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Abstract. The article presents the compartmental differential formulation of SIR-type for modeling the
dynamics of the incidence of viral infections, in particular COVID-19, taking into account the ongoing
vaccination campaign and the possibility of losing immunity during some time period after vaccination or
a disease. The proposed model is extended by considering the coefficients of the model as dependent on
the social loyalty of the population to isolation and vaccination. This allows us to formulate the optimal
control problem and build various scenarios for the development of the epidemiological situation. The
results obtained on the basis of the considered models were compared with real statistical data on the
incidence in the Krasnoyarsk Territory.
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The COVID-19 pandemic has a huge impact not only on people’s health, but also on the
global economy and daily life. In response to this crisis, scientists, economists, and policymakers
around the world are developing various countermeasures to contain the explosive spread of the
virus, reducing the burden on the health system and the economy [1]. For example, measures
such as travel bans, social distancing and masks have traditionally been chosen to contain the
spread of infection. The invention of an effective vaccine significantly affected the dynamics of
its spread.

Since the 1920s, mathematical models of the spread of infectious diseases have used as an
important tool for analyzing epidemiological features and analyzing virus transmission [2]. There
are a large number of different approaches, for example, more than 200 models have developed to
predict the spread of COVID-19 for 2020-2021 [3]. Among them, the most commonly used models
are compartmental ones of the SIR type (when the entire population is divided into susceptible
to the virus, infected, and recovered people) and their modifications and adjustments [3]. For
example, in [4], Caputo derivatives were used to formulate a fractional-order SIR-D (susceptible,
infected, recovered, and dead) mathematical model for COVID-19 spread. Ramezani et al.
in [5] proposed a modification of the SEIR-D (susceptible, exposed, infected, recovered, and
dead) model to capture the behavior of the COVID-19 pandemic when asymptomatic infected
individuals are taken into account.

However, as a comparison of predicted data with real ones shows, mathematical models of
the spread of infectious diseases have a large number of sensitive parameters, the determination
of which is a complex problem and is based on many assumptions. Unknown parameters must
be estimated by fitting a model or solving inverse problems based on the data of the previous
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time interval, that make forecast faulty [6]. Moreover, when modeling a disease for a long time,
changing the parameters of the model is associated with many factors, for example, the intro-
duction of quarantine restrictions, the mandatory wearing of masks, or an effective vaccination
campaign.

This article proposes a modification of the standard SIR model by introducing into con-
sideration the vaccinated part of the population and the possibility of the population to lose
immunity after a while. In the second part of the article, the proposed model is extended to an
optimal control problem, which made it possible not only to significantly improve the predictive
properties of the model, but also to take into account social factors affecting the spread of the
disease (compliance with coronavirus restrictions and vaccination) and build various scenarios for
the development of the epidemic. The model was tested on statistical data for the Krasnoyarsk
Territory for the spring of 2022.

1. Differential SIRV-D model

The most popular models for describing the spread of diseases are differential (compartmental)
SIR models, which began in the work of the Scottish epidemiologists Kermack and McKendrick
in the 1920s [2]. The essence of such models is the differentiation of the population into several
parts (chambers) depending on the epidemiological status of individuals. Thus, in the simplest
SIR [2] model, the entire population is divided into the following groups: “Susceptible” (S), the
population that does not have immunity to the virus; Infected (I); and those who received immu-
nity (R - "Recovered", in the simplest case, recovered and died individuals). The probabilities
of an individual’s transition from one chamber to another determine the system of differential
equations described in many monographs and handbooks, for example, in [6]. Thus, the good
analytical analyzability and computational simplicity of the SIR model led to the widespread use
of this model, as well as its various modifications, which differ in the number of chambers into
which the population is divided and the number of connections between them.

