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Abstract. We consider a family of initial problems for the Navie–Stokes type equations generated by
the de Rham complex in Rn × [0, T ], n > 2, with a positive time T over a scale weighted anisotropic
Hölder spaces. As the weights control the order of zero at the infinity with respect to the space variables
for vectors fields under the consideration, this actually leads to initial problems over a compact manifold
with the singular conic point at the infinity. We prove that each problem from the family induces
Fredholm open injective mappings on elements of the scales. At the step 1 of the complex we may apply
the results to the classical Navier–Stokes equations for incompressible viscous fluid.
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The Navier–Stokes equations describe the dynamics of incompressible viscous fluid that is
of great importance in applications, see, for instance, [1, 2]. Essential contributions has been
published in the research articles [3–6], as well as surveys and books [1, 2, 7], etc. Actually, the
problem is solved in the frame of the concept of weak solutions, see, J. Leray [3, 4], E. Hopf [6],
O.A. Ladyzhenskaya [2], but no general uniqueness theorem for weak solutions has been known
except the two-dimensional case. As far as we know, there are no general results on the global
solvability in time for the problem in spaces of sufficiently regular vector fields where the unique-
ness theorems for it are available, too. We point out an important direction related to the
problem of the existence of regular solutions to the Navier–Stokes equation: S. Smale [8] devel-
oped the concept of Fredholm non-linear mappings of Banach spaces applicable to a wide class of
non-linear equations of Mathematical Physics (cf. [9] for the steady version of the Navier–Stokes
equations).

Recently, the Navier–Stokes type equations were considered in the frame of elliptic differential
complexes, see [10–13] over scales of Bochner-Sobolev type spaces parametrized by smoothness
index s ∈ Z+ where the Sobolev embedding theorems provide point-wise smoothness for suffi-
ciently large s.

On the other hand, results of paper [14] demonstrate that considering the Navier–Stokes type
equations over the whole space Rn × [0,+∞) it is important to control the order of zero at the
infinity with respect to the space variables for the corresponding solutions. Namely, [14] provides
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an instructive example of a non-linear problem in Rn× [0, T ), structurally similar to the Cauchy
problem for the Navier-Stokes equations and ‘having the same energy estimate’, but, according
to some considerations including numerical simulations, admitting singular solutions of special
type for smooth data if n > 5. An essential role in the arguments of this paper plays the fact
that certain asymptotic behaviour of the initial data at the infinity with respect to the space
variables prevents blow-up behaviour in a finite time interval for the considered solutions, cf.
also comments by [15, formulas (4), (5)] related to the data of the Navier–Stokes equations for
incompressible fluid.

One of the possibilities to deal with the asymptotic was indicated in [16] where the Navier–
Stokes equations for incompressible viscous fluid were considered in Rn × [0, T ], n > 3, for a
positive time T over a scale weighted anisotropic Hölder spaces with the weights controlling the
order of decreasing at the infinity with respect to the space variables for the vectors fields under
the consideration. This actually leads to an initial problem where the space variables belong to
a compact manifold with the singular conic point at the infinity, cf. [17].

In the present paper we extend the results of [16] to a family of initial problems for the
Navier–Stokes type equations generated by the de Rham complex in Rn × [0, T ], n > 2, with a
positive time T over a scale of weighted anisotropic Hölder spaces. It is worth to say that the
problem, discussed in [14], is included to the consideration. Using the recent developments of the
Hodge theory for the de Rham complex over these spaces, see [18,19], we involve weight indexes
δ > n/2, that corresponds to the asymptotic |x|−δ−|α|, x ∈ Rn, as |x| → +∞, for the related
solutions and their partial derivatives of order α ∈ Z+. Namely, we consider the Navier–Stokes
type equations in the framework of the theory of operator equations in Banach space and we
prove that each initial problem from the family induces Fredholm open injective mappings on
elements of the scales. At the step 1 of the complex we may apply the results to the classical
Navier–Stokes equations for incompressible viscous fluid.

We do not discuss existence theorems here but we hope that the use of the weighted Hölder
spaces with proper weight indexes may exclude the blow-up behaviour of solutions to the Navier–
Stokes type equations considered in [14].

1. Function spaces, embedding theorems and a non-linear
problem

Let Rn be the n-dimensional Euclidean space with the coordinates x = (x1, . . . , xn). To
introduce weighted Hölder spaces over Rn we set

w(x) =
√

1 + |x|2, w(x, y) = max{w(x), w(y)} ∼
√
1 + |x|2 + |y|2

for x, y ∈ Rn. Let δ ∈ R. (Note that δ is tacitly assumed to be nonnegative.) For s = 0, 1, . . .,
denote by Cs,0,δ the space of all s times continuously differentiable functions on Rn with finite
norm

∥u∥Cs,0,δ =
∑
|α|6s

sup
x∈Rn

(w(x))δ+|α||∂αu(x)|.

For 0 < λ 6 1, we introduce

⟨u⟩λ,δ = sup
x,y∈Rn

x̸=y
|x−y|6|x|/2

(w(x, y))δ+λ |u(x)− u(y)|
|x− y|λ

.

– 284 –



K.V. Gagelgans, Alexander A. Shlapunov The Fredholm Navier-Stokes Type Equations . . .

and we define C0,λ,δ to consist of all continuous functions on Rn with finite norm

∥u∥C0,λ,δ = ∥u∥C0,λ(U) + ∥u∥C0,0,δ + ⟨u⟩λ,δ,

where U is a small neighbourhood of the origin in Rn and C0,λ(U) is the standard Hölder space
over the compact U . Finally, for s ∈ Z>0, we introduce Cs,λ,δ to be the space of all s times
continuously differentiable functions on Rn with finite norm

∥u∥Cs,λ,δ =
∑
|α|6s

∥∂αu∥C0,λ,δ+|α| ,

see [20] for similar weighted Sobolev spaces over Rn.
The normed spaces Cs,λ,δ constitute a scale of Banach spaces parametrised by s ∈ Z>0, λ ∈

[0, 1] and δ ∈ R. The properties of the scale (e.g. natural coninuous and compact embeddings)
are well known, see, for instance, [16, 18].

