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The Navier—Stokes equations describe the dynamics of incompressible viscous fluid that is
of great importance in applications, see, for instance, [1,2]. Essential contributions has been
published in the research articles [3—6], as well as surveys and books [1,2,7], etc. Actually, the
problem is solved in the frame of the concept of weak solutions, see, J. Leray [3,4], E. Hopf [6],
O. A.Ladyzhenskaya [2], but no general uniqueness theorem for weak solutions has been known
except the two-dimensional case. As far as we know, there are no general results on the global
solvability in time for the problem in spaces of sufficiently regular vector fields where the unique-
ness theorems for it are available, too. We point out an important direction related to the
problem of the existence of regular solutions to the Navier—Stokes equation: S.Smale [8] devel-
oped the concept of Fredholm non-linear mappings of Banach spaces applicable to a wide class of
non-linear equations of Mathematical Physics (cf. [9] for the steady version of the Navier—Stokes
equations).

Recently, the Navier—Stokes type equations were considered in the frame of elliptic differential
complexes, see [10-13] over scales of Bochner-Sobolev type spaces parametrized by smoothness
index s € Zy where the Sobolev embedding theorems provide point-wise smoothness for suffi-
ciently large s.

On the other hand, results of paper [14] demonstrate that considering the Navier—Stokes type
equations over the whole space R™ x [0, +00) it is important to control the order of zero at the
infinity with respect to the space variables for the corresponding solutions. Namely, [14] provides
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an instructive example of a non-linear problem in R™ x [0, T'), structurally similar to the Cauchy
problem for the Navier-Stokes equations and ‘having the same energy estimate’, but, according
to some considerations including numerical simulations, admitting singular solutions of special
type for smooth data if n > 5. An essential role in the arguments of this paper plays the fact
that certain asymptotic behaviour of the initial data at the infinity with respect to the space
variables prevents blow-up behaviour in a finite time interval for the considered solutions, cf.
also comments by [15, formulas (4), (5)] related to the data of the Navier-Stokes equations for
incompressible fluid.

One of the possibilities to deal with the asymptotic was indicated in [16] where the Navier—
Stokes equations for incompressible viscous fluid were considered in R™ x [0,T], n > 3, for a
positive time T over a scale weighted anisotropic Holder spaces with the weights controlling the
order of decreasing at the infinity with respect to the space variables for the vectors fields under
the consideration. This actually leads to an initial problem where the space variables belong to
a compact manifold with the singular conic point at the infinity, cf. [17].

In the present paper we extend the results of [16] to a family of initial problems for the
Navier—Stokes type equations generated by the de Rham complex in R™ x [0,T], n > 2, with a
positive time T over a scale of weighted anisotropic Holder spaces. It is worth to say that the
problem, discussed in [14], is included to the consideration. Using the recent developments of the
Hodge theory for the de Rham complex over these spaces, see [18,19], we involve weight indexes
§ > n/2, that corresponds to the asymptotic |z|=°~!*l, z € R™, as || — 400, for the related
solutions and their partial derivatives of order a € Z,. Namely, we consider the Navier—Stokes
type equations in the framework of the theory of operator equations in Banach space and we
prove that each initial problem from the family induces Fredholm open injective mappings on
elements of the scales. At the step 1 of the complex we may apply the results to the classical
Navier—Stokes equations for incompressible viscous fluid.

We do not discuss existence theorems here but we hope that the use of the weighted Holder
spaces with proper weight indexes may exclude the blow-up behaviour of solutions to the Navier—
Stokes type equations considered in [14].

1. Function spaces, embedding theorems and a non-linear
problem

Let R™ be the n-dimensional Euclidean space with the coordinates = (z1,...,2,). To
introduce weighted Holder spaces over R™ we set

w(z) = V142, w(z,y) = max{w(@), w(y)} ~ V1 +[z]? +[y|?

for z,y € R™. Let 6 € R. (Note that ¢ is tacitly assumed to be nonnegative.) For s = 0,1,...,
denote by C'*9° the space of all s times continuously differentiable functions on R” with finite
norm

lullceos = ) sup (w(@))**|o%u(x)].

la|<s ®
For 0 < A < 1, we introduce
s lul@) —u(y)]
U = su w(z, .
(u)x,6 Sup (w(z,y)) P—

£y
lz—y|<|z|/2
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and we define C%*9 to consist of all continuous functions on R™ with finite norm
[ullcors = [lullgon@y + llullcoos + (u)r,s,

where U is a small neighbourhood of the origin in R” and C%*(U) is the standard Hélder space
over the compact U. Finally, for s € Zsg, we introduce C**9 to be the space of all s times
continuously differentiable functions on R™ with finite norm

HUHCS,)\,(; = Z Haau||co,>\,5+\a\,

lal<s

see [20] for similar weighted Sobolev spaces over R™.

The normed spaces C**® constitute a scale of Banach spaces parametrised by s € Zxo, X €
[0,1] and 6 € R. The properties of the scale (e.g. natural coninuous and compact embeddings)
are well known, see, for instance, [16,18].

