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Abstract. In this paper, we introduce an estimator of the least squares regression function, for Y right
censored by R and min(Y,R) left censored by L. It is based on ideas derived from the context of wavelet
estimates and is constructed by rigid thresholding of the coefficient estimates of a series development of
the regression function. We establish convergence in norm L2. We give enough criteria for the consistency
of this estimator. The result shows that our estimator is able to adapt to the local regularity of the
related regression function and distribution.
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Regression is defined as being the set of statistical methods widely used to analyse the rela-
tionship between a variable and one or more others. For a long time, the regression of a random
variable Y on a vector X of random variables designated the conditional mean of Y given X.
Nowadays, the term regression designates any element of the conditional distribution of Y given
X, as a function of X. We can for example be interested in the conditional mean, the conditional
median, or the conditional variance. In presence of functional data, which are doubly infinite
dimensional problems, the appeal to non parametric estimation is unavoidable. The starting
point in this regards is a prediction problem that leads to the regression function due to the
minimization of the mean squared error i.e., L2 risk. In this setting, one can usually consider
the model Y = m(X)+ ε where ε is centred and is independent of X with the explained variable
fully observed. In the case of complete observation of (X, Y ), an abundant literature in this field
can be found for instance in Györfi and al (2002) and references there in. However, in several
situations the variable of interest X may be subject to randomly right and left censoring in the
same sample. The lifetime Y is right censored by a variable R (which itself represents a survival
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time) and the minimum between Y and R is censored by a censorship variable on the left. A
symbolical example of this model is the one given in Morales and al. (1991) that investigates the
cause of death of trees on a farm. This kind of censoring model is exactly the Model one studied
in Patilea and Rolin, for which local averaging estimates of m(x) = E(Y |X = x) has been in-
troduced by Messaci (2010). In Kebabi and Messaci (2012), least squares estimator of m(x) has
been proposed and its L2−norm convergence has been established. In this paper, we are mainly
interested in least squares estimation approaches of the regression function for the Model I of
Patilea and Rolin. Particularly, we investigate a least squares method based on wavelets. The use
of a wavelets based approach is motivated by the possibility to achieve optimal convergence rates
despite the high dimensionality of the problem. Moreover, wavelets are excellent approximators
for signals with rapid local changes such as cusps, discontinuities, sharp spikes, etc. On the
other hand, accurate wavelet decomposition, using only a few wavelet coefficient, can represent
signals allowing dimensionality reduction and sparsity. So explicitly, the purpose of this paper is
the construction of non-linear orthogonal series estimates by rigid transformation (thresholding)
of the coefficients estimates of a regression function series development. The first part of our
study is devoted to the introduction of the least squares estimators of the regression function
for censored data and to some convergence properties. An important idea is introduced which
consists in the estimation of orthogonal series of the regression function. Then, we present the
estimation of the coefficients of these series, based on a wavelet system, is presented. In the
second part, we list the proofs.

1. Model and recalls
Let (X,Y ) be a random vector with values in Rd × R with E(Y )2 < ∞ and the dependence

of Y on the value of X is of interest. Let R and L be censoring positive random variables.
More specifically, the objective is to find a function f : Rd → R such that f(X) is a "good
approximation" of Y .

1.1. Model
We introduce orthogonal series estimates of m(x) = E(Y |X = x) with respect to sample

of iid Dn = {Xi, Zi = max(min(Yi, Ri), Li), Ai} from the same distribution as (X,Z,A) or
Z = max(min(Y,R), L) and

A =

 0 if L < Y < R,
1 if L < R 6 Y ,
2 if min(Y,R) 6 L.

Indeed, let f : Rd → R be an arbitrary (measurable) function and denote X distribution par µ
then

E|f(X)− Y |2 = E|f(X)−m(X) +m(X)− Y |2 =

= E|f(X)−m(X)|2 +E|m(X)− Y |2 =

= E|m(X)− Y |2 +
∫

|f(x)−m(x)|2µ(dx).