Next, denote by Λq the bundle of exterior forms of degree 0 6 q 6 n over Rn. We write
C∞

Λq (Rn) for the space of all differential forms of degree q with C∞ coefficients on Rn. These
space constitute the so-called de Rham complex C∞

Λ· (Rn) on Rn whose differential is given by
the exterior derivative d. To display d acting on q -forms one uses the designation du := dqu for
u ∈ C∞

Λq (Rn) (see for instance [21]); it is convenient to set dq = 0 if q < 0 or q > n. As usual,
denote by d∗q the formal adjoint for dq. Then, as it is known, we have

dq+1 ◦ dq = 0, d∗qdq + dq−1d
∗
q−1 = −Em(q)∆, 0 6 q 6 n, (1)

where Em is the unit matrix of type (m×m) and ∆ = ∂2x1
+ ∂2x2

+ · · ·+ ∂2xn
is the usual Laplace

operator in the Euclidean space Rn, n > 2. For a differential operator A acting on sections of
the vector bundle Λq over Rn, we denote by Cs,λ,δ

Λq ∩ SA the space of all differential q-forms u
with components from Cs,λ,δ, satisfying Au = 0 in the sense of the distributions in Rn. This
space is obviously closed subspace of Cs,λ,δ

Λq and so this is Banach space under the induced norm.
Let us introduce anisotropic Hölder spaces which suit well to parabolic theory and are weighted
at x = ∞ (see [16,17,22] and elsewhere).

More generally, given a Banach space B, we denote by Cs,0([0, T ],B) the Banach space of all
mappings v : [0, T ] → B with finite norm

∥v∥Cs,0([0,T ],B) =

s∑
j=0

sup
t∈[0,T ]

∥(d/dt)jv∥B,

where s ∈ Z>0. We also let

⟨v⟩λ,[0,T ],B = sup
t′,t′′∈[0,T ]

t′ ̸=t′′

∥v(t′)− v(t′′)∥B
|t′ − t′′|λ

and let Cs,λ([0, T ],B) stand for the space of all functions v ∈ Cs,0([0, T ],B) with finite norm

∥v∥Cs,λ([0,T ],B) =

s∑
j=0

(
sup

t∈[0,T ]

∥(d/dt)jv∥B + ⟨(d/dt)jv⟩λ,[0,T ],B

)
.

The Hölder spaces in question will be parametrised several parameters s, λ, δ, and T .
By abuse of notation we introduce the special designation s(s, λ, δ) for the quintuple
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s(s, λ, δ) :=
(
2s, λ, s, λ2 , δ

)
. Let Cs(0,0,δ)

T = C0,0([0, T ], C0,0,δ) be the space of all continuous
functions on Rn × [0, T ] with finite norm

∥u∥
C

s(0,0,δ)
T

= sup
(x,t)∈Rn×[0,T ]

(w(x))δ|u(x, t)|,

and, for 0 < λ 6 1,

C
s(0,λ,δ)
T = C0,0([0, T ], C0,λ,δ) ∩ C0,λ/2([0, T ], C0,0,δ)

is the space of all continuous functions on Rn × [0, T ] with finite norm

∥u∥
C

s(0,λ,δ)
T

= sup
t∈[0,T ]

∥u(·, t)∥C0,λ,δ + sup
t′,t′′∈[0,T ]

t′ ̸=t′′

∥u(·, t′)− u(·, t′′)∥C0,0,δ

|t′ − t′′|λ/2
. (2)

Then C
s(s,0,δ)
T =

∩s
j=0 C

j,0([0, T ], C2(s−j),0,δ) is the space of functions on Rn × [0, T ] with con-
tinuous derivatives ∂αx ∂

j
t u, for |α|+ 2j 6 2s, and with finite norm

∥u∥
C

s(s,0,δ)
T

=
∑

|α|+2j62s

∥∂αx ∂
j
t u∥Cs(0,0,δ+|α|)

T

.

Similarly,

C
s(s,λ,δ)
T =

s∩
j=0

(
Cj,0([0, T ], C2(s−j),λ,δ) ∩ Cj,λ/2([0, T ], C2(s−j),0,δ)

)
is the space of functions on Rn×[0, T ] with continuous partial derivatives ∂αx ∂

j
t u, for |α|+2j 6 2s,

and with finite norm
∥u∥

C
s(s,λ,δ)
T

=
∑

|α|+2j62s

∥∂αx ∂
j
t u∥Cs(0,λ,δ+|α|)

T

.

We also need a function space whose structure goes slightly beyond the scale of function spaces
C

s(s,λ,δ)
T . Namely, given any integral k > 0, we denote by Ck,s(s,λ,δ)

T the space of all continuous
functions u on Rn × [0, T ] whose derivatives ∂βxu belong to Cs(s,λ,δ+|β|)

T for all multi-indices β
satisfying |β| 6 k, with finite norm

∥u∥
C

k,s(s,λ,δ)
T

=
∑
|β|6k

∥∂βxu∥Cs(s,λ,δ+|β|)
T

.

For k = 0, this space just amounts to Cs(s,λ,δ+|β|)
T , and so we omit the index k = 0. The normed

spaces Ck,s(s,λ,δ)
T are obviously Banach spaces.

We note that the function classes introduced above can be thought of as "physically" admissi-
ble solutions to the Navier–Stokes equations (at least for proper numbers δ). By the construction,
if 1 6 p < +∞ and δ > n/p then there exists a constant c(δ, p) > 0 depending on δ and p, such
that

∥u(·, t)∥Lp(Rn) 6 c(δ, p) ∥u∥
C

s(0,0,δ)
T

(3)

for all t ∈ [0, T ] and all u ∈ C
s(0,0,δ)
T .

Also, the following embedding theorem is rather expectable, see [16,22].

Theorem 1.1. Also, if s, s′ ∈ Z>0, δ, δ′ ∈ R>0, λ, λ′ ∈ [0, 1] and k ∈ Z+ such that s+λ > s′+λ′

and δ > δ′, then the space Ck,s(s,λ,δ)
T is embedded continuously into Ck,s(s′,λ′,δ′)

T . The embedding
is compact if s+ λ > s′ + λ′ and δ > δ′.
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We also need a standard lemma on the multiplication of functions, see [16].

Lemma 1.1. Let s, k be nonnegative integers and λ ∈ [0, 1]. If u∈Ck,s(s,λ,δ)
T and v ∈ C

k,s(s,λ,δ′)
T ,

then the product uv belongs to Ck,s(s,λ,δ+δ′)
T and

∥uv∥
C

k,s(s,λ,δ+δ′)
T

6 c ∥u∥
C

k,s(s,λ,δ)
T

∥v∥
C

k,s(s,λ,δ′)
T

(4)

with c > 0 a constant independent of u and v.

