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Abstract. The problem of a thin layer of liquid flowing down an inclined substrate under conditions of
a co-current gas flow is considered. Mathematical modeling is carried out on the basis of the Navier—
Stokes and heat transfer equations, as well as generalized conditions at the thermocapillary boundary.
Parametric analysis of the problem is made. An algorithm of numerical solution is constructed for the
evolution equation determining the thickness of the liquid layer. A comparison of numerical calculations
for ethanol and HFE-7100 liquids is presented. The influence of an additional term in the interface
energy equation on the dynamics of the liquid layer is shown.
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Introduction

Currently, film flows are used in many fields of activity, such as the space industry, chemical
and pharmaceutical industries, etc. This is largely due to the trend of device miniaturization.
Thin layers of liquid are used as heat carriers and heat stabilizers, solvents and much more. In
this regard, interest in the theoretical study of such flows has increased. The main difficulties in
their analytical study are associated with a large number of factors affecting thin liquid layers
and the nonlinearity of the processes under study. In some cases, when the processes described
by the mathematical model have strong nonlinearity, it is permissible to use some simplifications
of the model or its solutions that do not entail significant distortions of the results. One of the
methods can be a parametric analysis of the problem, which makes it possible to detect elements
that do not make a significant contribution to the processes under study.

Quite a large number of works are devoted to mathematical modeling of flows of thin liquid
layers, taking into account additional factors that govern the nature of processes [1-6]. One of the
important effects in the study of such flows is evaporation [7-11]. As a rule, mathematical models
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of problems in the thin layer approximation are based on the Navier—Stokes equations [4, 5] or
Oberbeck—Bussinesq equations [1,3,12]. When modeling flows with interface particular attention
is paid to the formulation of boundary conditions [8,9,13]. The numerical simulation of the flows
of thin liquid layers are preformed in [12,14,15].

This paper presents a mathematical model of the motion for a thin film of a viscous incom-
pressible liquid driven by a gas flux along an inclined unevenly heated solid substrate. Gravi-
tational, thermocapillary effects, evaporation, as well as the impact of additional shear stresses
from the external environment are taken into account in the model. The fulfillment of the laws
of conservation of mass, impulse and energy is ensured by the kinematic, dynamic and energy
conditions set at the interface. Modeling of liquid motion is based on the Navier—Stokes and
heat transfer equations. The Hertz—Knudsen kinetic equation is used to determine the depen-
dence of the local vapor mass flux on the temperature at the interface. A parametric analysis
of the problem is performed based on the use of two types of liquids: ethanol and HFE-7100.
Analytical solutions for the main terms of the expansion in powers of a small parameter and
an evolution equation that determines the position of the interface are obtained. An algorithm
for the numerical solution of the evolution equation is constructed. Numerical results on the
study of the influence of the liquid nature on change in the liquid layer thickness over time are
shown. Numerical results are obtained in the case when the energy condition is written taking
into account an additional term.

1. Problem statement

Let us consider the flow of a thin layer of a viscous incompressible liquid over an inclined,
unevenly heated substrate. A gas moves over the layer. The problem is considered in one-
sided formulation when dynamic processes in the gas are not considered. However, the shear
stresses created by the gas can be taken into account when modeling the flow at the interface.
It is assumed that evaporation occurs at the thermocapillary interface. A solid impenetrable
substrate is inclined at an angle « to the horizon, coincides with the coordinate axis Ox and
is defined by the expression z = 0 (see Fig. 1). The position of the interface is given by the
equation z = h(z,t). The gravity vector has the form g = (¢1,¢92) = (¢9sina, —gcosa), g = |g| .

Fig. 1. Geometry of the flow area.

As a rule, the characteristic deformation length of the free surface exceeds the deformation
amplitude. Therefore, two different length scales are often distinguished when considering prob-
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lems about the flow of a thin layer. Let [ be the longitudinal characteristic length and d is the

d
transverse characteristic scale such that [ > d. Then € = — is a small dimensionless parameter

of the problem. Characteristic longitudinal and transverse velocities u, and w, must also be
related: w, = cu,. The characteristic time of the process t, is related to other parameters of the
puvl

22
The Navier-Stokes and heat transfer equations are used as a mathematical model. The system

problem as follows: | = u,t.. The characteristic pressure is given by the formula p, =

of equations in dimensionless form is written as follows:

Res2(ut + gy + wuy) — Uy = Usy — pu + M1 SiD @, (1)
R654(wt + uw, + ww,) — My, — 2w, =—p, — Y2 cOS U, (2)
Uy + w, = 0, (3)
RePre*(Ty + uT, + wT,) — e*Tyy = T (4)