Next, denote by A? the bundle of exterior forms of degree 0 < ¢ < n over R". We write
C5%(R™) for the space of all differential forms of degree ¢ with C'*° coefficients on R™. These
space constitute the so-called de Rham complex CF(R™) on R™ whose differential is given by
the exterior derivative d. To display d acting on g-forms one uses the designation du := dqu for
u € 5 (R™) (see for instance [21]); it is convenient to set d; = 0 if ¢ < 0 or ¢ > n. As usual,
denote by dj the formal adjoint for d,. Then, as it is known, we have

dgr10dy =0, didy+dg1di_ | =—EnpA, 0<qg<n, (1)

where E,, is the unit matrix of type (m x m) and A = 97 + 07 +---+ 02 is the usual Laplace
operator in the Euclidean space R™, n > 2. For a differential operator A acting on sections of
the vector bundle A? over R™, we denote by C’flq)‘ 9" Sy the space of all differential ¢-forms u
with components from C**9 satisfying Au = 0 in the sense of the distributions in R™. This
space is obviously closed subspace of Cflq/\ % and so this is Banach space under the induced norm.
Let us introduce anisotropic Holder spaces which suit well to parabolic theory and are weighted
at x = oo (see [16,17,22] and elsewhere).

More generally, given a Banach space B, we denote by C*°([0, T], B) the Banach space of all
mappings v : [0, 7] — B with finite norm

S

coo(or,B) = Y sup ||(d/dt)v]|s,
=0 telo,T]

[o]

where s € Z>o. We also let

v(t') —v(t")|s
(V)xJo,r,8 = sup w
t/,t"€[0,T] |t —t |
t/ £t/

and let C**([0,T], B) stand for the space of all functions v € C*9([0, T], B) with finite norm

S

lelloqorys = Y (sup_ll(d/dtyvls + ((d/dt) v)x o715).

=0 te[0,T]

The Holder spaces in question will be parametrised several parameters s, A, §, and T.
By abuse of notation we introduce the special designation s(s,\,d) for the quintuple
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s(s, A\, 0) = (25 A, S, 2,6). Let C;(O’O’é) = C%°([0,T],C%%?) be the space of all continuous

functions on R™ x [0, T] with finite norm

lullgsoon = sup  (w(@))fu(z,b)],
T (x,t)ER™ x[0,T]

and, for 0 < A <1
CT(O X0 _ o0, 0([0 7], CON 5) n CO”VQ([O,T],CO’O"S)

is the space of all continuous functions on R™ x [0, 7] with finite norm

Hu("tl) u("t//)HCOvvas
U ~s0,7,6) = sup ||u(-,t)||co.rs +  sup . 2
H HCT te[o, ]H ( )H t’*i’,’ﬂf’;ﬂ ‘t/ t//‘A/z ( )

Then 05(5’0’6) =Nj=o C79(]0,T), C?(=9):0:9) is the space of functions on R™ x [0,T] with con-

tinuous derivatives %0/ u, for |a| + 2j < 2s, and with finite norm

||’u||C;(s,o,5) = Z ||8§8gu||0;(0,0,5+|a\).
o] +25<2s

Similarly,
oM =N (CJVO([O,T], C2NADY A I ([0, T, Cz(s—j),o,é)>
j=0
is the space of functions on R™ x [0, T] with continuous partial derivatives %7 u, for || +2j < 2s,
and with finite norm
lullgsean = > 10200 ull gso.n o410
Ja|4+25<2s

We also need a function space whose structure goes slightly beyond the scale of function spaces

C;(S")‘"S) Fs(:29) the space of all continuous

s(s,\,6+|8)

. Namely, given any integral k£ > 0, we denote by C;’

functions u on R™ x [0, 7] whose derivatives 9u belong to C7.
satisfying |8| < k, with finite norm

||u||C;,S(s,>\,6) = Z ||8§U||C;(S,A,.s+|5|).

for all multi-indices

IBI<k
For k =0, this space just amounts to C;(S”\’Mlm), and so we omit the index k£ = 0. The normed
K, s(s,1,6) .
spaces Cr’ are obviously Banach spaces.

We note that the function classes introduced above can be thought of as "physically" admissi-
ble solutions to the Navier—Stokes equations (at least for proper numbers ¢). By the construction,
if 1 <p<+ooand > n/pthen there exists a constant ¢(d,p) > 0 depending on ¢ and p, such
that

[uC, D)l Le@ny < e(6,p) [lull geo.0.0 (3)
for all ¢ € [0,T] and all u € CS(O 04),
Also, the following embedding theorem is rather expectable, see [16,22].

Theorem 1.1. Also, if s,s’ € Z>0, 0,6 € Ryo, A, N €[0,1] and k € Z+ such that s+ X > s+ N

and § > &', then the space C’k S620) o embedded continuously into C’k S A e embedding
is compact if s+ A>s + N and(5> 8.
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We also need a standard lemma on the multiplication of functions, see [16].

Lemma 1.1. Let s, k be nonnegative integers and X € [0,1]. If ueC’fﬂ’s(s’A’&) and v € C’;’S(S’)"él),
then the product uv belongs to C’;’S(S’)"Hé ) and

luvll prscensren < ellullgrsearn [0l graers (4)

with ¢ > 0 a constant independent of u and v.

However we need scales of weighted Holder spaces, that fit the refined structure of the Navier—
Stokes type equations. First, for s,k € Zzp and 0 < A < X < 1, we introduce

k,s(s,\,\,8) . ~k+1,8(s,0,9) k,s(s,\,8)
FE =k nck .

When given the norm [[ul| i .scsan.6) = [[ull grt1.s.a0 +[[ull gr.scear.5), this is obviously a Banach
T T T

space. The following lemma explains why this scale is important for our exposition, see [16].

