (9) τ ∈ [0, τ0 = χt0l

−2], ξ ∈ [0, 1]. To fully define unknowns A, C, Θ, F , H, N1,
N2 it is necessary to consider initial and boundary conditions

A(ξ, 0) = A0(ξ), C(ξ, 0) = C0(ξ), Θ(ξ, 0) = 0,

F (ξ, 0) = F0(ξ), H(ξ, 0) = H0(ξ).
(10)

A(0, τ) = A1(τ), C(0, τ) = C1(τ), Θ(0, τ) = F (0, τ) = H(0, τ) = 0,

A(1, τ) = A2(τ), C(1, τ) = C2(τ), Θ(1, τ) = F (1, τ) = H(1, τ) = 0.
(11)

∫ 1

0

F (ξ, τ)dξ = 0,

∫ 1

0

H(ξ, τ)dξ = 0. (12)

Let us note that problem (9)–(12) is the inverse problem, since functions Nj(t) are unknown.

Remark 3. Conditions (12) actually mean that motion is considered in some cell bounded by x

and y.

Conditions for matching the input data are satisfied for a smooth solution

A0(0) = A1(0), C0(0) = C1(0), A0(1) = A2(0), C0(1) = C2(0), (13)∫ 1

0

F0(ξ)dξ = 0,

∫ 1

0

H0(ξ)dξ = 0. (14)

Remark 4. Taking into account (8), it is assumed that aj(t) = a∗Aj(τ), cj(t) = a∗Cj(τ).
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For most liquid media, the Boussinesq number is ϵ ≪ 1. Therefore, one can look for a solution
of the inverse initial-boundary value problem in the form of a series with respect to the Reynolds
number Re. The main terms of the decomposition satisfy the linear system of equations (the
designations of the desired functions are left the same)

Aτ = Aξξ, Cτ = Cξξ, Θτ = 2(A+ C) + Θξξ,

Fτ = PFξξ − ηP

∫ ξ

0

[A(ξ, τ) + C(ξ, τ)]dξ +N1(τ),

Hτ = PHξξ − ηP

∫ ξ

0

[A(ξ, τ)− C(ξ, τ)]dξ +N2(τ).

(15)

The initial and boundary conditions remain unchanged (see (4), (5)). The problem describes
the so-called "crawling" movements and it is the subject of study of this work.

Stationary creeping motion

In this case, all functions do not depend on the dimensionless time τ and initial data (5) is
not taken into account. Let us assume that As(ξ), Cs(ξ), Θs(ξ), F s(ξ), Hs(ξ), Ns

1 (ξ), Ns
2 is the

required solution, As
j , Cs

j are the given constants. Without the loss of of generality, it is assumed
that As

1 ̸= 0. Simple mathematical treatment shows that there are relations

As(ξ) = As
1(1 + α1ξ), Cs(ξ) = As

1(α2 + α3ξ),

α1 =
As

2 −As
1

As
1

, α2 =
Cs

1

As
1

, α3 =
Cs

2 − Cs
1

As
1

;

Θs(ξ) = As
1

[
(1 + α2)(ξ − ξ2) +

α1 + α2

3
(ξ − ξ3)

]
;

F s(ξ) =
ηAs

1P

12

[
(1 + α2)(2ξ

3 − 3ξ2 + ξ) +
α1 + α3

10
(5ξ4 − 9ξ2 + 4ξ)

]
,

Hs(ξ) =
ηAs

1P

12

[
(1− α2)(2ξ

3 − 3ξ2 + ξ) +
α1 − α3

10
(5ξ4 − 9ξ2 + 4ξ)

]
;

Ns
1 =

1

2
ηAs

1P
2

[
1 + α2 +

3

10
(α1 + α3)

]
,

Ns
2 =

1

2
ηAs

1P
2

[
1− α2 +

3

10
(α1 − α3)

]
.

(16)

When As
1 = Cs

1 there is radial heating of the fluid on the wall. If As
1, C

s
1 < 0 then heating is

maximal at the point x = 0, y = 0. If As
1, C

s
1 > 0 then heating is minimal. If As

j = −Cs
j then

heating of the fluid on the wall has the form of a hyperbola.
The characteristic vertical velocity profile W s(ξ) = ws(ξ)/W 0 is shown in Fig. 2

(W 0 = −ηAs
1χ)

Physical constants were taken for water at a temperature of 20 ℃: P ∼ 7, Re ∼ 25.5 · 10−4,
values As

j , Cs
j , j = 1, 2 are shown in Fig. 2.