However we need scales of weighted Hölder spaces, that fit the refined structure of the Navier–
Stokes type equations. First, for s, k ∈ Z>0 and 0 < λ < λ′ < 1, we introduce

Fk,s(s,λ,λ′,δ)
T := C

k+1,s(s,λ,δ)
T ∩ Ck,s(s,λ′,δ)

T .

When given the norm ∥u∥Fk,s(s,λ,λ′,δ)
T

:= ∥u∥
C

k+1,s(s,λ,δ)
T

+∥u∥
C

k,s(s,λ′,δ)
T

, this is obviously a Banach
space. The following lemma explains why this scale is important for our exposition, see [16].

Lemma 1.2. Let s be a positive integer, k ∈ Z>0, 0 < λ < λ′ < 1 and δ > δ′. Then the
embedding Fk,s(s,λ,λ′,δ)

T ↪→ Fk+1,s(s−1,λ,λ′,δ′)
T is compact.

Consider the induced vector bundle Λq(t) over Rn × [0,+∞) consisting of the differential
forms with coefficients depending on both the variable x ∈ Rn and on the real parameter
t ∈ [0,+∞). In the sequel we consider the following Cauchy problem. Given any sufficiently
regular differential forms f =

∑
#I=q

fI(x, t)dxI and u0 =
∑

#I=q

uI,0(x)dxI on Rn × [0, T ] and Rn,

respectively, find a pair (u, p) of sufficiently regular differential forms u =
∑

#I=q

uI(x, t)dxI and

p =
∑

#I=q−1

pI(x, t)dxI on Rn × [0, T ] satisfying


∂tu− µ∆u+Nqu+ a dq−1p = f, (x, t) ∈ Rn × (0, T ),

a d∗q−1 u = 0, (x, t) ∈ Rn × (0, T ),

a d∗q−2 p = 0, (x, t) ∈ Rn × (0, T ),

u = u0, (x, t) ∈ Rn × {0}

(5)

with positive fixed numbers T and µ, a parameter a that, equals to 0 or 1, and a non-linear term
Nqu that is specified by the following assumptions (see [12] or [10] for more general problems in
the context of elliptic differential complexes):

Nqu =M
(q)
1 (dq ⊕ d∗q−1u, u) + dq−1M

(q)
2 (u, u) (6)

with two bilinear differential operators with constant coefficients and of zero order:

M
(q)
1 (v, u) : C∞

Λq+1⊕Λq−1(Rn)× C∞
Λq (Rn) → C∞

Λq (Rn), (7)

M
(q)
2 (v, u) : C∞

Λq (Rn)× C∞
Λq (Rn) → C∞

Λq−1(Rn). (8)

Of course, we have to assume that d∗q−1u0 = 0 on Rn if a = 1, and, as we want to provide the
uniqueness for solutions to (5), we have to set p = 0 if a = 0.

For n = 1, q = 0 and N0u = u′ u relations (5) reduce obviously to the Cauchy problem for
Burgers’ equation, [23].

If we denote by ⋆ the ⋆-Hodge operator and by ∧ the exterior product of differential forms
then for n = 3, q = 1, a = 1 we may identify 1-forms with n-vector-fields, the operator d0 with
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the gradient operator ∇, the operator (−d∗0) with the divergence operator and the operator d1
with the rotation operator. Then for the non-linearity

N1u = (u · ∇)u = ⋆(⋆d1u ∧ u) + d0|u|2/2, (9)

written in the Lamb form, relations (5) are usually referred to as but the Navier-Stokes equations
for incompressible fluid with given dynamical viscosity µ of the fluid under the consideration,
density vector of outer forces f , the initial velocity u0 and the search-for velocity vector field
u and the pressure p of the flow, see for instance [1]. In [12] these equations with a = 1 were
considered in Bochner–Sobolev type spaces; as it was explained there, for q = 0 and q = n

the equations become degenerate in a sense, so, if a = 1 we will consider the equations for
1 6 q 6 n− 1, only.

Let us comment the example by [14] by P.Plecháč and V. Šverák.

Example 1.1. If µ = 1, q = 1, a = 0, b is a real parameter, and

N1u = (u · ∇)u b+
(1− b)∇|u|2 + (divu)u

2
= ⋆(⋆d1u ∧ u) b+ d0|u|2 − (d∗0u)u

2
(10)

then (5) becomes the non-linear problem in Rn× [0, T ) considered in [14]. Actually, they consider
the ‘radial vector fields’

u = −v(r, t)x, (11)

with functions v of variables t and r = |x|. Under the hypothesis of this example the fields are
solutions to (5) for f = 0 and u0 = −v(r, 0)x if

v′t = v′′rr +
n+ 1

r
v′r + (n+ 2)v2 + 3rvv′r. (12)

Next, for v satisfying (12) they consider the self-similar solutions

v(r, t) =
1

2κ(T − t)
w
( r√

2κ(T − t)

)
(13)

with functions w(y) binded by the following relations, see [14, (1.9)–(1.11)]:

w′′ +
n+ 1

y
w′ − κ y w′ + (n+ 2)w2 + 3yww′ − 2κw = 0, y ∈ (0,+∞), (14)

w(0) = γ > 0, w′(0) = 0, w(y) = y−2 as y → +∞, (15)

with a positive parameter κ. Based on some analysis of solutions to the steady equation related
to (12) and numerical simulations, they made conclusion that for n > 4 self-similar solutions
(13) may produce singular solutions in finite time to this particular version of (5) for regular
data via formula (11) if γ > 0. However it might be, the numerical simulations can not be
arguments in analysis. On the other hand, they showed that certain asymptotic behaviour of
the initial data at the infinity with respect to the space variables prevents blow-up behaviour
in a finite time interval for the considered type of solutions, at least in the dimension n = 3.
This gives some hope that the use of the weighted Hölder spaces with proper weight indexes may
exclude the blow-up behaviour of solutions to the Navier-Stokes type equations, at least for the
non-linearity (10).