Some of the essential features of modeling the spread of coronavirus are the following state-
ments:

• an individual does not receive permanent immunity and can be re-infected after weakening
the immune system;

• at the time of model testing (2022), vaccination is the main antiviral measure;

• the dynamics of the disease varies depending on the region under consideration and is
extremely unstable due to the emergence of new strains or the introduction of antiviral
measures by the government;

• coronavirus has a number of symptomatic differences from other viruses, often (depending
on the strain) is mild and can be asymptomatic.

The first and last two statements are specific features of the coronavirus infection and make
it difficult to predict the dynamics of the epidemic for the medium-term (from 2 weeks to 2
months) and long-term (3 or more months) time periods using any known methods [3, 6]. To
take into account the first two features, we propose the SIRV-D model described by a system of
differential equations
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dms

dt
(t) = −βms(t)mI(t) + ϕmR(t)− εms (t) ,

dmI

dt
(t) = βms(t)mI(t)− γmI(t)− δmI(t) + ρmV (t)mI(t),

dmR

dt
(t) = γmI(t) + ωmV (t)− ϕmR(t),

dmV

dt
(t) = −ωmV (t) + εmS (t)− ρmV (t)mI(t),

dmD

dt
(t) = δmI(t)

(1)

with initial condition
mi(0) = m0i ∀i ∈ {S, I,R, V,D} . (2)

The SIRV-D model (1), (2) is an extension of the simplest SIR model, where "dead" are separated
from "immunized" and the group of “vaccinated” is introduced. A description of the model
parameters is presented in Tab. 1, and a general flow diagram of the relationship between groups
is shown in Fig. 1. Here, it is taken into account that the population loses its immunity and
may become susceptible again, and the vaccinated part of population do not acquire immunity
immediately, but after a certain time period. Note that ∀t ∈ [0;T ], where T is horizon time,
the law of conservation of the mass of the entire population

∑
i

mi = 1 ∀i ∈ {S, I,R, V,D} is

satisfied.

Fig. 1. General flow of SIRV-D model

2. Estimation of model parameters

In order to correctly model the spread of the virus, in addition to an adequate basic model,
it is necessary to correctly select its quantitative parameters. Some of these parameters are
universal and the same in all territory, for example, the rate of loss of immunity or the rate
of immunity formation after vaccination. The remaining parameters are specific to a particular
region. Universal parameters are usually known and determined by the nature of the virus.
Local parameters, as a rule, are obtained from the analysis of statistical data and the solution
of inverse problems [8]. The task of determining the parameters is complicated due to the large
amount of data, the variability epidemiological situation, the quality of collecting statistical
data, determining the target functional (the question is what exactly should be interpolated:
the number of infected people, the number of deaths, or the peak of incidence, etc.), as well
the selection of solution algorithms emerging ill-posed problems. At the same time, due to the
variability of the incidence dynamics, the determination of coefficients that approximate the
real situation is possible only for a short time period (up to 2 weeks). More details about the
difficulties encountered in determining epidemiological parameters and current methods for their
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Table 1. The description of parameters of the SIRV-D model

Parameter description Symbol
The part of the population that is not immune at t time moment mS(t)
The part of the population that "active" infected at t time moment mI(t)
The part of the population that is immune at t time moment after suffering a
disease or after being vaccinated

mR(t)

The vaccinated part of the population that has not yet received immunity at t
time moment

mV (t)

Part of population who is died from the coronavirus by the time t mD(t)
Contagiousness ("infectiousness"), the probability of transmission of the virus in
the population

β

The rate at which immunity is developed after infection γ
The rate of vaccination of the population ε
Mortality σ
The rate of loss of immunity, the probability of an individual becoming susceptible
to the virus again

ϕ

The rate of formation of immunity after vaccination ω
The probability of vaccinated people getting sick before immunity develops ρ

solution can be found in [6, 8–10]. Since in this work the SIRV-D model is only a start model
for the optimal control problem presented below, and the modeling will be scenario-based, the
accuracy in determining the coefficients of the model is not a priority task. So, to determine the
coefficients of the SIRV-D model, we will assume that for each set of measurements on the ti–th
day, the vector of unknowns q⃗i =