Lemma 1.2. Let s be a positive integer, k € Z>o9, 0 < A\ < N < 1 and § > ¢'. Then the
embedding f;’S(S’A’A %) — f§+1’s(571’)")‘ %) is compact.

Consider the induced vector bundle A%(t) over R™ x [0,4+0c0) counsisting of the differential
forms with coefficients depending on both the variable z € R™ and on the real parameter
t € [0,4+00). In the sequel we consider the following Cauchy problem. Given any sufficiently
regular differential forms f = > fi(z,t)dzr and uo = >, wuso(z)dzr on R” x [0,T] and R™,

#I=q #I=q
respectively, find a pair (u,p) of sufficiently regular differential forms v = > wus(z,t)dz; and
#I1=q
p= >, pr(x,t)der on R™ x [0,T] satisfying
#I=q—1
Ou— pAu+Nu+adg_p = f, (x,t)eR"x(0,T),
ady_yu = 0, (x,t) eR"x(0,7T), (5)
ady_,p = 0, (z,t) € R™ x (0,T),
u = ug, (x,t)eR”x{0}

with positive fixed numbers T" and p, a parameter a that, equals to 0 or 1, and a non-linear term
Nu that is specified by the following assumptions (see [12] or [10] for more general problems in
the context of elliptic differential complexes):

Nou = Ml(q) (dg ®dg_yu,u) + dq—lMQ(q)(ua u) (6)
with two bilinear differential operators with constant coefficients and of zero order:
M (v,1) : OS5 pa—1 (R™) x CF(R™) = CF2(R™), (7)

M (v,u) : C2(R™) x OF (R™) — O (R™). ®)

Of course, we have to assume that d;_;up = 0 on R" if @ = 1, and, as we want to provide the
uniqueness for solutions to (5), we have to set p =0 if a = 0.

For n = 1, ¢ = 0 and Nyu = v’ u relations (5) reduce obviously to the Cauchy problem for
Burgers’ equation, [23].

If we denote by * the x-Hodge operator and by A the exterior product of differential forms
then for n = 3, ¢ = 1, a = 1 we may identify 1-forms with n-vector-fields, the operator dy with
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the gradient operator V, the operator (—df;) with the divergence operator and the operator dy
with the rotation operator. Then for the non-linearity

N = (u- V)u = x(xdyu A u) + dolul?/2, 9)

written in the Lamb form, relations (5) are usually referred to as but the Navier-Stokes equations
for incompressible fluid with given dynamical viscosity p of the fluid under the consideration,
density vector of outer forces f, the initial velocity uy and the search-for velocity vector field
u and the pressure p of the flow, see for instance [1]. In [12] these equations with a = 1 were
considered in Bochner—Sobolev type spaces; as it was explained there, for ¢ = 0 and ¢ = n
the equations become degenerate in a sense, so, if a = 1 we will consider the equations for
1<g<n-—1,only.
Let us comment the example by [14] by P. Plecha¢ and V. Sverak.

Example 1.1. If py=1,g=1, a=0, bis a real parameter, and

(1 —b) Vl|ul?* + (divu)u
2

do[ul* — (dgu)u
2

Mu=(u-V)ub+ = x(xdiu A u) b+ (10)
then (5) becomes the non-linear problem in R™ x [0, T) considered in [14]. Actually, they consider
the ‘radial vector fields’

u=—v(r,t)z, (11)

with functions v of variables ¢ and r = |z|. Under the hypothesis of this example the fields are
solutions to (5) for f =0 and uy = —v(r,0)z if

1
vy =l + nt vl 4 (n 4 2)v? + 3rvvl. (12)
r

Next, for v satisfying (12) they consider the self-similar solutions

1 T
v(rit) = 23¢(T — t)w< 23(T — t)> (13)

with functions w(y) binded by the following relations, see [14, (1.9)—(1.11)]:

1
w4+ P Ly syw' 4 (n+ 2)w? + 3yww’ — 23xw =0, y € (0, +00), (14)
)

w(0) = =0, w(0) =0, w(y) =y % asy — +oo, (15)

with a positive parameter s. Based on some analysis of solutions to the steady equation related
to (12) and numerical simulations, they made conclusion that for n > 4 self-similar solutions
(13) may produce singular solutions in finite time to this particular version of (5) for regular
data via formula (11) if v > 0. However it might be, the numerical simulations can not be
arguments in analysis. On the other hand, they showed that certain asymptotic behaviour of
the initial data at the infinity with respect to the space variables prevents blow-up behaviour
in a finite time interval for the considered type of solutions, at least in the dimension n = 3.
This gives some hope that the use of the weighted Holder spaces with proper weight indexes may
exclude the blow-up behaviour of solutions to the Navier-Stokes type equations, at least for the
non-linearity (10).