Thus, we will investigate the Navier–Stokes type equations (5) over the scale of the weighted
Hölder spaces Fk,s(s,λ,λ′,δ). With this purpose, for a linear operator A : X → Y between Banach
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spaces X,Y with a domain DA ⊂ X we denote by XDA
the Banach space endowed with the

so-called graph norm
∥u∥XDA

= ∥u∥X + ∥Au∥Y for all u ∈ DA.

Thus, we introduce C
k,s(s,λ,δ)
T,Λq to be the space of all exterior differential q-forms u with the

coefficients from C
k,s(s,λ,δ)
T endowed with the natural norm. Let also C

k,s(s,λ,δ)
T,Λq,Dd⊕d∗

be a subset

of the space Ck,s(s,λ,δ)
T,Λq with the property that dq ⊕ d∗q−1u ∈ C

k,s(s,λ,δ+1)
T,Λq+1⊕Λq−1 ; we endow this space

with the graph norm

∥u∥
C

k,s(s,λ,δ)

T,Λq,Dd⊕d∗
= ∥u∥

C
k,s(s,λ,δ)

T,Λq
+ ∥dq ⊕ d∗q−1∥Ck,s(s,λ,δ+1)

T,Λq+1⊕Λq−1
.

Similarly, let Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

be a subset of Fk,s(s,λ,λ′,δ)
T,Λq with the property that dq ⊕ d∗q−1u ∈

Fk,s(s,λ,λ′,δ+1)
T,Λq+1⊕Λq−1 ; we endow this space with the graph norm

∥u∥Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

= ∥u∥Fk,s(s,λ,λ′,δ)
T,Λq

+ ∥dq ⊕ d∗q−1∥Fk,s(s,λ,λ′,δ+1)

T,Λq+1⊕Λq−1

.

Let us continue with a suitable linearization of (5) over the defined scales.

2. The Navier-Stokes type equations as Fredholm mappings

First, we recall the notion of Fredholm mappings in Banach spaces, see [8]. It is said that
a linear bounded operator A0 : X → Y has the Fredholm property if its kernel and co-kernel
are finite-dimensional subspaces of X and Y , respectively, and its range R(A) is closed in Y .
Then a non-linear mapping A : X → Y is Fredholm if its Fréchet derivative A′

|v is a linear
bounded Fredholm operator at each point v ∈ X. The Fredholm property provides many uselful
information on the operator equation Au = f in the Banach spaces X and Y , see [8] (cf. also [9]
for the steady Navier–Stokes equations).

We continue this section with the following linear Cauchy problem for n > 2. Given any
0 6 q 6 n and any sufficiently regular differential forms

w =
∑
#I=q

wI(x, t)dxI , f =
∑
#I=q

fI(x, t)dxI , u0 =
∑
#I=q

uI,0(x)dxI

on Rn × [0, T ] and Rn, respectively, find a pair (u, p) of sufficiently regular differential forms
u =

∑
#I=q

uI(x, t)dxI and p =
∑

#I=q−1

pI(x, t)dxI on Rn × [0, T ] satisfying


∂tu− µ∆u+ Bq(u,w) + a dq−1p = f, (x, t) ∈ Rn × (0, T ),

a d∗q−1 u = 0, (x, t) ∈ Rn × (0, T ),

a d∗q−2 p = 0, (x, t) ∈ Rn × (0, T ),

u = u0, (x, t) ∈ Rn × {0}

(16)

where a d∗q−1u0 = 0 in Rn and Bq(u,w) is given by

M
(q)
1 (dq ⊕ d∗q−1u,w) + dq−1M

(q)
2 (u,w) +M

(q)
1 (dq ⊕ d∗q−1w, u) + dq−1M

(q)
2 (w, u) (17)

Again, as we want to provide the uniqueness for solutions to (16), we have to set p = 0 if a = 0.
We are moving towards expectable uniqueness and existence theorem in the weighted spaces

(note that in the standard Sobolev and Hölder spaces are well known, see, for instance, [25]).
However, it depends drastically on the paparemeter a.
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Theorem 2.1. Let n > 2, 0 6 q 6 n, a = 0. Assume that s, k ∈ N, 0 < λ < λ′ < 1, δ > n/2,
and w ∈ Fk,s(s,λ,λ′,δ)

T,Λq . Then for any pair

F =(f, u0) ∈ Fk,s(s,λ,λ′,δ)
T,Λq × C2s+k+1,λ,δ

Λq (18)

there is a unique solution u ∈ Fk,s(s,λ,λ′,δ)
T,Λq, to (16) and, moreover,

∥u∥Fk,s(s,λ,λ′,δ)
T,Λq

6 c(w)∥F∥Fk,s(s,λ,λ′,δ)
T,Λq ×C2s+k+1,λ,δ

Λq

with a positive constant c(w) independent on F .

Proof. We use the theory of operator equations in Banach spaces and method of integral repre-
sentation. Namely, Let ψµ be the standard fundamental solution of the convolution type to the
heat operator Hµ = ∂t − µ∆ in Rn+1, n > 1,

ψµ(x, t) =
θ(t)

(4πµt)
n/2

e
−|x|2

4µt ,

where θ(t) is the Heaviside function. We set

ψµ,q(x, y, t) =
∑
|I|=q

ψµ(x− y, t) (⋆dyI) dxI ,

and for q-forms v and u0 over Rn × [0, T ] and Rn, respectively, denote by

(Ψµv)(x, t) =

∫ t

0

∫
Rn

v(y, s) ∧ ψµ,q(x, y, t− s) ds,

(Ψµ,q,0u0)(x, t) =

∫
Rn

u0(y) ∧ ψµ,q(x, y, t)

the so-called volume parabolic potential and Poisson parabolic potential, respectively, defined
for (x, t) ∈ Rn × (0, T ).

Lemma 2.1. Let s, k ∈ Z>0, 0 < λ < 1 and δ > 0. The parabolic potentials Ψµ,q and Ψµ,q,0

induce bounded linear operators

Ψµ,q,0 : C2s+k,λ,δ
Λq (Rn) → C

k,s(s,λ,δ)
T,Λq ∩ SHµ

,

Ψµ,q : C
k,s(s,λ,δ)
T,Λq → C

k,s(s,λ,δ)
T,Λq,DHµ

, Ψµ,q : C
k,s(s−1,λ,δ+2)
T,Λq → C

k,s(s,λ,δ)
T,Λq .

Proof. As the potentials act on the differential forms coefficient-wise, the statement follows from
[16, Lemmas 4.5 and 4.8].