{
βi, γi, εi, δi

}
satisfies the following system of linear algebraic

equations ∀i ∈ {1, N − 1}

βimi
Sm

i
I − γimi

I − δimi
I =

(
mi+1

I −mi−1
I

)
/2 − ρmi

Vm
i
I ,

γimi
I =

(
mi+1

R −mi−1
R

)
/2 − ωmi

V + ϕmi
R,

εimi
S =

(
mi+1

V −mi−1
V

)
/2 + ωmi

V + ρmi
Vm

i
I ,

δimi
I =

(
mi+1

D −mi−1
D

)
/2 .

(3)

System (3) is obtained from the system of differential equations (1) after substituting the
known measured values in ti-th day, where the central difference is taken instead of the first
derivative. Note that instead of five equations from (1) to (3), only four equations are used,
since otherwise, due to the properties of system (1), system (3) will consist of linearly dependent
equations. Parameters ω, ϕ and ρ will be considered known. Assume that the rate of loss of
immunity ϕ is proportional to half a year, and the rate of formation of immunity after vaccination
ω is proportional to forty-two days. As the probability of infection for a vaccinated person without
developed immunity, we take the data obtained by the Krasnoyarsk Medical University ρ= 18.3%
[11]. As parameters β, γ, ε, δ for further modeling, we choose the arithmetic mean over sets
{βj , . . . , βj+k} , {γj , . . . , γj+k} , {εj , . . . , εj+k} , {δj , . . . , δj+k}, where j > 1, j+k 6 N−1. Tab. 2
shows the values of epidemiological parameters according to statistical data for the Krasnoyarsk
city in the period from t1 =February 1, 2022 and tN−1 = 28 February 2022.

Fig. 2 shows a comparison of the approximation of statistical data for February in Krasnoyarsk
with the solution of the SIRV-D model with constants from the first three rows of Tab. 2.

Note that any epidemiological model is interesting, as a rule, for predicting the development
of epidemiological situation, that is, the model parameters are unknown for the entire predicted
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Table 2. The value of the epidemiological constants for the Krasnoyarsk city (February, 2022)

Average for constants
β γ ε δ ϕ ω ρ

01-28 Feb 0.22858 0.07385 0.00058 0.00045
0.00548 0.02381 0.1830001-19 Feb 0.30832 0.08664 0.00057 0.00051

20-28 Feb 0.03222 0.04094 0.00064 0.00027
weekly average

first week 0.59188 0.20861 0.00009 0.00085
0.00548 0.02381 0.18300second week 0.21143 0.02174 0.00068 0.00037

third week 0.08421 0.02278 0.00099 0.00029
fourth week 0.02679 0.04227 0.00059 0.00028

timeline, and can be selected as values from already known measurements for the previous period
of time (sliding window method). The results of the predictive power of the SIRV-D model are
shown in Fig. 3 (dots). So, to simulate the development of the epidemiological situation in
the period from 02/07/2022 to 02/14/2022, the parameters obtained from the statistics of the
previous week from 02/01/2022 to 02/06/2022, etc. were used. It can be seen that in this case,
the SIRV-D model responds to a change in the situation with a delay and greatly overestimates
the real situation. This property is inherent in any differential model of the SIR type.

3. Optimal control SIRV-D problem
As it can be seen from Tab. 2, the parameters β, γ are the most sensitive and determine

the behavior of the curves that are the solution of model (1). Therefore, choosing them from
the previous time interval for forecast leads to significant inaccuracies. In addition, the main
criticism of SIR-type models is based on the assumption of population homogeneity without
taking into account the differentiation of the population on social grounds: for example, age or
compliance/noncompliance with antiviral restrictions. To overcome these difficulties, state the
following control problem. Let αIs (t) , αV c (t) are continuous functions denoting the cumulative
loyalty of the population to isolation (observance of restrictions) and vaccination in a given region
(isolation and vaccination strategies). Assume that |αI (t)| , |αV (t)| 6 1 and the rate of spread
of infection among the non-immune and vaccinated population β, ρ and the rate of vaccination
of the population ε in (1) are now given as functions

β = βmin + (βmax − βmin) (1 + αIs (t))
/
2;

ρ = ρmin + (ρmax − ρmin) (1 + αIs (t))
/
2;

ε = εmin + (εmax − εmin) (1 + αV c (t))
/
2.