Thus, we will investigate the Navier—Stokes type equations (5) over the scale of the weighted
Holder spaces FFrs(s:AX.0)  With this purpose, for a linear operator A : X — Y between Banach
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spaces X,Y with a domain D4 C X we denote by Xp, the Banach space endowed with the
so-called graph norm

ullxs, = llullx + [[Aully for all u € Dy.
Thus, we introduce C’;f if A9 6 be the space of all exterior differential g-forms w with the
ks(s>\5) k,s(s,A,0)

coefficients from Cr
k, s s )x ,0)

endowed with the natural norm. Let also Cp7), 'y . . be a subset

Ck ,8(s,A,6+1) | we endow this Space

of the space C7’ T,Ad+1@®Aa—17

with the graph norm

with the property that d, & dj_ u €

HUHC;SA%;\J;)QM* = ||'LLHCk 2(2,0,9) + ||dg @ dq 1||Ck s(sﬁg‘;:q) )

k,s(s,,\,8) o k,s(s,\,\,68)
Similarly, let F77); Ddead* be a subset of Fr7),

]_-k ,s(8,0,0,6+1)
T’Aq+1®Aq71 b}

with the property that d; ® dj_ju €

we endow this space with the graph norm

u ks(éx)\’ 5 = ||U ks(s)\)\’ 5) k,s(s,A\,\,6+1) «
[[uul| = ull - + [ldg @ dg 1|
Pagd* T,A9+1gpAaa—1

Let us continue with a suitable linearization of (5) over the defined scales.

2. The Navier-Stokes type equations as Fredholm mappings

First, we recall the notion of Fredholm mappings in Banach spaces, see [8]. It is said that
a linear bounded operator Ag : X — Y has the Fredholm property if its kernel and co-kernel
are finite-dimensional subspaces of X and Y, respectively, and its range R(A) is closed in Y.
Then a non-linear mapping A : X — Y is Fredholm if its Fréchet derivative ATU is a linear
bounded Fredholm operator at each point v € X. The Fredholm property provides many uselful
information on the operator equation Au = f in the Banach spaces X and Y, see [8] (cf. also [9]
for the steady Navier—Stokes equations).

We continue this section with the following linear Cauchy problem for n > 2. Given any
0 < ¢ < n and any sufficiently regular differential forms

w= Z wr(z,t)dey, f= Z fr(z, t)dzr, uo = Z ugo(x)dey
#I=q #I1=q #I1=q

on R™ x [0,7] and R", respectively, find a pair (u,p) of sufficiently regular differential forms
u= Y, ur(z,t)dey and p= > pr(z,t)dr; on R™ x [0,T] satisfying

#1=q #I=q—1
O — pAu+ By(u,w) +ady—1p = f, (z,t) e R" x(0,T),
ad:_ju = 0, x,t) € R™ x (0,
- (1) € B x o)
ad; op = 0, (z,t) €R" x(0,T),
u = ug, (z,t)€R”x{0}

where ad;_jup =0 in R" and B, (u, w) is given by
My (g @ dy_yu,w) + dg MY () + M (d & diyw, 0) + dg o My (w,0) - (17)

Again, as we want to provide the uniqueness for solutions to (16), we have to set p = 0 if a = 0.

We are moving towards expectable uniqueness and existence theorem in the weighted spaces
(note that in the standard Sobolev and Holder spaces are well known, see, for instance, [25]).
However, it depends drastically on the paparemeter a.
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Theorem 2.1. Letn > 2,0< ¢ < n, a=0. Assume that s,k e N, 0 <A< X <1, >n/2

k,s(s,\,\,8)

and w € Fr'y,’ . Then for any pair

ks(5,0,\,5) 25-Hk+1,0,0
(f7 UO) € ]:T iqs X CAT_ * (18)
i ks(5,0,\,8)
ere is a unique solution u € Fry, to (16) and, moreover,

||UH]_.;‘;(§A,N§) < C(w)||F||f§,’i‘(§’>">‘/*5)XCi‘:1+k+l‘>“5

with a positive constant c(w) independent on F.

Proof. We use the theory of operator equations in Banach spaces and method of integral repre-
sentation. Namely, Let 1, be the standard fundamental solution of the convolution type to the
heat operator H, = 9; — pA in R"™ n > 1,

o(t)  _l®
Yu(x,t) = ————7 e It
! (4mpt)™?
where 0(t) is the Heaviside function. We set
% q\T y, Z 1/)/1 (*dyl) dzr,

[I|=q

and for g-forms v and ug over R™ x [0, 7] and R™, respectively, denote by

@) = [ [ o9 nvglant =9
Wraou)t) = [ u0(u) A da(o0.0)

the so-called volume parabolic potential and Poisson parabolic potential, respectively, defined
for (z,t) e R™ x (0,T).

Lemma 2.1. Let s,k € Z3p, 0 < A < 1 and 6 > 0. The parabolic potentials ¥,, 4 and ¥,, 40
induce bounded linear operators

. 25+k, N0 k,s(s,\,0)
P.q.0 : Cha (R™) — CT,Aq n SH;”

 ks(s,0,0) k,s(s,\,8) Rs(s=1.0,642) _ ~hs(s.0.0)
Vg : O pa - CT,A«,DHuv Vg : Ol pa = Cra .