The solid line shows the case of radial heating of the fluid on the walls with a minimum of
its value at the point x = 0, y = 0 while the fluid in the layer moves upwards.

The dashed line shows the vertical velocity profile when distribution of the fluid temperature
has the form of a hyperbola on the lower wall and weak elliptical heating on the upper wall.
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Fig. 2. Vertical velocity W s as a function of dimensionless coordinate ξ.

In other cases, heating on both walls has the form of a hyperbola. The dotted line corresponds
to such a temperature distribution that fluid in the lower part of the layer moves down, and in
the upper part it moves up.

A priori estimates

The purpose of this paragraph is to establish sufficient conditions for the input data Aj(t),
Cj(t), under which the solution of non-stationary problem converges to stationary solution (16)
when dimensionless time increases. Functions A(ξ, t), C(ξ, t), Θ(ξ, t) are solutions of the first
initial boundary value problem. They can be found in the form of trigonometric Fourier series.
Using methods proposed in [12], it is possible to obtain a priori estimates of solutions. However,
here it is easier to use results presented in [13] (pp. 201, 209). In fact, if Aj(τ), Cj(τ) are
continuous for any τ > 0 and

lim
τ→∞

Aj(τ) = As
j , lim

τ→∞
Cj(τ) = Cs

j , (17)

then
lim
τ→∞

Aj(ξ, τ) = As(ξ), lim
τ→∞

Cj(ξ, τ) = Cs(ξ),

uniformly for any ξ ∈ [0, 1], where As(ξ), Cs(ξ) is stationary solution (16). If

|Aj(τ)−As
j |6 d(1 + τ)−µ, |Cj(τ)− Cs

j |6 d(1 + τ)−µ, (18)

with positive coefficients d, µ then

|As(ξ, τ)−As(ξ) |6 d1(1 + τ)−µ, |Cs(ξ, τ)− Cs(ξ) |6 d1(1 + τ)−µ, (19)

d1 > 0 is a constant, ξ ∈ [0, 1]. Considering inequalities

|Aj(τ)−As
j |6 d2e

−µτ , |Cj(τ)− Cs
j |6 d2e

−µτ , (20)

estimates
|As(ξ, τ)−As(ξ) |6 d3e

−µ1τ , |Cs(ξ, τ)− Cs(ξ) |6 d3e
−µ1τ , (21)

are obtained with constants d3 > 0, 0 < µ1 6 µ.
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These estimates can be interpreted as the stability conditions of stationary solution As(ξ),
Cs(ξ) under conditions (17), (18), (20).

Initial-boundary inverse problems for functions F (ξ, τ), N1(τ) and H(ξ, τ), N2(τ) are non
classical (A(ξ, τ), C(ξ, τ) are known). Therefore, a priori estimates of their solutions have to be
obtained.

Multiplying the last equation of system (15) by H(ξ, τ) and integrating with respect to ξ

from zero to one, the following identity is obtained

1

2

d

dτ

∫ 1

0

H2(ξ, τ)dξ + P

∫ 1

0

H2
ξ (ξ, τ)dξ = −ηP

∫ 1

0

H(ξ, τ)

∫ ξ

0

(A(ϵ, τ)− C(ϵ, τ))dξdϵ. (22)

Here, boundary conditions (11) and redefinition condition (12) are taken into account. Since
Steklov’s inequality takes place∫ 1

0

H2(ξ, τ)dξ 6 1

π2

∫ 1

0

H2
ξ (ξ, τ)dξ

then the left part of (22) is greater than or equal to

1

2

d

dτ

∫ 1

0

H2(ξ, τ)dξ + π2P

∫ 1

0

H2(ξ, τ)dξ.

The right part of (22) does not exceed

ηP

(∫ 1

0

H2(ξ, τ)

) 1
2
[ ∫ 1

0

∫ ξ

0

(A(ϵ, τ)− C(ϵ, τ))2dξdϵ

] 1
2

.