(4)

We will find a set of functions mS ,mI ,mR,mV ,mD, αIs, αV c that maximizes the functional

J =

∫ T

0

G(mSIRV D, αIs, αV c)dt+Φ(mSIRV D (0) ,mi (T )) (5)

where the notation mSIRV D means the vector of state functions of the controlled system
mSIRV D (t) = {mS (t) ,mI (t) ,mR (t) ,mV (t) ,mD (t)}. Here G determines the quality of the
system functioning over the entire control interval, and Φ are the terminal conditions, the final
result of the control impact, determined by the combination of initial mi (0) and final mi (T ).

Thus, we obtain the following optimal control problem: to maximize the functional (5) with
constraints in the form of differential equations (1), taking into account (4). To solve the prob-
lem, we use the Pontryagin maximum principle. Choose smooth functions ψi (t) : [0, T ] → R
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Fig. 2. The comparison of statistical data with calculated one by the model (1). The gray line is
statistical data, the dots present the SIRV-D solution obtained with average parameters for the
entire simulated interval, the black line is the SIRV-D solution obtained with average parameters
for two monotonous interval (from 1 to 19 February and from 20 to 28 February)

and multiply ψi (t) ∀i ∈ {S, I,R, V,D} by the corresponding equation in (1). Write out the
Pontryagin function [12]

H (mSIRV D, αIs, αV c, ψSIRV D) = λ0G(mSIRV D, αIs, αV c)+

+ ψS (t) (−β (αIs)mS(t)mI(t) + ϕmR(t)− ε (αV c)mS (t))+

+ ψI (t) (β (αIs)mS(t)mI(t)− γmI(t)− δmI(t) + ρ (αIs)mV (t)mI (t))+

+ ψR (t) (γmI(t) + ωmV (t)− ϕmR(t))+

(6)
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+ ψV (t) (−ωmV (t) + ε (αV c)mS (t)− ρ (αIs)mV (t)mI (t)) + ψD (t) (δmI(t)) .

Let {m∗
SIRV D (t) , α∗

Is (t) , α
∗
V c (t)} be the optimal process in problem (1), (4), (5). Then there

are simultaneously non-zero functions ψSIRV D (t) such that the following conditions are satisfied:

1. The Pontryagin function H (mSIRV D, αIs, αV c, ψSIRV D) of the problem for each t ∈ [0, T ]
reaches its maximum in αIs, αV c at the points α∗

Is (t) , α
∗
V c (t) for mSIRV D = m∗

SIRV D (t),
ψSIRV D = ψSIRV D (t) .

2. The vector function ψSIRV D (t) satisfies the adjoint system of differential equations

dψs

dt
= β (αI)mI(t) (ψS (t)− ψI (t)) + ε (αV ) (ψS (t)− ψV (t))− dG/dmS ,

dψI

dt
= β (αI)mS(t) (ψS (t)− ψI (t)) + γ (ψI (t)− ψR (t))+

+δ (ψI (t)− ψD (t)) + ρ (αI)mV (t) (ψV (t)− ψI (t))− dG/dmI ,

dψR

dt
= ϕ (ψR (t)− ψS (t))− dG/dmR ,

dψV

dt
= ρ (αI)mI(t) (ψV (t)− ψI (t)) + ω (ψV (t)− ψR (t))− dG/dmV ,

dψD

dt
= −dG/dmD,

(7)

with transversality conditions

ψi (0) =
dΦ(mi (0) ,mi (T ))

dmi (0)
, ψi (T ) =

dΦ (mi (0) ,mi (T ))

dmi (T )
. (8)