Now we set
Wqu =M

(q)
1 ((dq ⊕ d∗q−1)u,w) +M

(q)
1 ((dq ⊕ d∗q−1)w, u).

Lemma 2.2. If k > N and δ > 1 then following the operators are compact:

Ψµ,qBq(w, ·) : Fk,s(s,λ,λ′,δ)
T,Λq → Fk,s(s,λ,λ′,δ)

T,Λq , Ψµ,qWq : Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

→ Fk,s(s,λ,λ′,δ)
T,ΛqDd⊕d∗

(19)
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Proof. According to embedding Theorem 1.1, multiplication Lemma 1.1, and Lemma 2.1, the
operators

Ψµ,qBq(w, ·) : Ck,s(s,λ,δ)
T,Λq, → C

k−1,s(s+1,λ,2δ−1)
T,Λq , (20)

Ψµ,qWq : C
k,s(s,λ,δ)
T,Λq,Dd⊕d∗

→ C
k,s(s+1,λ,2δ−1)
T,Λq , (21)

dq ⊕ d∗q−1Ψµ,qWq : C
k,s(s,λ,δ)
T,Λq,Dd⊕d∗

→ C
k−1,s(s+1,λ,2δ)
T,Λq+1⊕Λq−1 , (22)

are continuous if k > 1, δ > 0. As the embeddings

C
k,s(s+1,λ,2δ−1)
T,Λq → C

k+2,s(s,λ,2δ−1)
T,Λq , C

k−1,s(s+1,λ,2δ)
T,Λq+1⊕Λq−1 → C

k+1,s(s,λ,2δ)
T,Λq+1⊕Λq−1 (23)

are continuous, we see that the operator Ψµ,qWq maps the space C
k,s(s,λ,δ)
T,Λq,Dd⊕d∗

continuously

to C
k+1,s(s,λ,2δ−1)
T,ΛqDd⊕d∗

and the operator Ψµ,qBq(w, ·) maps the space C
k,s(s,λ,δ)
T,Λq continuously to

C
k+1,s(s,λ,2δ−1)
T,Λq . In particular, the operators

Ψµ,qBq(w, ·) : Fk,s(s,λ,λ′,δ)
T,Λq → Fk+1,s(s,λ,λ′,2δ−1)

T,Λq ,

Ψµ,qWq : Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

→ Fk+1,s(s,λ,λ′,2δ−1)
T,ΛqDd⊕d∗

are continuous, too, for k ∈ N, δ > 0. If k ∈ N, δ > 1 then 2δ − 1 > δ and hence, by Lemma 1.2,
the operators (19) are compact.

Next we reduce the Cauchy problem (16) to an operator Frredholm equation.

Lemma 2.3. Let 0 6 q 6 n, s and k be positive integers, 0 < λ < λ′ < 1, δ ∈ (n/2,+∞), and
w ∈ Fk,s(s,λ,λ′,δ)

T,Λq . Then the operator

I+Ψµ,qBq(w, ·) : Fk,s(s,λ,λ′,δ)
T,Λq → Fk,s(s,λ,λ′,δ)

T,Λq (24)

is continuously invertible.

Proof. By Lemma 2.2, the operator

Ψµ,qBq(w, ·) : Fk,s(s,λ,λ′,δ)
T,Λq → Fk,s(s,λ,λ′,δ)

T,Λq

is compact. Hence the mapping (24) is a Fredholm linear operator of index zero by the famous
Fredholm theorem; in particular, it is continuously invertible if and only if it is injective.

Assume that u ∈ Fk,s(s,λ,λ′,δ)
T,Λq and

u+Ψµ,q Bq(w, u) = 0.

Then the properties of the fundamental solution Ψµ mean that u is a solution to the following
Cauchy problem: {

Hµu+Bq(w, u) = 0 (x, t) ∈ Rn × (0, T ),

u = 0, (x, t) ∈ Rn × {0}.

In particular, (1) and an integration by parts yields for all t ∈ [0, T ]:

∂t∥u(·, t)∥2L2
Λq (Rn) + µ

n∑
j=1

∥∂ju(·, t)∥2L2
Λq (Rn) = (Bq(w, u)(·, t), u(·, t))2L2

Λq (Rn). (25)
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Using the structure of the operator Bq(w, ·), see see that there are positive constants c(j)q

independent on t and u such that

|(Bq(w, u)(·, t), u(·, t))2L2
Λq (Rn)| 6 c(1)q ∥∇w∥

C
0,s(0,0,δ+1)

T,Λq+1
∥ 6 u(·, t)∥2L2

Λq (Rn)+

+c(2)q ∥w∥
C

0,s(0,0,δ)
T,Λq

∥∇u(·, t)∥L2
Λq (Rn)∥u(·, t)∥L2

Λq (Rn) 6

6 µ

2
∥∇u(·, t)∥2L2

Λq (Rn) +
(2(c(2)q )2

µ
∥w∥2

C
0,s(0,0,δ)
T,Λq

+ c(1)q ∥∇w∥
C

0,s(0,0,δ+1)

T,Λq

)
∥u(·, t)∥2L2

Λq (Rn)

(26)

for all t ∈ [0, T ]. Now, combining (25) and (26) we conclude that for all t ∈ [0, T ]

∂t∥u(·, t)∥2L2
Λq (Rn) 6 Cµ∥u(·, t)∥2L2

Λq (Rn)

with a positive constant Cµ independent on u. Finally, the Gronwall lemma, see, for instance,
[24, Ch. XII, p. 353, formula (1.2)] yields that u ≡ 0, that was to be proved.

Finally, according to Lemma 2.1, the form

v(0) = Ψµ,qf + Ψµ,q,0u0,

associated with the pair (18), belongs to the space Fk,s(s,λ,λ′,δ)
T,Λq . Then, there is a unique form

u ∈ Fk,s(s,λ,λ′,δ)
T,Λq , satisfying

u+Ψµ,qBq(w, u) = v(0). (27)

By the properties of the fundamental solution Ψµ, we have{
Hµu+Bq(w, u) = f (x, t) ∈ Rn × (0, T ),
u = u0, (x, t) ∈ Rn × {0}. (28)

As we have seen in the proof of Lemma 2.3, problem (28) has no more than one solution in
the weighted Hölder spaces and that was to be proved.

Next, we consider the case where a = 1. At the degree q = 1 the following theorem was
proved in [16, Corollary 5.9].