In the sequel we will denote by FV the distribution function of the random variable V and by
SV = 1− FV its survival function and TV = sup{t : FV (t) < 1} and IV = inf{t : FV (t) ̸= 0} the
end points of the support of the variable V . Assume that the variables X,Y,R et L satisfies the
following hypotheses

H1 : Y,R and L are independent.
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H2 : (L,R) is independent of (X,Y ).

H3 : ∃T < TR and I > IL such that, ∀n ∈ N,∀i(1 6 i 6 n) : Ai = 0 ⇒ I 6 Zi 6 T a.s.
H4 : FL is continuous on ]0,∞[.

H5 : TR 6 TY 6 TL < ∞ and IY 6 IL < IR.

H1 is an inherent hypothesis of Patilea’s et al . H3 seems to be acceptable because I 6 Zi 6 T
when Ai = 0. H5 guarantees in particular that the model is identifiable.
Let h a mapping on Rd ×R → R, we introduce as unbiased estimator of E(h(X,Y )) the amount

1

n

n∑
i=1

1{Ai=0}
h(Xi, Zi)

SR(Zi)FL(Zi)
. (1)

Indeed, under hypothesis H1, H2 and H4. The problem is that functions SR and FL are generally
unknown, we will replace them respectively with their estimators. Let (Z ′

j)16j6M , (M 6 n) be
the distinct values of Zi listed in ascending order.

1.2. Estimation and proprieties
Set

Dkj =
n∑

i=1

1{Zi=Z′
j ,Ai=k}, and Nj =

n∑
i=1

1{Zi6Z′
j},

thus, [22] suggest estimating SR by

Ŝn(t) =
∏

j/Z′
j6t

{
1− D1j

Uj−1 −Nj−1

}
and Uj−1 = n

∏
j6l6M

{
1− D2l

Nl

}
, (2)

and by inverting time in the Kaplan et al estimator, we can deduce the estimator F̂n from FL

(left censoring case) witch is

F̂n(t) =
∏

j/Z′
j>t

{
1−

1{Aj=2}

j

}
. (3)

Recall that under hypothesis H1 and H5, [22] have proven that

sup
t∈R+

∣∣∣Ŝn(t)− SR(t)
∣∣∣ −→
n−→∞

0 a.s. (4)

And
sup
t∈R+

∣∣∣F̂n(t)− FL(t)
∣∣∣ −→
n−→∞

0 a.s. (5)

Note that hypothesis H3 implies that

SR(T ) > 0 and FL(I) > 0. (6)

In view of equations (4) – (6), we deduce that for n sufficiently large

Ŝn(T ) > 0 and F̂n(I) > 0 a.s.

If Y is uncensored , the regression function estimator of the least squares , obtained by minimizing

the empirical risk L2, is argmin
f∈Fn

1

n

n∑
i=1

|f(Xi) − Yi|2, where Fn is a class of functions that is
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depending on the sample size n. Thus, in our context, according to the relation h and after
having estimated SR and FL, the least squares estimator of m(x) is given by

∼
mn = argmin

f∈Fn

1

n

n∑
i=1

1{Ai=0}
|f(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)

(
0

0
:= 0

)
. (7)

Fn is a certain family of functions which will be clarified in the theorem. We see that Ŝn(Zi)

does not vanish in the expression of
∼
mn if Ai = 0. It is easy to check that F̂n(Zi) does not

vanish either if Ai = 0 but since Y is bounded, we are going to make some assumptions on our
estimator. For that reintroduce the notation of the next use of truncation.

For 0 6 t < ∞ and x ∈ R, define

T[0,t](x) =


t if x > t,

x if 0 6 x 6 t,

0 if x < 0,

and for f : Rd → R, define (T[0,t]f)(x) = T[0,t](f(x)). We can also use again the fact that this
mapping verifies the following relation.