To fulfill the first condition, we study (6) for the fulfillment of the necessary and sufficient
conditions for the maximum of functions

∂H

∂αIs
=

∂G

∂αIs
+
βmax − βmin

2
mS(t)mI(t) (ψI (t)− ψS (t))+

+
ρmax − ρmin

2
mV (t)mI(t) (ψI (t)− ψV (t)) = 0;

(9)

∂2H

∂(αIs)
2 =

∂2G

∂(αIs)
2 < 0; (10)

∂H

∂αV c
=

∂G

∂αV c
+
εmax − εmin

2
mS(t) (ψV (t)− ψS (t)) = 0; (11)

∂2H

∂(αV c)
2 =

∂2G

∂(αV c)
2 < 0. (12)

From (10), (12) it can be seen that for the correct implementation of the maximum principle,
the function G must be concave with respect to the control functions, then (9), (11) give the
optimality conditions for the strategy chosen by the population.

4. Computational experiment

For the numerical implementation of the optimal control problem, we use the following iter-
ative algorithm.
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Input: initial values mSIRV D (0), initial control αIs (t) ≡ αV c (t) ≡ 0, set the maximum
calculation precision eps.

Get a set of grid values mh
i (tk) by solving the system of differential equations (1) taking into

account (4);
Get an approximate value of the cost functional Jh according to (5);
Until |J −max J | > eps do

(a) Get a set of grid values ψh
i (tk) by solving the system of differential equations (7)

taking into account (4);
(b) Get a set of grid values αh

Is(tk),α
h
V c(tk) from equations (9), (11);

(c) Calculate the Pontryagin function (6) taking into account the current values mh
i (tk),

ψh
i (tk), αh

Is(tk), α
h
V c(tk);

(d) Calculate the Pontryagin function (6) taking into account the current values mh
i (tk),

ψh
i (tk), and boundary values αh

Is(tk), α
h
V c(tk);

(e) As values αh
Is(tk), α

h
V c(tk) at the new iteration, select those that deliver a greater

value to the function H;
(f) Get a new set of grid values mh

i (tk) by solving the system of differential equations (1)
taking into account (4);

(j) Get an approximate value of the cost functional Jh according to (5);
Output: Select the grid functions mh

i (tk), ψh
i (tk), αh

Is(tk), α
h
V c(tk) obtained at the last

iteration as a solution of the optimization problem.
To solve systems of differential equations, the Runge-Kutta method of the 4-th order was

used. To compare the predictive ability of the optimal control model and the SIRV-D differential
setting on the data for the Krasnoyarsk Territory for February 2022, we consider a functional

J =

∫ T

0

(
d1(mS(t) +mI(t) +mR(t) +mV (t))(1 + αIs(t))

2−

−d2(1 + αV c(t))
2
mS(t) + d3(mI(t))

2
)

dt,
(13)

where d1, d2, d3 are the weight constants and ε, ρ are the constants vary within ε ∈
[0.00059, 0.00099] , ρ ∈ [0.1464, 0.2196].

Let’s consider several scenarios.

1. Optimistic scenario. We minimize the functional (13), where the epidemiological parameter
β ∈ [0.6βt, βt] and βt is table value used in the forecast interval.

2. Pessimistic scenario. We maximize the functional (13), where β ∈ [βt, 1.4βt].

3. Average scenario. We minimize the functional of the form

J =

∫ T

0

(
d1(mS(t) +mI(t) +mR(t) +mV (t))(αIs(t))

2
+ d2(αV c(t))

2
mS(t)+

+β(αIs(t))mS(t)mI(t) + δmD(t)− ε(αV c(t))mV (t)) dt,
(14)

where parameters β ∈ [0.6βt, 1.4βt].