Now for E(τ) =
( 1∫

0

H2(ξ, τ)
) 1

2

the following inequality is obtained

dE

dτ
+ π2PE 6 ηP

[ ∫ 1

0

∫ ξ

0

(A(ϵ, τ)− C(ϵ, τ))2dξdϵ

] 1
2

.

Therefore,∫ 1

0

H2(ξ, τ)dξ 6
{(∫ 1

0

H2
0 (ξ)dξ

) 1
2

+ ηP

∫ τ

0

eπ
2P 2τ

[ ∫ 1

0

∫ ξ

0

(A(ϵ, τ)−

−C(ϵ, τ))2dξdϵ

] 1
2

dτ

}2

e−2π2Pτ ≡ G1(τ)e
−π2Pτ

(23)

for any τ ∈ [0, τ0]. Now recall that functions A(ξ, τ), C(ξ, τ) satisfy estimates (19) or (21), where
As(ξ) = 0, Cs(ξ) = 0.

Function H(ξ, τ) also satisfies the following identity∫ 1

0

H2(ξ, τ)dξ +
P

2

d

dτ

∫ 1

0

H2
ξ (ξ, τ)dξ = −ηP

∫ 1

0

Hτ (ξ, τ)dξ

∫ ξ

0

(A(ϵ, τ)− C(ϵ, τ))dξdϵ.

Using the elementary inequality ab 6 ϵ1a
2/2 + b2/(2ϵ1) when ϵ1 = (2ηP )−1, one can obtain

from the previous identity that∫ 1

0

H2
ξ (ξ, τ)dξ 6 2η2P 2

∫ τ

0

∫ 1

0

[ ∫ ξ

0

(A(ϵ, τ)− C(ϵ, τ))dϵ

]2
dξdτ+

+

∫ 1

0

H2
0ξ(ξ)dξ ≡ G2(τ)

(24)
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Since H(0, τ) = 0 then

H2(ξ, τ) = 2

∫ ξ

0

H(ξ, τ)Hξ(ξ, τ)dξ 6

6 2

(∫ 1

0

H2(ξ, τ)dξ

) 1
2
(∫ 1

0

H2
ξ (ξ, τ)dξ

) 1
2

6 2
√
G1(τ)G2(τ)e

−π2Pτ

due to inequalities (23), (24) and

| H(ξ, τ) |6
√
2(G1(τ)G2(τ))

1
4 e−

π2P
2 τ (25)

for any ξ ∈ [0, 1], τ ∈ [0, τ0].
Similar estimate holds for F (ξ, τ) if A(ξ, τ) − C(ξ, τ) is replaced with A(ξ, τ) + C(ξ, τ) in

expressions G1(τ), G2(τ), and they are denoted by G3(τ) and G4(τ). Therefore

| F (ξ, τ) |6
√
2(G3(τ)G4(τ))

1
4 e−

π2P
2 τ . (26)

Let us start first with the evaluation of N2(τ). Multiplying the equation for H(ξ, τ) by ξ−ξ2,
integrating over the interval [0, 1] and using the boundary conditions, one can obtain

N2(τ) = 6

∫ 1

0

(ξ − ξ2)Hτ (ξ, τ)dξ + 6

∫ 1

0

(ξ − ξ2)

∫ ξ

0

(A(ε, τ)− C(ε, τ))dεdξ, (27)

since
1∫
0

(ξ − ξ2)Hξξ(ξ, τ)dξ = 0. To evaluate N2(τ) it is necessary to obtain an estimate of

| Hτ (ξ, τ) | at ξ ∈ [0, 1], τ ∈ [0, τ0]. If

| Aj(τ) |6 d2e
−µτ , | Cj(τ) |6 d2e

−µτ ,

| Ajτ (τ) |6 d4e
−µτ , | Cjτ (τ) |6 d4e

−µτ ,
(28)

d4 > 0 then
| A(ξ, τ) |6 d3e

−µ1τ , | C(ξ, τ) |6 d3e
−µ1τ ,

| Aτ (ξ, τ) |6 d5e
−µ1τ , | Cτ (ξ, τ) |6 d5e

−µ1τ
(29)

for any ξ ∈ [0, 1], τ ∈ [0, τ0]. The first two equations of system (15) provide estimates of
derivatives

| Aξξ(ξ, τ) |6 d5e
−µ1τ , | Cξξ(ξ, τ) |6 d5e

−µ1τ . (30)