∀b > a, |T[0,b](x)−T[0,a](x)| 6 (b− a). (8)

Y being limited and due to Mn = max(Z1, . . . , Zn) with Mn →
n→+∞

TL a.s, we finally propose

as an estimator of m(x)

mn(x) = T[0,Mn](m̃n(x)). (9)

1.3. Wavelet bases

Let Fn be the set of all piecewise polynomials of degree M (or less) with respect to some
partition of [0, 1] consisting of 4n1−α intervals (or less). Let GM be set of polynomials of degree
M (or less), let Pn be an equidistant partition of [0, 1] in ⌈log(n)⌉ intervals. Denote GM ◦Pn the
set of all piecewise polynomials of degree M (or less) with respect to Pn. We will also need the
following notations

L∗∗
n = Tlogn(Fn).

F∗∗
n = {∀f ∈ GM ◦ Pn, ∥f∥∞ 6 log(n)}.

Now adapting the proofs given in Kohler et al [17], We get the following result concerning the
convergence of the introduced estimators. We refer, for example to Györfi et al [7] for some
definitions and results of the Vapnik et al [23] theory, used in this work.

We introduce orthogonal series estimates in the context of regression estimation with fixed,
equidistant design, which is the field where they have been applied most successfully. Let
(x1, Y1), . . . , (xn, Yn) be data according to the model Yi = m(xi) + εi where xi are fixed (non-
random) equidistant points in [0, 1] , εi are i.i.d. random variables with εi = 0 and E(ϵi) < ∞
and m is a regression function f : [0, 1] → R.

Assume that m ∈ L2(µ) where µ is Lebesgue measure on [0, 1]; and (fj)j∈N is an orthonormal
basis in L2(µ), ie

⟨fj , fk⟩L2(µ) =

∫
fj(x)fk(x)µ(dx) =

{
1 if j = k
0 if j ̸= k

.
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Each function in L2(µ) can be arbitrarily approximated by linear combinations of (fj)j∈N. Then
m can be represented by its Fourier series with respect to (fj)j∈N,

m =

∞∑
j=1

cjfj where cj = ⟨m, fj⟩L2(µ) =

∫
m(x)fj(x)µ(dx). (10)

Orthogonal series estimates use the estimates of coefficients of a series expansion E|f(X)−Y |2 =
E|m(X)− Y |2 +

∫
|f(x)−m(x)|2µ(dx) to reconstruct the regression function and in the model

Yi = m(xi) + εi , where x1, . . . , xn are equidistant in [0, 1]; coefficients cj can be estimated by

ĉj =
1

n

n∑
i=1

Yifj(xi), j ∈ N. (11)

The traditional way to deal with these estimated coefficients to construct an estimate

m1
n =

K̃∑
j=1

ĉjfj ,

m is to truncate the series expansion to an index K̃ and to inject the estimated coefficients.
Here, we try to choose K̃ such that the set of functions{f1, . . . , fK̃} is the "best" among

all the sub-sets {f1}, {f1, f2}, {f1, f2, . . . } of {fj}j∈N in view of the estimation error (7). This
implicitly assumes that the most important information m is in the first coefficients K̃ of the
series expansion E|f(X)− Y |2 = E|m(X)− Y |2 +

∫
|f(x)−m(x)|2µ(dx).

[5] have proposed a way to overcome this hypothesis. This consists in contaminating the
estimated coefficients, for example, we use all the coefficients whose absolute value is greater
than a threshold δn (called hard thresholding). This leads to estimates of the form

m2
n =

K∑
j=1

ηδn(ĉj)fj ,

where K is generally much larger than K̃ in (7), δn > 0 is a threshold, and

ηδn(ĉj) =

{
ĉj if |ĉj | > δn
o if |ĉj | > δn

,

in the series expansion, we truncate the estimate at some data-independent height Bn, in other
words, we define

m̄n(x) = (TBnm̃n)(x) =


Bn if m̃n(x) > Bn,

m̃n(x) if −Bn 6 m̃n(x) 6 Bn,

0 if m̃n(x) < −Bn,

(12)

where Bn > 0 and Bn → ∞ (n → ∞).
In this paper, we study the consistency of our estimator of orthogonal series. for simplicity

we will consider the case where X ∈ [0; 1] a.s. It is easy to modify the definition of our estimator
so that we obtain a weakly and strongly universally consistent estimator for the univariate X. To
prove the strong consistency of our estimator we need to make somme changes to its definition.
Consider α ∈ (0; 1