Uyl

Here, v = (u, w) is the liquid velocity vector, p is the pressure, T is the temperature, Re = is
v
Gr Gr _ Bugd®

B D 72 = B D r 2
X BuRee BuRe v
is the Grashof number, Bu = 8T, is the Boussinesq number, v and x are the kinematic viscosity

and thermal diffusivity coefficients, p is the liquid density, T is the characteristic temperature

the Reynolds number, Pr = Y is the Prandtl number, y; =

difference.
On a solid impermeable substrate, the no-slip conditions are satisfied:

U|Z:0 = 0, U)|Z:0 = O (5)
The temperature at the boundary z = 0 is distributed according to some given law:
T|.=0 = Oo(z,1). (6)

The kinematic, dynamic and energetic conditions fulfilled at the interface are consequences of
the laws of conservation of mass, impulse and energy [8,10,11]. Coordinates of the normal vector
to the boundary (ni,ng), the curvature of the free boundary H and the speed of its movement
in the direction of the external normal D,, are given by the relations:

ch

N = ——F————=

x 1 xrx
s No — ——"s-0) 2H: e D’I‘L = .
1 +¢e2h? ? V1 +¢e2h2 V(14 €2h2)3 1+¢e2h?2

Then, the kinematic condition in dimensionless form will be written as follows:

eh, Eht

1 _
S (7)
V14 ¢e2h2

The projections of the dynamic condition on the normal and tangent vector have the following

—e(ht + hpu — w)

form:
2¢? 272 2
—p + m[é‘ hzum + W, — hm(uz +e€ wz)} =
=—p’ + @7252 [e2h2uf + wd — ehy(ud + wd)] + Ree*(1 — 1)J2 J? + 2(7Hi ®
h 1+€2h% T z x z T ﬁ ev CCL7
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2 1 9 9 }
T2 [ chaty + ehaw, 25(1 e%hy)(uy + e“wy)
pUU 2 1
——Bﬁfiilzgﬁg[——shxug—Fehxw§4—é(l——szhiﬂug4—w§ﬂ = )
Ma 1
- T, h;@}.
RePrL/1_|_52hg( * )

Let us represent the energy condition in the following dimensionless form:

oT ) - = 2¢? 2,2 2
%Jr Bo{Tdivrv} = B3 Jerw + ﬁ4JJm,{ p+ m[e hiugy +w, — he(u, +¢€ wz)}}+

10
L 1a g g peod e A5 "
9 5 ev 60 (1+€2h%)3 evy

T
where Z—n and divrv are calculated as follows:

ar 1 1

on E\/1+52hg

(—*H,T, +T.),

2 90 2
divrv = ! Z ni(n - Vuv;) =
1=1

i—1 8,%,‘ B —
(g + 102 { e2h? chy, ehy N 1 }
= (uy +w,)|r — Uy — Uy — — Wy Wy p.
r 1+ e2h2 1+e2h2 1+e2h2 1+ e2h2

Here v, p are the ratios of kinematic viscosity coefficients and densities of gas and liquid, re-

g g g
spectively (ﬁ = V—; p= p—), U= il is the the ratio of the characteristic longitudinal velocity
v P Uy
Tl
of the gas to the characteristic velocity of the liquid u,, p? is the gas pressure. Ma = ar
prXx
. . Us PV . . Ma 1
is the Marangoni number, Ca = is the capillary number, = — = —,
1 i 1 1 iTO ’ 1 ' 1 ” )\ReQPrEU TB3 b
— K
:*—1777 :1—*27*, :1—:7i7U:7U7E: *iSthe
Ba (ﬁ )EU Bs = ( ﬁ) ot Bs = ( ,O)ReCaEU w2 Nopv
evaporation parameter [6], s is the coefficient of thermal conductivity, Ay is the latent heat of
_ ev _ E
vaporization, J = —— or J = e’ where J¢V is the characteristic value of vapor mass flux
Pl e

T . . .
(Jf“ = ;7) The first term on the left side of the condition (10) is responsible for the heat
v

defect during its transfer through the interface. The remaining terms define the contribution of
individual physical phenomena that create this defect. The second term on the left side is for
the energy spent to overcome surface deformation by thermocapillary forces along the surface.
The first term on the right side specifies the heat consumption for vaporization, the second —
for boundary deformation, the third — for the change in the kinetic energy of the substance
during the phase transition, the fourth — for the work performed by the liquid substance during
evaporation (condensation) due to a change in specific volume [7,9].