To obtain estimates of derivatives (29), (30) it is enough to differentiate with respect to
τ the corresponding initial boundary value problems, and use the results presented in [13].
Similarly, differentiating with respect to τ the last equation of system (15), a problem on Hτ (ξ, τ)

is obtained. It is similar to the problem on H(ξ, τ) when A(ξ, τ) − C(ξ, τ) is replaced with
Aτ (ξ, τ)−Cτ (ξ, τ) and N2(τ) is replaced with N2τ (τ). Therefore, there is an estimate (see (25))

| Hτ (ξ, τ) |6
√
2(G3(τ)G4(τ))

1
4 e−

π2P
2 τ , (31)

ξ ∈ [0, 1], τ ∈ [0, τ0], where H0(ξ) is replaced with Hτ (ξ, 0) in relation for G3(τ) (see (23)). Then

Hτ (ξ, 0) =
1

P
H0ξξ(ξ)− ηP

∫ ξ

0

(A0(ξ)− C0(ξ))dξ +N2(0). (32)
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The value of N2(0) can be found from another representation of N2(τ):

N2(τ) =
1

P
(Hξ(0, τ)−Hξ(1, τ)) + ηP

∫ 1

0

∫ ϵ

0

(A(ξ, τ)− C(ξ, τ))dξdϵ.

Thus

N2(0) =
1

P
(H0ξ(0)−H0ξ(1)) + ηP

∫ 1

0

∫ ϵ

0

(A0(ξ)− C0(ξ))dξdϵ.

Considering (27) and using inequalities (31), (29), the following estimate is obtained

| N2(τ) |6
3√
2
[(G3(τ)G4(τ))

1
4 e−

π2P
2 τ + 4d3e

−µ1τ ], τ ∈ [0, τ0]. (33)

A similar assessment takes place for Hτ (ξ, τ), N1(τ)

| Fτ (ξ, τ) |6
√
2(G5(τ)G6(τ))

1
4 e−

π2P
2 τ ,

| N1(τ) |6
3√
2
[(G5(τ)G6(τ))

1
4 e−

π2P
2 τ + 4d3e

−µ1τ ], τ ∈ [0, τ0].
(34)

where G5(τ) and G6(τ) follow from G3(τ) and G4(τ) when the term A(ξ, τ)+C(ξ, τ) is replaced
with Aτ (ξ, τ) + Cτ (ξ, τ), and F0(ξ) is replaced with Fτ (ξ, 0). Moreover (see (32))

Fτ (ξ, 0) =
1

P
F0ξξ(ξ)− ηP

∫ ξ

0

(A0(ξ) + C0(ξ))dξ +N1(0),

N1(0) =
1

P
(F0ξ(0)− F0ξ(1)) + ηP

∫ 1

0

∫ ϵ

0

(A0(ξ) + C0(ξ))dξdϵ.

Thus, if Aj(τ), Cj(τ) ∈ C1[0, τ0] and inequalities (28) are satisfied then solution of inverse
initial boundary value problem (15), (10) and (14) satisfies a priori estimates (25), (26), (30)–
(34). In addition, similarly to estimates (30), Fξξ(ξ, τ), Hξξ(ξ, τ) are bounded for any ξ ∈ [0, 1],
τ ∈ [0, τ0].

Remark 5. If Aj(τ), Cj(τ) ∈ C1[0, τ0], A0(ξ), C0(ξ) ∈ C2[0, 1] then it follows from the
maximum principle for parabolic equations that

| A(ξ, τ) |6 max
[
max
ξ∈[0,1]

| A0(ξ) |, max
τ∈[0,τ0]

| Aj(τ) |
]
,

| C(ξ, τ) |6 max
[
max
ξ∈[0,1]

| C0(ξ) |, max
τ∈[0,τ0]

| Cj(τ) |
]
,

| Aτ (ξ, τ) |6 max
[
max
ξ∈[0,1]

| A0ξξ(ξ) |, max
τ∈[0,τ0]

| Ajτ (τ) |
]
,

| Cτ (ξ, τ) |6 max
[
max
ξ∈[0,1]

| C0ξξ(ξ) |, max
τ∈[0,τ0]

| Cjτ (τ) |
]
.