Theorem 2.2. Let n > 2, 1 6 q 6 n − 1, a = 1. Assume that s, k ∈ N, 0 < λ < λ′ < 1,
n/2 < δ < n, δ ̸= (n− 1) and w ∈ Fk,s(s,λ,λ′,δ)

T,Λq,Dd⊕d∗
. Then for any pair

F =(f, u0) ∈ Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

× C2s+k+1,λ,δ
Λq ∩ Sd∗ (29)

there is a unique solution

U=(u, p) ∈ Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

×Fk−1,s(s−1,λ,λ′,δ−1)
T,Λq−1,Dd⊕d∗

,

to (16) and, moreover,

∥U∥Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

×Fk−1,s(s−1,λ,λ′,δ−1)

T,Λq−1,Dd⊕d∗

6 c(w)∥F∥Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

×C2s+k+1,λ,δ
Λq

with a positive constant c(w) independent on F .
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Proof. Let

e(x) =


1

π
ln |x|, for n = 2,

1

σn

|x|2−n

2− n
, for n > 3,

be the standard two-sided fundamental solution of the convolution type to the Laplace operator
in Rn and σn the area of the unit sphere in Rn. We set

eq(x, y) =
∑
|I|=q

e(x− y) (⋆dyI) dxI ,

and then, for f ∈ C
k,s(s,λ,δ)
T,Λq+1 ,

(Φq f)(x, t) =

∫
Rn

f(y, t) ∧ ϕq(x, y) (30)

where ϕq(x, y) = (dn−q−1)
∗
yeq(x, y), n > 2.

Lemma 2.4. Let n > 2, q > 0, s ∈ Z+, k ∈ Z+, 0 < λ < 1, δ > 0, δ + 1 − n ̸∈ Z+. The
differential d induces a bounded linear operator

dq : Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

∩ Sd∗ → Fk,s(s,λ,λ′,δ+1)
T,Λq+1 ∩ Sd.

The related operator equation a normally solvable map; more precisely,

1. the operator dq is an isomorphism if 0 < δ < n− 1 and its inverse is given by the integral
operator Φq;

2. if there is m ∈ Z+ such that n − 1 + m < δ < n + m then d defines an injection and
its (closed) range R

k,s(s,λ,λ′,δ+1)
T,Λq+1 consists of f ∈ Fk,s(s,λ,λ′,δ+1)

T,Λq+1 ∩ Sdq+1
satisfying for all

t ∈ [0, T ] and all h ∈ H6m+1,Λq

(f(·, t), dqh)L2(Rn,Λq+1) = 0,

and the left inverse of d is given by the integral operator Φq.

Proof. Follows immediately from the definition of the scale Fk,s(s,λ,λ′,δ)
T,Λq and [19, Theorem 3.4]

where the range of the operator

dq ⊕ d∗q−1 : C
k,s(s,λ,δ)
T,Λq,Dd⊕d∗

→ C
k,s(s,λ,δ+1)
T,Λq+1 × C

k,s(s,λ,δ+1)
T,Λq−1

was described.

Now, if 0 < δ < n−1 then Φqdq maps the space Fk,s(s,λ,λ′,δ)
T,ΛqDd⊕d∗

continuously to Fk,s(s,λ,λ′,δ)
T,ΛqDd⊕d∗

∩Sd∗

for δ + 1− n ̸∈ Z+. If n− 1 < δ < n, then,

(dqv(·, t), dqh)L2(Rn,Λq+1) = (v(·, t), d∗qdqh)L2(Rn,Λq+1) = 0 (31)

for all t ∈ [0, T ] and all h ∈ H61,Λq and any v ∈ Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

. Applying Lemma 2.4 with m = 0

we see that the operator

Φqdq : Fk,s(s,λ,λ′,δ)
T,ΛqDd⊕d∗

→ Fk,s(s,λ,λ′,δ)
T,ΛqDd⊕d∗

∩ Sd∗ (32)

is a continuous if n/2 < δ < n, δ+1−n ̸∈ Z+, too; in particular, Φqdqu = u for all Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

.
Actually, the operator Φqdq represents the Leray-Helmholtz type L2-projection on the subspace
L2
Λq (Rn) ∩ Sd∗ of L2

Λq (Rn), see [18, Corollary 1] for the isotropic weighted Hölder spaces
or [22, Corollary 2] for the anisotropic ones.
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Lemma 2.5. Let 1 6 q 6 n − 1, s and k be positive integers, 0 < λ < λ′ < 1, δ ∈ (n/2, n),
δ ̸= (n− 1) and w ∈ Fk,s(s,λ,λ′,δ)

T,Λq,Dd⊕d∗
. Then the operator

I+Φq dq Ψµ,qWq : Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

∩ Sd∗ → Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

∩ Sd∗ (33)

is continuously invertible.

Proof. By Lemma 2.2 and the discussion above, the operator

Φq dq Ψµ,qWq : Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

∩ Sd∗ → Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

∩ Sd∗

is compact. Hence the mapping (33) is a Fredholm linear operator of index zero by the famous
Fredholm theorem; in particular, it is continuously invertible if and only if it is injective.

First, we note that, as the scalar Hµ commutes with the differential operator dq we conclude
that the operators Φqdq and Hµ commute, too. Then any element u from the kernel of the
operator (33) is a solution to the following Cauchy problem:{

Hµu+Φq dqWq(w, u) = 0 (x, t) ∈ Rn × (0, T ),
u = 0, (x, t) ∈ Rn × {0}.

Next, according, to [22, Corollary 2], the operator Φqdq represents the Leray-Helmholtz type
L2-projection on the subspace L2

Λq (Rn) ∩ Sd∗ of L2
Λq (Rn) and hence

(Bq(w, u)(·, t), u(·, t))2L2
Λq (Rn) = (ΦqdqWqu(·, t), u(·, t))2L2

Λq (Rn)

for all t ∈ [0, T ] and all u ∈ Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

∩ Sd∗ . Therefore, the injectivity of the operator (33)
follows in the same way as for the operator (24).

To finish the proof of the theorem, we note that the form

v(0) = Φqdq

(
Ψµ,qf + Ψµ,q,0u0

)
,

associated with the pair (29), belongs to the space Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

∩Sd∗ if δ ∈ (n/2, n), δ+1−n ̸∈ Z+.