A linear dependence of the surface tension coefficient on temperature is assumed in this paper.
MaCa

In the dimensionless form, this dependence is written as follows: ¢ = 1 — a,T, a, = TePr
ePr
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The value of the local vapor mass flux at the interface .J,,, determined by the ratio (see [5,8]):

T, M 1/2
Jev = aJT|z=h(x,t), Q= aps)‘Uj* (W) (11)

Here, a is the accommodation coefficient, p; is the vapor density, M is the molecular weight, R,
is the universal gas constant, T is the saturated vapor temperature.

Let the chayracteristic velocity u, be equal to the characteristic relaxation velocity of viscous
stresses u, = —. Then, the Reynolds number is Re = 1. In the present paper modeling is carried

out for the case of moderate Reynolds numbers (Re = O(1)).

2. Obtaining an equation that determines the position
of the interface

To determine the desired functions u, w, T, p, as well as the thickness of the liquid layer h,
system of equations (1)—(4) in the long-wave approximation is considered. The solution of the
problem is sought in the form of expansions in powers of a small parameter &.

Equations (1)—(4) written for the principal terms of the expansion take the form

Py =ul, + msina,  pl=-—ycosa,
wd = —ud T2, =0.
Consequences of the no-slip conditions (5) on the boundary z = 0 are the relations
|0 =0, w’|.—o=0, (12)
temperature condition (6) results in following requirement:
T°|.—o = Oy. (13)

Consequences of the conditions at the interface (7)—(11) are the relations:

P’ =pI — acahz (1 — ag@o) + OZDOLJ(@O)z, (14)
Ug = 70‘1\/10.@3 (15)
T? + 320°(ul) = B3 Jo + BeJohas- (16)

Here, ©° = T _p(2.0), © = (T0 + haT2) | o—hat)-

A large number of effects are taken into account when the flow of a thin liquid layer is modelled
at a thermocapillary boundary. Therefore, to simplify the problem, it makes sense to evaluate
the contribution of each of them. During the parametric analysis of the problem, estimates of the
values of dimensionless parameters oy and 3; were obtained in cases when ethanol and HFE-7100
were selected as working liquids for the characteristic temperature values T equal to 1 and 10
K (see Tabs. 1-3).

Taking into account the parametric analysis of the problem, the solutions for the main terms
of the decomposition are the functions u°, w®,p®, T of the form:

22 22
u’ = (Co)z? -7 sina? + C4z, (17)
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Table 1. Physico-chemical parameters of the problem

Parameter Ethanol | HFE-7100

p-1073, kg/m3 0.79 1.5
v -10°% m?/sec 1.5 0.38
70102, N/m 2.2 1.24
or-10~% N/(m K) 0.8 1.14
X -10-%, W - sec/kg | 0.9085 0.111
kW (m - K) 0.1675 0.07

X - 107, m?/sec 0.89 0.4

cp - 1073, W- sec/(kg- K) 2.97 1.3

Table 2. The values of the parameters ay in the systems "ethanol — nitrogen" and "HFE 7100

— nitrogen"
oy parameter values values values values
(T.=1K) | (T=10K) | T.=1K) | (T. =10 K)
ethanol ethanol HFE-7100 HFE-7100
MaCla
o= 1072 1071 1073 1072
¢ Rel‘gr
Al = — 1003 1053 1003 10023
: Ca
ap =e%(= —1)J? 10~5¢2 1073¢2 10-3¢2 10~ 1e?
L__
ar = prye €;10e €;10e €;10e €;10e
eMa
— 1 3 1 4 1 4 1 5
QMa TPy 0°e 0%e 0%e 0°¢e
23 22
w’ = 7(00):16367 - (Cl)x*a (18)
6 2
p’ = —v5 cosaz + Cp,

T° = Az, t)z 4 O¢(z, t).
Here, the coefficients Cy(z,t), C1(z,t), A(x,t) satisfy the following relations:

Co(z,t) = p? — acahas (1 — ag@o) ~+ 72 cos ah,

Cy (xa t) = —ap.® — (CO)rh + 71 sinah,
A= (_B_Q (Cl)mh + BS_OCJ + BGhzcmaJ)@O
1+ B2(C1)sh?® — Bsagh — Beashggh’
where ©0 = Ah + 0, © = A,h + (00)s + haA.

Note that the dynamic condition and the energy balance condition at the interface do not
consider additional tangential stresses and the divergent term.

Using the formula (7), we obtain the following equation for determining the thickness of the
liquid layer:

E
ht+uhz7w+;JeU:0.