2 ). Let functions fj and coefficients ĉj be as defined in (10) and (11). Write
(ĉ(1); f(1)), . . . , (ĉ(K); f(K))

switching (ĉ1, f1), . . . , (ĉK , fK) and

|ĉ1| > |ĉ2| > · · · · · · > |ĉk| (13)
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let’s define the estimator m3
n as

m3
n =

min{K,n⌊1−α⌋}∑
j=1

ηδn(ĉj)fj (14)

This ensures that m3
n and a linear combination of no more than n1−α functions fj . And as in

E|f(X)− Y |2 = E|m(X)− Y |2 +
∫
|f(x)−m(x)|2µ(dx) we can show that

m3
n = m3

n,J∗ with J∗ ⊆ {1, . . . . . . ,K} where J∗ satisfies |J∗| 6 n1−α.

finally we combine the notation of the two estimates to obtain as an estimate of m̃n the following
formulas m3

n and mn whith TL 6 Bn = log(n) . We will also need the following notations

L∗
n = TTL

(Fn). F∗
n = {g : ∃f ∈ GM ◦ Pn, g = T[0,TL]f}.

2. Results
Theorem 2.1. Under hypotheses H1 – H5, let M ∈ N be fixed, and mn the m estimator defined

by 9, 14 , with TL 6 Bn = log(n) and δn 6 1

(log(n) + 1)2
. Then

∫
Rd

|mn(x)−m(x)|2 µ(dx) →
n→∞

0 a.s .

The following lemma will be used to establish our main result.

Lemma 2.2. We set the quantity m̄n(x) = T[0,TL](m̃n(x)) and with equations (2), (3), we have∫
Rd

|m̄n(x)−m(x)|2 µ(dx) 6

6 2 sup
f∈L∗

n

∣∣∣∣∣ 1n
n∑

i=1

1{Ai=0}
|f(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)
− E |f(X)− Y |2

∣∣∣∣∣ +
+ nδ2n2(M + 1)

(log(n) + 1)2

n
+ inf

f∈F∗
n

∫
Rd

|f(x)−m(x)|2 µ(dx).

(15)

3. Proofs
We set the quantity m̄n(x) = T[0,TL](m̃n(x)). We first show that the theorem is proved∫

Rd

|mn(x)−m(x)|2 µ(dx) →
n→∞

0 a.s . ⇐⇒
∫
Rd

|m̄n(x)−m(x)|2 µ(dx) →
n→∞

0 a.s .

Indeed, according to equation (8), we have |mn(x)− m̄n(x)|2 6 |TL −Mn|, which implies that∫
Rd

|mn(x)− m̄n(x)|2 6 (TL −Mn)
2 → 0 a.s..

Since by H5 we have lim
n→+∞

Mn = TL a.s Kebabi et al [12]. First, we prove the Lemma 2.2, and

finally, we prove the theorem.
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Proof Lemma 2.2. We start by proving, first we have∫
Rd

|m̄n(x)−m(x)|2 µ(dx) =

=

{
E(|m̄n(X)− Y |2 |Dn)− inf

f∈F∗
n

E |f(X)− Y |2
}
+

+

{
inf

f∈F∗
n

E |f(X)− Y |2 −E |m(X)− Y |2
}
.