Therefore, the boundedness of | F (ξ, τ) |, | H(ξ, τ) |, | Fτ (ξ, τ) |, | Hτ (ξ, τ) |, | Fξξ(ξ, τ) |,
|Hξξ(ξ, τ) |, |N1(τ) |, |N2(τ) |, with ξ ∈ [0, 1], τ ∈ [0, τ0] takes place for weaker conditions on
functions Aj(τ), Cj(τ).

Relations for G1(τ), G3(τ), G5(τ) contain integrals of exponent eπ
2Pτ . Therefore, the use of

a priori estimates for the behaviour of the solution at τ ≫ 1 requires the fulfilment of conditions
(28), so that there are estimates (29) with some constant µ > 0. Let us assume that Aj(τ),
Cj(τ), Ajτ (τ), Ajτ (τ) are defined and continuously differentiable for all τ > 0. If µ1 = Pπ2 + γ,
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γ > 0 then the specified integrals in relations for G1(τ), G3(τ), G5(τ) and in the right-hand sides
of inequalities (25), (26), (30)–(34) converge exponentially to zero.

Let us assume that inequalities (28) and estimates for derivatives (29) are satisfied. Consider-
ing the differences F (ξ, τ)−F s(ξ), H(ξ, τ)−Hs(ξ), Nj(τ)−Ns

j , j = 1, 2, let us ensure that they
satisfy the same initial boundary value problems as F (ξ, τ), H(ξ, τ), Nj(τ). The difference is
only in the initial conditions. They are replaced with F0(ξ)−F s(ξ), H0(ξ)−Hs(ξ), Nj(0)−Ns

j ,
respectively. Therefore, the estimates follow from given above inequalities (µ1 = π2 + γ)

(|F (ξ, τ)− F s(ξ) |, |H(ξ, τ)−Hs(ξ) |, |Fτ (ξ, τ) |, |Hτ (ξ, τ) |,

| Nj(τ)−Ns
j |) 6 De−

π2

2 τ

with some constant D > 0.
Therefore, stationary solution (15) is exponentially stable under the given above conditions.

Solution of non-stationary problem by the Laplace method

Non-stationary solution of problem (10)–(12), (15) is found using the integral Laplace trans-
form [14]. In our case, the method reduces the solution of non-stationary partial differential
problem to the solution of a system of ordinary differential equations (ODEs).

Applying the Laplace transform to the initial boundary value problem

Aτ = Aξξ,

A(ξ, 0) = A0(ξ),

A(0, τ) = A1(τ), A(1, τ) = A2(τ),

the following system of ODEs for the Laplace images is obtained

Âξξ − sÂ = −A0(ξ),

Â(0, s) = Â1(s), Â(1, s) = Â2(s).
(35)

Taking into account (35), one can find Â(ξ, s)

Â(ξ, s) =
sh(

√
sξ)

sh(
√
s)

Â2(s) +
sh(

√
s(1− ξ))

sh(
√
s)

Â1(s)+

+
1√
s

[
sh(

√
sξ)

sh(
√
s)

∫ 1

0

A0(ξ) sh(
√
s(1− ξ))dξ −

∫ ξ

0

A0(ε) sh(
√
s(ξ − ε))dε

]
.

(36)

Similarly, function Ĉ(z, s) is defined as

Ĉ(ξ, s) =
sh(

√
sξ)

sh(
√
s)

Ĉ2(s) +
sh(

√
s(1− ξ))

sh(
√
s)

Ĉ1(s)+

+
1√
s

[
sh(

√
sξ)

sh(
√
s)

∫ 1

0

C0(ξ) sh(
√
s(1− ξ))dξ −

∫ ξ

0

C0(ε) sh(
√
s(ξ − ε))dε

]
.