Proof. As the potentials act on the differential forms coefficient-wise, the statement follows from
[16, Lemmas 4.5 and 4.8]. O

Now we set
Wou = M ((dg ® d_y )u, w) + MLV ((dy © d5_y Jw, ).
Lemma 2.2. Ifk > N and § > 1 then following the operators are compact:

k,s(s,\,\,0 k,s(s,\,\,0 k,s(s,\,\",8 k,s(s,\,\,0
WyqBg(w, ) : }—T,A(q ) = Fria ( )v Vu,gWq © Frlpa Dd@d*) - -FT,A(QDd@d*) (19)
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Proof. According to embedding Theorem 1.1, multiplication Lemma 1.1, and Lemma 2.1, the
operators

. ~k.s(s,0,0) k—1,s(s+1,),26—1)
0 Bylw, ) : CpSe ™ — bl : (20)
. ~vk,s(s,0,0) k,s(s+1,)\,26—1)
P, gWe : CT,AQ,Dd®d* — Crlps ) (21)
X k,s(s,\,9) k—1,5(s+1,),26)
dqg @ dg 1 ¥,qgWq: Cripap,, . = Crpdvigai-1 (22)

are continuous if £ > 1, § > 0. As the embeddings

k,s(s+1,X,26—1) k+2,s(s,A,26—1) k—1,s(s+1,X,28) k+1,s(s,A,26)
Cr pa = Cp A4 ) CT,AqH@Aq—l CT,AqH@Aq—l (23)

. k,s(s,\,6 .
are continuous, we see that the operator ¥, ,WW, maps the space C’T’Z(qs ’D’de)a . continuously

k+1,s(s,A,26—1) k s(s

to CT,A‘;Dd@d* and the operator ¥, B,(w,-) maps the space Cr continuously to
C;qu’s(s’)"2571). In particular, the operators

. k,s(s,20\,0) k+1,s(s,\,\,26—1)
Wy Bylw, ) : FI5 - L ,

Fhs(sAN0) _ phtls(s,A N 20-1)
T,

Y qWy A4, D g g T, A9D gy g

are continuous, too, for k € N, § > 0. If K € N, 6 > 1 then 26 — 1 > ¢ and hence, by Lemma 1.2,
the operators (19) are compact. O

Next we reduce the Cauchy problem (16) to an operator Frredholm equation.

Lemma 2.3. Let 0 < g < n, s and k be positive integers, 0 < A < X <1, 6 € (n/2,+00), and

w e ]—'k S(g A0 Then the operator

is continuously invertible.

Proof. By Lemma 2.2, the operator
k,s(s,\ N8 k,s(s, A\ 8
Py qBy(w, ) : -FT,Z(GS ) ijl(; )
is compact. Hence the mapping (24) is a Fredholm linear operator of index zero by the famous

Fredholm theorem; in particular it is continuously invertible if and only if it is injective.

Assume that u € ]:; f‘qs AN and

u+¥, ¢ Bg(w,u) =0.

Then the properties of the fundamental solution ¥, mean that u is a solution to the following
Cauchy problem:

Hyu+Bg(w,u) = 0 (x,t) e R" x(0,7),

u = 0, (z,t)eR"”x{0}.

In particular, (1) and an integration by parts yields for all ¢ € [0, T]:

AWl DIBa gy + 1 SO DB gy = (Bylw, )0, (02 gy (25)

Jj=1
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Using the structure of the operator B,(w,-), see see that there are positive constants c(J )

independent on t and u such that

[(Ba(w, w)(- ), u(,8) 1, e | < g1V gosonsin | S uls )75, oy +

el o000 [V, )l 3,

I 2 2(0512)) 2 (1) 2
< GV s, oy + (T NolZg e + A IVwlgamponsn ), O3, e

|u('vt)”L§‘q &) S (26)

for all ¢ € [0, T]. Now, combining (25) and (26) we conclude that for all ¢ € [0, T]
2 2
AU DI2a @y < Cullul- D22

with a positive constant C), independent on u. Finally, the Gronwall lemma, see, for instance,
[24, Ch. XII, p. 353, formula (1.2)] yields that u = 0, that was to be proved. O

Finally, according to Lemma 2.1, the form

0l = Vqf + ¥Yu,g,0u0,

associated with the pair (18), belongs to the space ]—‘k S(s,2,0,8)

uej:ks(s)\)\ )

. Then, there is a unique form
, satisfying
u+, ,By(w,u) = 0. (27)

By the properties of the fundamental solution ¥,,, we have

{ H,u+Bg(w,u) o (z,t) e R" x (0,T),

u = w, (x,t)€R™x{0}. (28)

As we have seen in the proof of Lemma 2.3, problem (28) has no more than one solution in
the weighted Holder spaces and that was to be proved. O

Next, we consider the case where a = 1. At the degree ¢ = 1 the following theorem was
proved in [16, Corollary 5.9].

Theorem 2.2. Letn > 2, 1 <g<n-—1,a =1. Assume that s,k € N, 0 < A < XN < 1,

n/f2<d<n,d#(n—-1) andw € }"k Z(;gd’;di). Then for any pair

k,s(s, A\ 6 2s+k+1,),6
F=(f,up) € Fy5s Dd@dj x CoHHIAS A g (29)
there is a unique solution

o k,s(s,\,\,8) k—1,s(s— 1)\>\61)
U=(u,p) € Fr 1a Dagar X Fr pa- L Dyga

o (16) and, moreover,

HUH k,s(s,\,)\",8) }-Ic—l,s(s—l)\)\’,&—l) < ( )HF” k,s(s,\,\,5) Czb+k+1 .6
Fra0 D g0 T,A9= 1Dy g T, 49D g g

with a positive constant c(w) independent on F.
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Proof. Let
1
—In ||, for n=2,
m
e(x) = 1 |zf2
———, for n>3,
On 2—n

be the standard two-sided fundamental solution of the convolution type to the Laplace operator
in R™ and o,, the area of the unit sphere in R™. We set

eq(x,y) = > e(x —y) (xdyr) day,
[1|=q

and then, for f € CESEAD)

(@q f)(2,t) = . fy,t) A dg(2,y) (30)

where ¢4 (z,y) = (dn—g-1)yeq(2,y), n = 2.