Then, according to Lemma 2.4, there is a unique form u ∈ Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

∩ Sd∗ , satisfying

u+Φq dq Ψµ,qWqu = v(0). (34)

By the discussion above, see (31) and Lemma 2.4,

Φq dq Ψµ,qWqu = Φq dq ΨµBq(w, u), (35)

dq(I − Φq dq)
(
Ψµ,qf + Ψµ,q,0u0 − Ψµ,qBq(w, u)

)
= 0

if δ ∈ (n/2, n), δ + 1 − n ̸∈ Z+. Hence, applying statement (1) of Lemma 2.4 we see that there
is a unique form p̃ ∈ Fk−1,s(s,λ,λ′,δ−1)

T,Λq−1,Dd⊕d∗
∩ Sd∗ satisfying

dq−1p̃ = (I − Φq dq)
(
Ψµ,qf + Ψµ,q,0u0 − ΨµBq(w, u)

)
. (36)

Taking in account (34), (35), (36), we conclude that

u+Ψµ,qBq(w, u) + dq−1p̃ = Ψµ,qf + Ψµ,q,0u0.
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Then the form p = Hµp̃ belongs to the space Fk−1,s(s−1,λ,λ′,δ−1)
T,Λq−1,Dd⊕d∗

∩ Sd∗ . Again, the properties of
the fundamental solution Ψµ mean that the pair (u, p) is a solution to the Cauchy problem (16).
Moreover u is a solution to{

Hµu+ΦqdqBq(w, u) = Φqdqf, (x, t) ∈ Rn × (0, T ),
u = u0, (x, t) ∈ Rn × {0}. (37)

As we have noted in the proof of Lemma 2.5, problem (37) has no more than one solution in
the weighted Hölder spaces and then the uniqueness of the solution (u, p) to (16) follows from
Lemma 2.4 because dq−1p = (I − Φq dq)

(
f −Bq(w, u)

)
, that was to be proved.

Now we may pass to the non-linear problem (5).

Corollary 2.1. Let n > 2, 0 6 q 6 n, a = 0, s and k be positive integers, 0 < λ < λ′ < 1,
δ ∈ (n/2,+∞). Then the non-linear mapping

Ψµ,qNq : Fk,s(s,λ,λ′,δ)
T,Λq → Fk,s(s,λ,λ′,δ)

T,Λq (38)

is continuous and compact and the mapping

I+Ψµ,qNq : Fk,s(s,λ,λ′,δ)
T,Λq → Fk,s(s,λ,λ′,δ)

T,Λq (39)

is continuous, Fredholm, injective and open.

Proof. Since the bilinear form Bq is symmetric and Bq(u, u) = 2Nq(u), we easily obtain

Nq(u
′)−Nq(u

′′) = Bq(u
′′, u′ − u′′) + (1/2)Bq(u

′ − u′′, u′ − u′′). (40)

Then, using Theorem 1.1, multiplication Lemma 1.1, and Lemma 2.1, cf. (20), we see that

∥Ψµ,qNq(u
′)− Ψµ,qNq(u

′′)∥
C

k−1,s(s+1,λ,2δ−1)

T,Λq
6

C1 ∥u′′∥Ck,s(s,λ,δ)

T,Λq,Dd⊕d∗
∥u′ − u′′∥

C
k,s(s,λ,δ)

T,Λq
+ C2 ∥u′ − u′′∥2

C
k,s(s,λ,δ)

T,Λq
,

with positive constants Cj independent on u′, u′′. Ck+1,s(s,λ,2δ−1)
T,Λq . In particular, the operator

Ψµ,qNq : Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

→ Fk−1,s(s+1,λ,λ′,2δ−1)
T,ΛqDd⊕d∗

,

is continuous, for k, s ∈ N. If δ > 1 then 2δ − 1 > δ and hence, by Lemma 1.2, the operator is
compact:

Ψµ,qNq : Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

→ Fk,s(s,λ,λ′,δ)
T,ΛqDd⊕d∗

.

Equality (40) makes it evident that the Frechét derivative (I+Ψµ,qNq)
′
|w of the nonlinear

mapping (I+Ψµ,qNq) at an arbitrary point w ∈ Fk,s(s,λ,λ′,δ)
T,Λq coincides with the continuous linear

mapping (I+Ψµ,qBq(w, ·). By Lemma 2.3, (I+Ψµ,qBq(w, ·)) is an invertible continuous linear
mapping of the space Fk,s(s,λ,λ′,δ)

T,Λq and hence the non-linear mapping (42) is Fredholm one. Both
the openness and the injectivity of the mapping (42) follow now from the implicit function
theorem for Banach spaces, see for instance [26, Theorem 5.2.3, p. 101].

Corollary 2.2. Let n > 2, 1 6 q 6 n − 1, a = 1, s and k be positive integers, 0 < λ < λ′ < 1,
δ ∈ (n/2, n), δ ̸= (n− 1). Then the non-linear mapping

Φq dq Ψµ,qNq : Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

∩ Sd∗ → Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

∩ Sd∗ (41)
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is continuous and compact and the mapping

I+Φq dq Ψµ,qNq : Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

∩ Sd∗ → Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

∩ Sd∗ (42)

is continuous, Fredholm, injective and open.

Proof. Taking into the account the continuity of the operator (32) for δ ∈ (n/2, n), δ+1−n ̸∈ Z+

we may argue as in the proof of Corollary 2.1, replacing the scale Fk,s(s,λ,λ′,δ)
T,Λq with the scale

Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

∩ Sd∗ and formula (20) with formulas (21), (22), to conclude that the non-linear
operator (41) is compact and continuous, too. Thus, as in the proof of Corollary 2.1, the state-
ment follows now from the implicit function theorem for Banach spaces, see [26, Theorem 5.2.3,
p. 101].

Let us formulate the corresponding statement for equations (5).

Corollary 2.3. Let n > 2, 1 6 q 6 n − 1, a = 1, s and k be positive integers, 0 < λ < λ′ < 1,
δ ∈ (n/2, n), δ ̸= (n− 1). Then, for any pair

(f (0), u
(0)
0 ) ∈ Fk,s(s,λ,λ′,δ)

T,Λq,Dd⊕d∗
× C2s+k+1,λ,δ

Λq ∩ Sd∗

admitting the solution (u(0), p(0)) to (5) in Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

×Fk−1,s(s−1,λ,λ′,δ−1)
T,Λq−1,Dd⊕d∗

, there is a number
ε > 0 with the property that for all data

(f, u0) ∈ Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

× C2s+k+1,λ,δ
Λq ∩ Sd∗

satisfying the estimate

∥f − f (0)∥Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

+ ∥u0 − u
(0)
0 ∥C2s+k+1,λ,δ

Λq
< ε (43)

equations (5) have a unique solution in Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

×Fk−1,s(s−1,λ,λ′,δ−1)
T,Λq−1,Dd⊕d∗

.