In addition, the regression function satisfies

inf
f∈F∗

n

E |f(X)− Y |2 − E |m(x)− Y |2 = inf
f∈F∗

n

∫
Rd

|f(x)−m(x)|2 µ(dx). (16)

furthermore

E
(
|m̄n(X)− Y |2 |Dn

)
− inf

f∈F∗
n

E |f(X)− Y |2 =

= sup
f∈F∗

n

{
E
(
|m̄n(X)− Y |2 |Dn

)
− E

(
|f(X)− Y |2 |Dn

)}
=

= sup
f∈F∗

n

{
E
(
|m̄n(X)− Y |2 |Dn

)
− 1

n

n∑
i=1

1{Ai=0}
|m̄n(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)
+

+
1

n

n∑
i=1

1{Ai=0}
|m̄n(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)
− 1

n

n∑
i=1

1{Ai=0}
|m̃n(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)
+

+
1

n

n∑
i=1

1{Ai=0}
|m̃n(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)

n

− 1

n

∑
i=1

1{Ai=0}
|f(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)
+

+
1

n

n∑
i=1

1{Ai=0}
|f(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)
− E |f(X)− Y |2

}
6

4∑
i=1

Qn,i,

where the Qn,i are explained below for all i, 1 6 i 6 4.

• Since m̃ ∈ Fn ,m̄n ∈ F∗
n and F∗

n ⊂ L∗
n, it is obvious that

Qn,1 = sup
f∈F∗

n

{
E
(
|m̄n(X)− Y |2 |Dn

)
− 1

n

n∑
i=1

1{Ai=0}
|m̄n(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)

}
6

6 sup
f∈L∗

n

∣∣∣∣∣ 1n
n∑

i=1

1{Ai=0}
|f(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)
− E |f(X)− Y |2

∣∣∣∣∣ ,
and

Qn,4 = sup
f∈F∗

n

{∣∣∣∣∣ 1n
n∑

i=1

1{Ai=0}
|f(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)
− E |f(X)− Y |2

∣∣∣∣∣
}

6

6 sup
f∈L∗

n

∣∣∣∣∣ 1n
n∑

i=1

1{Ai=0}
|f(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)
− E |f(X)− Y |2

∣∣∣∣∣ .
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• Since m̄n(Xi)6TL and Zi6TL a.s., we obtain 1{Ai=0}|m̃n(Xi)−Zi|>1{Ai=0}|m̄n(Xi)−Zi|,
which implies

Qn,2 =
1

n

n∑
i=1

1{Ai=0}
|m̄n(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)
− 1

n

n∑
i=1

1{Ai=0}
|m̃n(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)
6 0

• As F∗
n ⊂ F∗∗

n because of TL 6 log(n) and fix f ∈ GM ◦ Pn. In view of Pn definition,
Lemma 18.1 in Györfi et al [7] exist J̄ ⊂ {1, . . . , n} and f̄ ∈ Fn,J̄ , such that f(Xi) = f̄(Xi)
and |J̄ | 6 2(M + 1)(log(n) + 1)2 which implies that

1

n

n∑
i=1

1{Ai=0}
|m̃n(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)
− 1

n

n∑
i=1

1{Ai=0}
|f(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)
=

=
1

n

n∑
i=1

1{Ai=0}
|m̃n(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)
− 1

n

n∑
i=1

1{Ai=0}

∣∣f̄(Xi)− Zi

∣∣2
Ŝn(Zi)F̂n(Zi)

6

6 nδ2n2(M + 1)
(log(n) + 1)2

n
.

From m̃ definition, it is obvious that

Qn,3 = sup
f∈F∗

n

{
1

n

n∑
i=1

1{Ai=0}
|m̃n(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)
− 1

n

n∑
i=1

1{Ai=0}
|f(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)

}
6

6 nδ2n2(M + 1)
(log(n) + 1)2

n
.

Inequality (15) is therefore proven. 2

Proof Theorem 2.1. It remains to be proven that the three terms of Lemma 2.2 tend to zero
almost surely when n → ∞. To do this, we will proceed in three steps. In the first step, we show
that

lim
n→∞

sup
f∈L∗

n

∣∣∣∣∣ 1n
n∑

i=1

1{Ai=0}
|f(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)
− E |f(X)− Y |2

∣∣∣∣∣ = 0 a.s.