Lemma 2.4. Letn >2,q¢q>20,s€Zy, ke€Zy,0<A<1,0>0,0+1—n¢& Z,. The
differential d induces a bounded linear operator

. k,s(s,\,\,8) k,s(s,\,\,5+1)
dq : ‘FT.,AQ,'Dd@d* NSg — }—T,Aqﬂ N Sy.
The related operator equation a normally solvable map; more precisely,

1. the operator dq is an isomorphism if 0 < 0 < n — 1 and its inverse is given by the integral
operator $q;

2. if there is m € Zy such thatn — 14+ m < § < n+ m then d defines an injection and

its (closed) range R;S/g;’\lA ) consists of f € ]—';’Z(;I}’A s,

t €10,T] and all h € Hg i1, pa
(f(,1),dgh) L2 (Rn aatr) = 0,

and the left inverse of d is given by the integral operator @,.

satisfying for all

q+1

s(s,\\,8
Ag

Proof. Follows immediately from the definition of the scale .7-"; ) and [19, Theorem 3.4]

where the range of the operator

* . k,s(s,\,0) k,s(s,\,0+1) k,s(s,\,0+1)
dqg®dy 1+ Cplpadp,, .. = Ol qeta X Cplyaa

was described. O

Now, if 0 < 6 < n—1 then ®,d, maps the space F;’Z(fg‘;;d’f) continuously to ‘Fik“’il(‘fg;gdf) NSg+

ford+1—ngZ;. Ilf n—1<6 < n, then,

(g0 (1), ) g2 g poety = (0, 0), g e posy = 0 (31)
for all t € [0,T] and all h € H¢y 40 and any v € f;:s(qs”ggﬁ). Applying Lemma 2.4 with m =0
we see that the operator

k,s(s,\,\,6 k,s(s,\,\ .8
Dydy ]:T,A(qu@d*) - ‘FT,A(qu®d*) N Sg- (32)

is a continuous if n/2 < § <n, d+1—n & Z,, too; in particular, $,d,u = u for all f;:s(qs)’g’;ﬁ).

Actually, the operator @,d, represents the Leray-Helmholtz type L2%-projection on the subspace
L%, (R") NSy« of L%, (R™), see [18, Corollary 1| for the isotropic weighted Holder spaces
or [22, Corollary 2] for the anisotropic ones.
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Lemma 2.5. Let 1 < ¢ < n—1, s and k be positive integers, 0 < A < X < 1, § € (n/2,n),
d#(n—1) andw € }—;i(:gci};;) Then the operator

k, PWYN k, PWr)
I+®,d, 0, W, : ij(;Dd@dj NSy — ij(j,Dd@dj NSy (33)

18 continuously invertible.

Proof. By Lemma 2.2 and the discussion above, the operator

. hs(s,A0,0) k,s(s,A,1",0)
Dgdq ¥y Wy ]:T,Aq,Dd@d* NSa- — ‘FT,A‘Z,Dd@d* N S

is compact. Hence the mapping (33) is a Fredholm linear operator of index zero by the famous
Fredholm theorem; in particular, it is continuously invertible if and only if it is injective.

First, we note that, as the scalar H,, commutes with the differential operator d, we conclude
that the operators ®,d, and H, commute, too. Then any element u from the kernel of the
operator (33) is a solution to the following Cauchy problem:

Hyu+®ydg Wo(w,u) 0 (z,t) eR™x(0,T),
u = 0, (z,t)eR"”x{0}.

Next, according, to [22, Corollary 2], the operator ®,d, represents the Leray-Helmholtz type
L2-projection on the subspace L%, (R™) NSy of L%, (R™) and hence

(Bq(wa u)(7 t)7 ’U,<'7 t))%%xq (R?) — (ququu('? t)a u('a t))ifw (R™)

for all ¢t € [0,7] and all u € F;j(fgdz;f) N Sg+. Therefore, the injectivity of the operator (33)
follows in the same way as for the operator (24). O

To finish the proof of the theorem, we note that the form
0O = @ydy (T f + Vo)

associated with the pair (29), belongs to the space f;i(;g:;di) NSy~ ifd € (n/2,n), d+1-n g Z,.

J—_-k,s(s,)\,x,é)

Then, according to Lemma 2.4, there is a unique form u € Fr.7, Dyeue | Sy~ , satisfying

Uty dy W, Wou =0, (34)
By the discussion above, see (31) and Lemma 2.4,
Dydg ¥, Wou=Pydg ¥, By(w,u), (35)
do(I — Dqdy) (Wu,qf + Wpuq.0u0 — ¥y g By(w, u)) =0

if § € (n/2,n), 5+ 1—n ¢ Z,. Hence, applying statement (1) of Lemma 2.4 we see that there
Fh=Ls(s AN 6-1)

is a unique form p € F ,,°) Do e N Sy~ satisfying

dy16 = (I = By dg) (P + Tpgiotto — T By(w, ) ). (36)
Taking in account (34), (35), (36), we conclude that

U+, o By(w,u) +dg-1p = Wy f + ¥y q.0v0-
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Then the form p = H,,p belongs to the space Fr Alqs(lspi;j‘ 9= Sg+. Again, the properties of

the fundamental solution ¥,, mean that the pair (u,p) is a solution to the Cauchy problem (16).
Moreover u is a solution to

{ Hyu+®,dgBy(w,u) = Pqdgf, (x,t) € R" x(0,T),

u =, (x,t) € R™ x {0}. (37)

As we have noted in the proof of Lemma 2.5, problem (37) has no more than one solution in
the weighted Holder spaces and then the uniqueness of the solution (u,p) to (16) follows from

Lemma 2.4 because dq_1p = (I — P, d,) (f — By(w, u)), that was to be proved. O
Now we may pass to the non-linear problem (5).