Minimization of the functional (13) leads to the fact that it is beneficial for the population to
be loyal to isolation and vaccination, which leads to a decrease in the number of infected people.
The pessimistic scenario leads to the opposite. The average scenario (14) leads to the selection
of isolation and vaccination strategies by the population to minimize the daily increase in cases
and deaths.

Fig. 3 shows a comparison of the predictions of a simple differential SIRV-D model and an
optimal control model based on it. As for the SIRV-D model, the model parameters for the
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Fig. 3. The comparison of statistical data with forecasting of simple differential model SIRV-D
(1) and optimal control SIRV-D (1), (4), (5), (7), (8). For the first week of March the prognose
for different scenarios is presented

forecast for the new week were chosen as the values obtained from the previous week. The
scenario branching is shown for the first week of March 2022. The black curve is made up of
the scenarios that showed the best approximation with the statistical data. It can be seen from
the figure that the optimal control model can give a more accurate forecast, but it requires an
adequate assessment of the situation when constructing a new forecast scenario.

However, one of the drawbacks of the proposed optimal control model is the fact that not
only the sensitive parameters β, ρ, which are responsible for the probability of becoming infected,
are corrected, but also the parameter ε, which varies within small limits. While the population
recovery rate parameter γ, which has a significant impact on the dynamics of the spread of
infection cannot be corrected by considering it as dependent on the control function. One way
to solve this problem would be to consider the basic reproductive number of the population [2,3]
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R0 = β/γ . (15)

It is obvious that for simple dependences if R0 > 1, then there is an increase in the incidence,
otherwise there is a decrease. In order to build more accurate forecasts, one can consider a
change β within [γ − δ1; γ − δ2]. Fig. 4 shows a forecast of a new increase in the incidence in the
Krasnoyarsk Territory in 2022 with a pessimistic forecast (since at May of 2022, all coronavirus
measures and mandatory vaccination have been canceled), provided that β ∈ [0.4γ; 1.6γ].

Fig. 4. New wave prognoses by model (1), (4), (5), (7), (8)

The model shows that the next significant increase in incidence may occur by middle of July
this year. However, as already shown above, a correct long-term forecast is possible only if the
epidemiological situation is preserved (no new strains or restrictions, as well as maintaining the
mobility of the region’s population).

5. Conclusions

As a result, two well-analyzed analytical models were obtained to describe the possible dynam-
ics of the disease, taking into account vaccination campaign. On the basis of a simple differential
model, an optimal control model is constructed, where some coefficients are dependent on the
social moods of the population. It is shown that, unlike the differential model, the optimization
problem can give a more accurate forecast, and also allows you to quickly take into account the
introduction of restrictive measures by changing the cost functional. Several scenarios of the
dynamics of the epidemiological situation for the Krasnoyarsk Territory have been constructed,
depending on the different social behavior of its inhabitants.

The work was supported by the Russian Science Foundation grant no. 20-61-46017.
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Модель оптимального управления SIRV-D для построения
сценариев распространения COVID-19

Виктория С.Петракова
Владимир В. Шайдуров

Институт вычислительного моделирования СО РАН
Красноярск, Российская Федерация

Аннотация. В статье представлена камерная дифференциальная постановка SIR-типа для мо-
делирования динамики заболеваемости вирусными инфекциями, в частности COVID-19, с учетом
проводимой кампании вакцинации и возможности потери иммунитета через некоторый промежу-
ток времени после вакцинации или заболевания. Предлагаемая модель расширена за счет учета
коэффициентов модели как зависимых от социальной лояльности населения к изоляции и вакцина-
ции. Это позволяет сформулировать задачу оптимального управления и построить различные сце-
нарии развития эпидемиологической ситуации. Результаты, полученные на основе рассмотренных
моделей, сравнивались с реальными статистическими данными о заболеваемости в Красноярском
крае.

Ключевые слова: сценарии распространения COVID-19, модель SIR, модель оптимального
управления.

– 97 –