(37)

Therefore, Â(ξ, s) and Ĉ(ξ, s) are known functions. Similarly, function Θ̂(ξ, s) is

Θ̂(ξ, s) =
2√
s

(
sh(

√
sξ)

sh(
√
s)

∫ 1

0

(Â(ξ, s) + Ĉ(ξ, s)) sh(
√
s(1− ξ))dξ−

−
∫ ξ

0

(Â(ε, s) + Ĉ(ε, s)) sh(
√
s(ξ − ε))dε

)
.

(38)
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Equation for function F (ξ, τ) in Laplace images has the form

F̂ξξ −
s

P
F̂ = η

∫ ξ

0

(Â(ε, s) + Ĉ(ε, s))dε− 1

P
N̂1(s)− F0(ξ),

F̂ (0, s) = F̂ (1, s) = 0.

(39)

Then solution of problem (39) is

F̂ (ξ, s) =

√
Pη√
s

sh(
√
s/Pξ)

sh(
√
s/P )

∫ 1

0

∫ ε

0

(Â(ζ, s) + Ĉ(ζ, s))×

× sh(
√
s/P (ξ − ε))dζdε+

Pη

s

∫ ξ

0

∫ ε

0

(Â(ζ, s) + Ĉ(ζ, s))×

× sh(
√
s/P (ξ − ε))dζdε−

ch(
√
s/Pξ)− 1

s
(N̂1(s)− PF0(ξ)) + P

sh(
√

s/Pξ)√
s

∫ ξ

0

F0(ξ)dξ+

+
sh(

√
s/Pξ)

sh(
√
s/P

ch(
√
s/P )− 1

s
(N̂1(s)− PF0(ξ))− P

sh(
√
s/Pξ)

sh(
√
s/P

sh(
√

s/P )√
s

∫ ξ

0

F0(ξ)dξ.

(40)
Let us find N̂1(s) from (12). Introducing

r = (sh
√
s/P/

√
s/P − 1)/P

√
P −

(
(ch

√
s/P − 1)/

√
s/P

)2
/
√
sP sh

√
s/P ,

one can obtain

N̂1(s) =
η
√
P

r
√
s

[ ∫ 1

0

∫ ξ

0

∫ ε

0

(Â(ζ, s) + Ĉ(ζ, s)) sh(
√
s/P (1− ε))dζdεdξ−

−η
√
P

r
√
s

ch(
√
s/P )− 1

sh(
√

s/P )

∫ 1

0

∫ ξ

0

(Â(ϵ, s) + Ĉ(ϵ, s)) sh(
√
s/P (1− ξ))dϵdξ−

−PF0(ξ) + P
sh(

√
s/Pξ)√
s

∫ ξ

0

F0(ξ)dξ

]
.

(41)

Similarly, find function Ĥ(ξ, s)

Ĥ(ξ, s) =

√
Pη√
s

sh(
√
s/Pξ)

sh(
√
s/P )

∫ 1

0

∫ ε

0

(Â(ζ, s)− Ĉ(ζ, s))×

× sh(
√
s/P (ξ − ε))dζdε+

Pη

s

∫ ξ

0

∫ ε

0

(Â(ζ, s)− Ĉ(ζ, s))×

× sh(
√
s/P (ξ − ε))dζdε−

ch(
√
s/Pξ)− 1

s
(N̂1(s)− PH0(ξ)) + P

sh(
√

s/Pξ)√
s

∫ ξ

0

H0(ξ)dξ+

+
sh(

√
s/Pξ)

sh(
√
s/P )

ch(
√
s/P )− 1

s
(N̂2(s)− PH0(ξ))− P

sh(
√
s/Pξ)

sh(
√
s/P )

sh(
√

s/P )√
s

∫ ξ

0

H0(ξ)dξ.

(42)
Function N̂2(s) is defined from (12) as follows

N̂2(s) =
η
√
P

r
√
s

[ ∫ 1

0

∫ ξ

0

∫ ε

0

(Â(ζ, s)− Ĉ(ζ, s)) sh(
√
s/P (1− ε))dζdεdξ−

−η
√
P

r
√
s

ch(
√
s/P )− 1

sh(
√

s/P )

∫ 1

0

∫ ξ

0

(Â(ϵ, s)− Ĉ(ϵ, s)) sh(
√
s/P (1− ξ))dϵdξ−

−PH0(ξ) + P
sh(

√
s/Pξ)√
s

∫ ξ

0

H0(ξ)dξ

]
.