Proof. Indeed, as we have seen Lemma 2.1 and the properties of the fundamental solution Ψµ and
the Leray–Helmholtz type projection Φqdq imply that the solution (u(0), p(0)) to (5) in related
to the data (f (0), u

(0)
0 ) satisfies also the operator equation in the space Fk,s(s,λ,λ′,δ)

T,Λq,Dd⊕d∗
:

(I+Φq dq Ψµ,qNq)u
(0) = Φq dq (Ψµ,qf

(0) + Ψµ,q,0u
(0)
0 ).

Estimate (43) and Corollary 2.2 provide that the norm

∥Φq dq(Ψµ,qf + Ψµ,q,0u0 − Ψµ,qf
(0) − Ψµ,q,0u

(0)
0 )∥Fk,s(s,λ,λ′,δ)

T,Λq,Dd⊕d∗
×Fk−1,s(s−1,λ,λ′,δ−1)

T,Λq−1,Dd⊕d∗

is sufficiently small for the operator equation

(I+Φq dq Ψµ,qNq)u = Φq dq (Ψµ,qf + Ψµ,q,0u0) (44)

to admit the unique solution in the space Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

.
By the discussion in the proof of Theorem 2.2, see (31) and Lemma 2.4,

Φq dq Ψµ,qNqu = Φq dq ΨµM
(q)
1 (dq ⊕ d∗q−1u, u), (45)

dq(I − Φq dq)
(
Ψµ,qf + Ψµ,q,0u0 − Ψµ,qNqu

)
= 0
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if δ ∈ (n/2, n), δ + 1 − n ̸∈ Z+. Hence, applying statement (1) of Lemma 2.4 we see that there
is a unique form p̃ ∈ Fk−1,s(s,λ,λ′,δ−1)

T,Λq−1,Dd⊕d∗
∩ Sd∗ satisfying

dq−1p̃ = (I − Φq dq)
(
Ψµ,qf + Ψµ,q,0u0 − ΨµNqu

)
. (46)

Taking in account (34), (35), (36), we conclude that

u+Ψµ,qNqu+ dq−1p̃ = Ψµ,qf + Ψµ,q,0u0

Then the form p = Hµp̃ belongs to the space Fk−1,s(s−1,λ,λ′,δ−1)
T,Λq−1,Dd⊕d∗

∩ Sd∗ . Again, the properties of
the fundamental solution Ψµ mean that the pair (u, p) is a solution to the Cauchy problem (5).
Moreover for any solution (u′, p′) to (5) in the class Fk,s(s,λ,λ′,δ)

T,Λq,Dd⊕d∗
is a solution to{

Hµu
′+ΦqdqNqu

′ = Φqdqf, (x, t) ∈ Rn × (0, T ),
u = u0, (x, t) ∈ Rn × {0}. (47)

As the solutions to (47) and (44) in the class Fk,s(s,λ,λ′,δ)
T,Λq,Dd⊕d∗

coincide, Corollary 2.2 yields
that problem (47) has no more than one solution in the weighted Hölder spaces, i.e.
u′ = u. Then the uniqueness of the solution (u, p) to (5) follows from Lemma 2.4 because
dq−1p = (I − Φq dq)

(
f −Nqu

)
, that was to be proved.

Finally, in a similar way we obtain the statement corresponding to a = 0.

Corollary 2.4. Let n > 2, 0 6 q 6 n, a = 0, s and k be positive integers, 0 < λ < λ′ < 1,
δ ∈ (n/2,+∞). Then, for any pair (f (0), u(0)0 ) ∈ Fk,s(s,λ,λ′,δ)

T,Λq ×C2s+k+1,λ,δ
Λq admitting the solution

u(0) to (5) in the space Fk,s(s,λ,λ′,δ)
T,Λq , there is a number ε > 0 with the property that for all data

(f, u0) ∈ Fk,s(s,λ,λ′,δ)
T,Λq × C2s+k+1,λ,δ

Λq satisfying the estimate

∥f − f (0)∥Fk,s(s,λ,λ′,δ)
T,Λq

+ ∥u0 − u
(0)
0 ∥C2s+k+1,λ,δ

Λq
< ε (48)

equations (5) have a unique solution u ∈ Fk,s(s,λ,λ′,δ)
T,Λq .

Thus, we see that there is crucial difference between problem (5) in the "local" situation
where a = 0 and the "non-local" situation where a = 1. As in the second case the problem
is equivalent to a "pseudo-differential" Cauchy problem (47), we observe some restrictions on
possible asymptotic behaviour of solutions at the infinity with respect to the space variables and
some additional loss of smoothness of the solutions. The reason is that we deal with scales of
parabolic Hölder spaces, where the dilation principle is partially neglected with regard to the
weight because we need to provide some continuity of the integral operators Φq and Φqdq.

The investigation was supported by a grant of the Foundation for the advancement of theo-
retical physics and mathematics "BASIS".
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Уравнения Фредгольма типа Навье-Стокса для комплекса
де Рама над весовыми пространствами Гёльдера

Ксения В. Гагельганс
Александр А. Шлапунов

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. Мы рассматриваем семейство задач Коши для уравнений типа Навье-Стокса, порож-
денных комплексом де Рама в Rn× [0, T ], n > 2, с положительным временем T над шкалой весовых
анизотропных пространств Гёльдера. Поскольку веса определяют порядок нуля на бесконечности
по пространственным переменным для рассматриваемых векторных полей, это фактически приво-
дит к задачам Коши над компактным многообразием с конической особой точкой на бесконечности.
Доказано, что каждая задача семейства индуцирует открытые инъективные отображения Фред-
гольма на элементах шкал. На шаге 1 комплекса можно применить результаты к классическим
уравнениям Навье–Стокса для несжимаемой вязкой жидкости.

Ключевые слова: уравнения типа Навье–Стокса, комплекс де Рама, операторные уравнения
Фредгольма.
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