To do this, we use the following inequalities

sup
f∈L∗

n

∣∣∣∣∣ 1n
n∑

i=1

1{Ai=0}
|f(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)
− E |f(X)− Y |2

∣∣∣∣∣ 6
6 sup

f∈L∗
n

∣∣∣∣∣ 1n
n∑

i=1

1{Ai=0}
|f(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)
− 1

n

n∑
i=1

1{Ai=0}
|f(Xi)− Zi|2

SR(Zi)F̂n(Zi)

∣∣∣∣∣+
+ sup

f∈L∗
n

∣∣∣∣∣ 1n
n∑

i=1

1{Ai=0}
|f(Xi)− Zi|2

SR(Zi)F̂n(Zi)
− 1

n

n∑
i=1

1{Ai=0}
|f(Xi)− Zi|2

SR(Zi)FL(Zi)

∣∣∣∣∣+
+ sup

f∈L∗
n

∣∣∣∣∣ 1n
n∑

i=1

1{Ai=0}
|f(Xi)− Zi|2

SR(Zi)FL(Zi)
− E |f(X)− Y |2

∣∣∣∣∣ 6
3∑

i=1

Q∗
n,i.

Since f ∈ L∗
n implies that 0 6 f(x) 6 TL, we get – in view of – formulas (4)–(6)

Q∗
n,1 = sup

f∈L∗
n

∣∣∣∣∣ 1n
n∑

i=1

1{Ai=0}
|f(Xi)− Zi|2

Ŝn(Zi)F̂n(Zi)
− 1

n

n∑
i=1

1{Ai=0}
|f(Xi)− Zi|2

SR(Zi)F̂n(Zi)

∣∣∣∣∣ 6
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6 T 2
L

Ŝn(T )SR(T )F̂n(I)
sup
t∈R+

∣∣∣Ŝn(t)− SR(t)
∣∣∣ →
n→∞

0, a.s.

and

Q∗
n,2 = sup

f∈L∗
n

∣∣∣∣∣ 1n
n∑

i=1

1{Ai=0}
|f(Xi)− Zi|2

SR(Zi)F̂n(Zi)
− 1

n

n∑
i=1

1{Ai=0}
|f(Xi)− Zi|2

SR(Zi)FL(Zi)

∣∣∣∣∣ 6
6 T 2

L

FL(I)SR(T )F̂n(I)
sup
t∈R+

∣∣∣F̂n(t)− FL(t)
∣∣∣ →
n→∞

0 a.s.

Let’s introduce the following notations V =(X,Z, 1A), V1=(X1, Z1, 1A1), . . . , Vn=(Xn, Zn, 1An)
n i.i.d random vectors with the same distribution as V .

Define

Hn =
{
h : Rd × [0, TL]× {0, 1} → R+ : ∃f ∈ L∗

n such as,

h(x, z, 1A) =
1A |f(x)− z|2

SR(z)FL(z)

∀ (x, z, 1A) ∈ Rd × [0, TL]× {0, 1}
}
.

Functions of Hn are positive and bounded by
T 2
L

SR(T )FL(I)
, and

Eh(V ) = E

(
1A |f(X)− Z|2

SR(Z)FL(Z)

)
= E

[
E

(
1A |f(X)− Z|2

SR(Z)FL(Z)
| X,Y

)]
= E

(
|f(X)− Z|2

)
.

under H1,H2 et H4. In addition we have

Q∗
n,3 = sup

f∈L∗
n

∣∣∣∣∣ 1n
n∑

i=1

1{Ai=0}
|f(Xi)− Zi|2

SR(Zi)FL(Zi)
− E |f(X)− Y |2

∣∣∣∣∣ =
= sup

f∈Hn

∣∣∣∣∣ 1n
n∑

i=1

h(V )−Eh(V )

∣∣∣∣∣ .
For all h1 and h2 ∈ Hn, let f1 and f2 be their corresponding functions in L∗

n then

1

n

n∑
i=1

|h1(Vi)− h2 (Vi)|

=
1

n

n∑
i=1

∣∣∣∣∣1{Ai=0}
|f1(Xi)− Zi|2

SR(Zi)FL(Zi)
− 1{Ai=0}

|f2(Xi)− Zi|2

SR(Zi)FL(Zi)

∣∣∣∣∣ 6
6 1

SR(T )FL(I)