(43)
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Conditions for tendency of non-stationary solution
to a given stationary solution

Suppose there are limits

lim
τ→∞

Aj(τ) = A0
j , lim

τ→∞
Cj(τ) = C0

j , j = 1, 2, (44)

and derivatives A
′

j(τ), C
′

j(τ) have Laplace images. Then [14]

lim
s→0

sÂj(s) = lim
τ→∞

Aj(τ) = C0
j , lim

s→0
sĈj(s) = lim

τ→∞
Cj(τ) = C0

j . (45)

Next, asymptotic expressions when t → 0 for functions sh(t) and ch(t) are used: sh(t) ∼
t+ t3/6, ch(t) ∼ 1 + t2/2.

The proof is given for function Θ̂(ξ, s). The following relation is obtained for s → 0

sΘ̂(ξ, s) ∼ 2√
s

(
ξ

∫ 1

0

(sÂ(ξ, s) + sĈ(ξ, s))

[
(
√
s(1− ξ)) +

(
√
s(1− ξ))3

6

]
dξ−

−
∫ ξ

0

(sÂ(ε, s) + sĈ(ε, s))

[
(
√
s(ξ − ε)) +

(
√
s(ξ − ε))3

6

]
dε

)
∼

∼
(
1

3
[A0

2 + C0
2 − (A0

1 + C0
1 )] +A0

1 + C0
1

)
ξ−

−
(
1

3
[A0

2 + C0
2 − (A0

1 + C0
1 )]ξ

3 + [A0
1 + C0

1 ]ξ
2

)
= Θs(ξ).

Lemma 1. Under conditions (44), (45) the non-stationary solution of problem (10),(11), (12),
(15) approaches stationary solution (16) when dimensionless time τ increases.

Finding the originals of required functions

Functions (36), (37) are Laplace images. The inverse Laplace transform is used to determine
the originals.

It is assumed that Aj(τ), Cj(τ) have the form

Aj(τ) = A0
j + ϵj1 exp [−γj1τ ] sin(ω1τ), Cj(τ) = C0

j + ϵj2 exp [−γj2τ ] sin(ω2τ).

Then, their images are easily found from the Laplace transform table [15]

Âj(s) =
A0

j

s
+

ϵj1ω1

(s+ γj1)2 + ω2
1

, Ĉj(s) =
C0

j

s
+

ϵj2ω2

(s+ γj2)2 + ω2
2

, (46)

where γj1 > 0, γj2 > 0, i.e., the boundary mode is stabilized with time according to Lemma 1.
If one of the values of γj1, γj2 is negative then there is no stabilization effect of the solution.

At this point, for simplicity, it is assumed that motion arises from the state of rest
and A0(ξ) = C0(ξ) = 0. In this case, compatibility conditions (13) are violated since
A1(0) ̸= A0(0) = 0, C1(0) ̸= C0(0) = 0, that is, there are discontinuities of the 1st kind. This
is acceptable since the integral Laplace transform is applicable for functions that have a finite
number of discontinuities of the 1st kind [15].
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Expressions for Â(ξ, s), Ĉ(ξ, s), F̂ (ξ, s), N̂1(s) are simplified as

Â(ξ, s) =

(
A0

2

s
+

ϵ12ω1

(s+ γ12)2 + ω2
1

)
sh(

√
sξ)

sh(
√
s)

+

(
A0

1

s
+

ϵ11ω1

(s+ γ11)2 + ω2
1

)
sh(

√
s(1− ξ))

sh(
√
s)

,

Ĉ(ξ, s) =

(
C0

2

s
+

ϵ22ω2

(s+ γ22)2 + ω2
2

)
sh(

√
sξ)

sh(
√
s)

+

(
C0

1

s
+

ϵ21ω2

(s+ γ21)2 + ω2
2

)
sh(

√
s(1− ξ))

sh(
√
s)

,

F̂ (ξ, s) =
η√
sP

[ ∫ ξ

0

∫ ε

0

(Â(ζ, s) + Ĉ(ζ, s)) sh(
√
s/P (ξ − ε))dζdε−

−
sh(

√
s/Pξ)

sh(
√
s/P )