Corollary 2.1. Letn > 2,0< q < n, a=0,s and k be positive integers, 0 < A < X < 1,
0 € (n/2,400). Then the non-linear mapping

By o Ny Fros 0 = Froo (38)
is continuous and compact and the mapping

is continuous, Fredholm, injective and open.

Proof. Since the bilinear form B, is symmetric and By (u, u) = 2N, (u), we easily obtain
Ny = Ny(u") = By(u" ! — ") + (1/2) By (u/ — "o = ). (10)
Then, using Theorem 1.1, multiplication Lemma 1.1, and Lemma 2.1, cf. (20), we see that

||W#7qu(U/) - Wu,q/\/q(u”)Hc;ﬁ*/gf(sﬂ%%*l) <
Cy ||u”|‘0§’,i(§’,?>’j§;d* [ U”||Ck ser + COa [[u — U"||2C;:;<;,x,a>,

. In particular, the operator

. . . k+1,5(s,\,26—1
with positive constants C; independent on u’, u” . C’T,th’s(s’ ’ )

k s(8,\,\,8) k—1,s(s+1,\,)\,26—1)
Uy1.¢Ng : Frlpa Daga ‘FT,Aqu@d* )
is continuous, for k,s € N. If § > 1 then 26 — 1 > § and hence, by Lemma 1.2, the operator is

compact:

k,s(s,A,\,8) k,s(s, A, \,6)
U,  Ng: Fr A"Dd@d* —>]-'TAqu®d*.

Equality (40) makes it evident that the Frechét derivative (I+¥, (Ng)|, of the nonlinear

ks(sA)\ 6)

|w
mapping (I+¥, ,N;) at an arbitrary point w € F, coincides with the continuous linear

mapping (I+¥, ¢Bq(w,-). By Lemma 2.3, (I WH qB (w,+)) is an invertible continuous linear

o]
mapping of the space .7-'; qu AX9) and hence the non-linear mapping (42) is Fredholm one. Both

the openness and the 1nJectiVity of the mapping (42) follow now from the implicit function
theorem for Banach spaces, see for instance [26, Theorem 5.2.3, p. 101]. O

Corollary 2.2. Letn>2,1<q<n—1,a=1, s and k be positive integers, 0 < A < X < 1,
de(n/2,n), § % (n— 1). Then the non-linear mapping

ks 5,6 s(s,\,\,8
By dy Uy g Ny FRSD 0 0 Sae = FRSem ) 01 S (41)
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18 continuous and compact and the mapping
E,s(s,A,\,8 E,s(s,A,\ 6
T+ dy W Ny Friiomm D 0 Sae = Fpiiopm 2 0 Sa- (42)
s continuous, Fredholm, injective and open.

Proof. Taking into the account the continuity of the operator (32) for § € (n/2,n), d+1—n & Z,

we may argue as in the proof of Corollary 2.1, replacing the scale ]-';Z(qs AN ith the scale
f;i(;gdz;j) N Sg= and formula (20) with formulas (21), (22), to conclude that the non-linear

operator (41) is compact and continuous, too. Thus, as in the proof of Corollary 2.1, the state-
ment follows now from the implicit function theorem for Banach spaces, see [26, Theorem 5.2.3,
p. 101]. O

Let us formulate the corresponding statement for equations (5).

Corollary 2.3. Letn >2,1<qg<n-—1,a=1, s and k be positive integers, 0 < A < X < 1,
€ (n/2,n), § #(n—1). Then, for any pair

0 0 k,s(s,\,\",8 2s+k+1,\,8
(FO,u) € Fpsiomn 2 x C5; NSy

admitting the solution (u(9),p(0)) to (5) in -7:;61(:%2;;? x Fhols(s—LAN6-1)

T,A9 1Dy e , there is a number
€ > 0 with the property that for all data

k,s(s, A\ ,8) 2s+k+1,1,0
(fyuo) € FriAa Dy e X Cha N Sa-

satisfying the estimate

If - f(0)||f;:;<;:;;e;:*> + fluo — U(()O)||cf‘;+k+l=w <e¢ (43)

. . . . k,s(s,\,\,6 k—1,s(s—1,\,\,6—1
equations (5) have a unique solution in Fr, Z(; Dd@d*) X For Aqf(lstéd* ),

Proof. Indeed, as we have seen Lemma 2.1 and the properties of the fundamental solution ¥,, and

the Leray-Helmholtz type projection ®,d, imply that the solution (u(®),p(®) to (5) in related

to the data (f ), uéo)) satisfies also the operator equation in the space ]:;:il(:jgigﬁ):

0
(I +Pqdq Wu,qu)U(O) =P, d, (Wu,qf(o) + Wu,q,Ou((J ))-
Estimate (43) and Corollary 2.2 provide that the norm

0
g dg(Yyuqf + Py q0u0 — !pu,qf(o) - g’u,qﬁué ))||_7:’f’5<5~***/’5> x Fl=la(a—1.2200-1)
T,A9,D gg g% T,AQ*l,DdGBd*

is sufficiently small for the operator equation
(I +Pq dg Wy qoNg)u = P dg (P qf + Puq.0u0) (44)
]_-k:,s(s,)\,)\',zi)