1

n

n∑
i=1

|(f1(Xi) + f2(Xi)− 2Zi) (f1(Xi)− f2(Xi))| 6

6 2TL

SR(T )FL(I)

1

n

n∑
i=1

|f1(Xi)− f2(Xi)| ,

which implies N (ε,Hn, V
n
1 ) 6 N

(
εSR(T )FL(I)

2TL
,L∗

n, X
n
1

)
, where N (ε,Fn, Z

n
1 ) denotes the over-

lapping number. Theorem 9.1 in Györfi et al [7] gives, for all δ > 0

p

{
sup
f∈Hn

∣∣∣∣∣ 1n
n∑

i=1

h(Vi)−Eh(V )

∣∣∣∣∣ > δ

}
6 8E

{
N
(
δ
SR(T )FL(I)

16TL
,L∗

n, X
n
1

)}
exp

(
−nδ2S2

R(T )F
2
L(I)

128T 4
L

)
,
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which is, in view of Theorem 9.4, Theorem 9.5 and Lemma 13.1 in Györfi et al [7], we get

p

{
sup
f∈Hn

∣∣∣∣∣ 1n
n∑

i=1

h(Vi)−Eh(V )

∣∣∣∣∣ > δ

}
6

6 8(5n)4n
1−α

(
− 288eT 2

L

δ (SR(T )FL(I))
4

)2(M+2)n1−α

exp

(
−nδ2S2

R(T )F
2
L(I)

128T 4
L

)
.

The formula combined with the VTlog nG
+
M

6 VG+
M

of the theorem where VTlog nG
+
M

stands for the
VC dimension of the set of graphs of function in GM , allows to apply Borel Cantelli lemma, to
get

sup
f∈L∗

n

∣∣∣∣∣ 1n
n∑

i=1

1{Ai=0}
|f(Xi)− Zi|2

SR(Zi)FL(Zi)
−E |f(X)− Y |2

∣∣∣∣∣ →
n→∞

0 a.s.

In the second step, we get

nδ2n2(M + 1)
(log(n) + 1)2

n
→

n→∞
0 a.s because δn 6 1

(log(n) + 1)2
.

In the third step, we prove that

inf
f∈F∗

n

∫
Rd

|f(x)−m(x)|2 µ(dx) →
n→∞

0 a.s.

Since m can be approximated arbitrarily closely by continuously differentiable functions, we
may assume without loss of generality that m is continuously differentiable.For each A ∈ Pn

choose some xA ∈ A and set f∗ =
∑

A∈Pn

m(xA)IA.Then f∗ ∈ GM ◦ Pn and for n such that

∥m∥∞ 6 TL 6 log(n) we get

inf
∀f∈GM◦Pn,∥f∥∞ 6TL

∫
Rd

|f(x)−m(x)|2 µ(dx) 6 sup
x∈[0,1]

|f∗(X)−m(x)|2 6 c

(log(n))2
→

n→∞
0.

where c is constant as a function of the first derivative of m. 2
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Неполная оценка функции регрессии методом
наименьших квадратов на основе вейвлетов

Рима Дуас
Ильхем Ларуси

Сумия Харфуши
Кафедра математики

Университет братьев Ментури
Константин, Алжир

Аннотация. В этой статье мы вводим оценку функции регрессии методом наименьших квадратов
для Y , цензурированного справа R, и min(Y,R), цензурированного слева L. Он основан на идеях,
полученных из контекста вейвлет-оценок, и построен путем жесткой пороговой обработки оценок
коэффициентов развития ряда функции регрессии. Устанавливаем сходимость по норме L2. Мы
даем достаточно критериев для непротиворечивости этой оценки. Результат показывает, что наша
оценка способна адаптироваться к локальной регулярности соответствующей функции регрессии
и распределения.

Ключевые слова: непараметрическая регрессия, ошибка L2, оценки методом наименьших квад-
ратов, оценки ортогональными рядами, сходимость в норме L2, дважды цензурированные данные,
оценка регрессии, жесткий порог.
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