∫ 1

0

∫ ε

0

(Â(ζ, s) + Ĉ(ζ, s)) sh(
√
s/P (ξ − ε))dζdε

]
−

−
ch(

√
s/Pξ)− 1

s
N̂1(s) +

sh(
√
s/Pξ)

sh(
√
s/P )

ch(
√
s/P )− 1

s
N̂1(s),

N̂1(s) =
η

r
√
sP

[ ∫ 1

0

∫ ξ

0

∫ ε

0

(Â(ζ, s) + Ĉ(ζ, s)) sh(
√
s/P (1− ε))dζdεdξ−

−
ch(

√
s/P )− 1

sh(
√
s/P )

∫ 1

0

∫ ξ

0

(Â(ϵ, s) + Ĉ(ϵ, s)) sh(
√
s/P (1− ξ))dϵdξ

]
.

Expressions for Ĥ(ξ, s), N̂2(s) have the same form only terms Â(ζ, s) + Ĉ(ζ, s) are replaced
by Â(ζ, s)− Ĉ(ζ, s).

Function Θ̂(ξ, s) has the following form

Θ̂(ξ, s) =
2√
s

(
sh(

√
sξ)

sh(
√
s)

∫ 1

0

(Â(η, s) + Ĉ(η, s)) sh(
√
s(1− η))dη−

−
∫ ξ

0

(Â(η, s) + Ĉ(η, s)) sh(
√
s(ξ − η))dη

)
.

After numerical inversion of the Laplace transform functions Nj(τ) are obtain (see Fig. 3),
where A0

2 = 1.3, A0
1 = 1, C0

2 = 2.7, C0
1 = 2, ϵ12 = 1.2, ϵ11 = 1, ϵ22 = 1.6, ϵ21 = 1.8, ω1 = 0.1,

ω2 = 0.2, γ12 = 0.04, γ11= 0.03, γ22= 0.07, γ21= 0.06, χ= 0.00143 m2/sec, ν = 0.01006 m2/sec,
β = 1.82 · 10−4 1/deg, l = 10−4 m, g = 9, 81 m/sec2.

Fig. 3. Functions Nj(τ) versus dimensionless time
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Dimensionless velocities

timeū(ξ, τ) =
l

χRe
u = (F +H)x̄, v̄(ξ, τ) =

l

χRe
u = (F −H)ȳ,

are shown in Fig. 4, 5 (x̄ = ȳ = 1).

Fig. 4. Velocity ū(ξ, τ) as a function of dimensionless coordinate

Fig. 5. Velocity v̄(ξ, τ) as a function of dimensionless coordinate

Fig. 3 clearly shows that functions Nj(τ) approach constant values with increasing time.
Figs. 4 and 5 show velocities along the x and y axes. One can see that distribution of velocities
practically coincides with stationary distribution of velocities for large τ .
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Ползучее трехмерное конвективное движение в слое
с полем скоростей специального вида

Андрей А. Азанов
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация

Аннотация. Исследована задача о трехмерном движении теплопроводной жидкости в канале твер-
дыми параллельными стенками, на которых поддерживается заданное распределение температу-
ры. Температура в жидкостях квадратично зависит от горизонтальных координат, а поле скоростей
имеет специальный вид. Возникающая начально-краевая задача для модели Обербека–Буссинеска
является обратной и редуцирована к системе пяти интегродифференциальных уравнений. При
малых числах Рейнольдса (ползущие движения) полученная система становится линейной. Для
этой системы найдено стационарное решение, получены априорные оценки. На их основе уста-
новлены достаточные условия экспоненциальной сходимости гладкого нестационарного решения
к стационарному режиму. В изображениях по Лапласу решение обратной задачи построено в ви-
де квадратур, при более слабых условиях на температурный режим на стенках слоя. Приведены
результаты расчетов, на основе численного обращения преобразования Лапласа, поведения поля
скоростей для конкретной жидкой среды.

Ключевые слова: модель Обербека–Буссинеска, трехмерное движение, обратная задача, апри-
орные оценки, устойчивость, преобразование Лапласа.
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