T,A9,Dygq* *
By the discussion in the proof of Theorem 2.2, see (31) and Lemma 2.4,

to admit the unique solution in the space

By dy W, g Nyu = Dy dg W, M (dy & ds_yu, u), (45)

dg(I — P4 dy) (Wu,qf + Y ,q0u0 — quNqu) =0
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if6e€(n/2,n), 5+1—n¢Z,. Hence, applying statement (1) of Lemma 2.4 we see that there
fk 1,8(s,\,\",6—1)

T,A9=1 Dy e N Sy« satisfying

is a unique form p €

Ay = (I = 4 dy) (T f + Tpgiotto — BNy ). (46)
Taking in account (34), (35), (36), we conclude that

utWy  Nou+dg—1p = Yy o f + ¥y, q,00

k—1,5(s—1,\,\",6—1)

Then the form p = H,,p belongs to the space FT A e Sa+. Again, the properties of

a- ! Dagar
the fundamental solution ¥, mean that the pair (u,p) is a solution to the Cauchy problem (5).
Moreover for any solution (u',p’) to (5) in the class ]-":]ﬁ j(qs g;@ ) is a solution to
Hu/'+@d Ny = Pydyf, (z,t) € R™ x(0,T),
n (47)
u =, (z,t) € R™ x {0}.
k,s(s,A\,\,8)

As the solutions to (47) and (44) in the class Fp 74, Dy coincide, Corollary 2.2 yields

that problem (47) has no more than one solution in the weighted Holder spaces, i.e.
w’ =wu. Then the uniqueness of the solution (u,p) to (5) follows from Lemma 2.4 because
dg—1p = (I — D4 dy)(f — Ngu), that was to be proved. O

Finally, in a similar way we obtain the statement corresponding to a = 0.
Corollary 2.4. Letn > 2,0< q <n, a=0,s and k be positive integers, 0 < A < X < 1,
. £(0) ,,0) k,s(s,2,\",8) 254+k+1,A,6 " .
d € (n/2,400). Then, for any pair (f\°),uy’) € Fr i xChq admitting the solution
u® to (5) in the space fk S(S AN 5) there is a number € > 0 with the property that for all data

(f,up) € fTAS AN0) o Czs+k+1 A satisfying the estimate
0
||f _ f(0)||.7-';j(57)\’)\/'6) + Huo — u(() )||Ciz+k+1,>\,5 <e (48)

equations (5) have a unique solution u € fk S(5:0X0)

Thus, we see that there is crucial difference between problem (5) in the "local" situation
where a = 0 and the "non-local" situation where ¢ = 1. As in the second case the problem
is equivalent to a "pseudo-differential" Cauchy problem (47), we observe some restrictions on
possible asymptotic behaviour of solutions at the infinity with respect to the space variables and
some additional loss of smoothness of the solutions. The reason is that we deal with scales of
parabolic Holder spaces, where the dilation principle is partially neglected with regard to the
weight because we need to provide some continuity of the integral operators @, and ®@,d,.

The investigation was supported by a grant of the Foundation for the advancement of theo-
retical physics and mathematics "BASIS".
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YpasHenust Ppearosbma tuma HaBpe-CTokca 1J1si KOMILJIEKCA
ae Pama Haz BecoBbIME IIpocTpaHcTBaMu lL'€ibaepa

Kcenusa B.Tl'aresgbranc
Anekcanap A.IllnanyHoB

Cubupckuii deiepajbHbIl yHUBEPCUTET
Kpacuosipck, Poccuiickasa @emeparms

Amwnnorarusi. Mbr paccmarpuBaeM cemeiicTBo 3a1a4d Ko nyist ypasraennii tuna Hasbe-Crokca, mopox-
JIeHHbIx KoMiiekcoM ge Pama B R™ X [0, 7], n > 2, ¢ nojokuTeabHbIM BpeMeneM 1’ HaJi MIKAJIOH BECOBBIX
aHU30TPONHBIX pocTpancTB [€nbaepa. IlockoabKy Beca ompeessaioT MOpsI0K HyJIsl Ha OECKOHETHOCTH
110 TPOCTPAHCTBEHHBIM [TEPEMEHHBIM JIJTsT PACCMATPUBAEMBIX BEKTOPHBIX TIOJIEH, 3TO (DAKTUIECKU IPUBO-
Ut K 3a1a9am Koy Ha it KOMITAaKTHBIM MHOTO0Opa3reM ¢ KOHMYECKOM 0c000il TOYKOI Ha GECKOHEYHOCTH.
JokazaHo, 4TO KaxK/jasl 3aJa4da CeMeUCTBa WHJIYIIUPYEeT OTKPBITble MHbHEKTUBHBIE oTOOpakenus Dpei-
roJbMa Ha djeMeHTaxX mkaja. Ha mare 1 KoMmmjekca MOYXKHO MPUMEHUTH PE3YIbTATHI K KJIACCHIECKUM
ypasaenusiMm HaBbe—CroKca JIj1si HECKMMAEMON BI3KOHN YKUJIKOCTH.

Koao4yeBble ciioBa: ypashenus: tunia Hasbe-Crokca, komiurekc jie Pama, omeparopHble ypaBHEHUS
®penronasma.
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