(21)
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Table 3. The values of the parameters §; in the systems "ethanol — nitrogen" and "HFE 7100
— nitrogen"

Bi parameter values values values values
(T.=1K) | T.=10K) | (Tx.=1K) | (T. =10 K)
ethanol ethanol HFE-7100 HFE-7100
Ma
= 10-e72 10-e72 g2 g2
P2 Re2prED
Bs = Z 104 103 103 102
1 1
=(=—1)— 10 1 1 0.1
G
=(1--)2—= 103 102 103 102
Bs = ( : ﬁ) i
Be=(1—-=)——= | —10%"1 —105¢! —105¢71 —105¢7!
P ReCaEU
By = €SB 10e~1 101 g1 et
Bg = 5537 5 € 5 €
Be = e2BsJ —10%¢ —102%¢ —102%¢ —102%¢
B

3. Results of numerical calculations

Taking into account the form of the solution for the principal terms (17)—(20), equation (21)
takes the form

h2

h3 h?
x ? x

h? E
—isinac + Clh} - [f (Co)aw e — (C1) 7} + = e = 0. (22)

he + he | (Co) ; 5

Here, J., = aj[A(x,t)h + Og(x,t)]. The problem must be supplemented with initial conditions
h(x,0) = ho(z) = 1—0.1cos(kx) (see [5]) and conditions at infinity. The temperature distribution
on a solid substrate is determined as follows:

O¢ = 1+ dg cos(k1x) cos(kat). (23)

Equation (23) allows us to model a periodic heating.

For the numerical solution of the problem of periodic flowing of a thin liquid layer, one
considers the segment x € [—L; L]. The following periodic conditions are assumed to be fulfilled
at the ends of the test cell:

h‘zsz = h‘m:Lv hx‘xsz = hz|a::L» hzz|x:7L = hxaz‘z:L' (24)

An implicit finite-difference scheme to determine the liquid layer thickness is constructed for
the equation (22) of the form

k+1 k
Wk + AFRERL 4 AERETL 4 AEREYE 4 AVRETE 4 DR = 0. (25)
Finite-difference analogues of the second order of approximation are used for all derivatives
with respect to x included in (25). The problem is reduced to solving a system of linear algebraic
equations by the method of five-point sweep and sweep with the parameter [12,14].
Periodic runoff of two different liquids, ethanol and HFE-7100, has been numerically in-
vestigated. Physico-chemical parameters of liquids are given in Tab. 1. The following values
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of characteristic quantities were used for calculations: [ = 0.1 m, d = 0.0l m, T, = 10 K,
ux = 0.15- 10~ m/sec for ethanol, u, = 0.38 - 10~° m/sec for HFE-7100.

Let the energy condition at the interface (10) be used in the classical formulation, i.e.
Bo = B =0. The temperature on an inclined substrate is distributed inhomogeneously and
the heating changes over time according to formula (23). Ethanol and HFE-7100 were used as
working media, nitrogen was used as the gas. Fig. 2 shows the dependence of the change in
the liquid layer thickness over time on the type of liquid. For both media, the alignment of the
interface with time is observed (see lines 1, 2, 3 for ethanol and lines 1, 4, 5 for HFE-7100).
Note that with a similar qualitative picture, the thickness of the HFE-7100 layer decreases more
inetsively than the ethanol layer.

1,012 —

h(x.t)

Fig. 2. Changing the position of the interface with time, non-stationary heating of the substrate,
B =0, B = 0. 1: initial position of the interface; 2: t = 1073, ethanol; 3: ¢t = 1072, ethanol;
4: ¢+ = 1073, HFE-7100; 5: t = 10~2, HFE-7100

Let us consider the case when the energy condition (10) at the thermocapillary boundary is
written taking into account the term responsible for the energy consumption to overcome the
surface deformation by thermocapillary forces along the surface (82 # 0). Numerical calculations
were carried out for the case of uniform heating of the substrate. Fig. 3 shows the change in
the position of the interface over time in the case of using different types of liquids. Accounting
for the additional term in the energy condition significantly affects the flow nature qualitatively
and quantitatively. The previously shown effect of the influence of the liquid type on intensity of
decrease in the liquid layer thickness is preserved: in the case HFE-7100 fluid, values of function
h(z,t) are smaller than those for the ethanol liquid at the same time moment (see lines 4 and 5
of Fig. 3).

Conclusion
The presented mathematical model describes the dynamics of a thin liquid layer moving along
an inclined substrate. The conditions at the thermocapillary interface provide the fulfillment of

the laws of conservation of mass, impulse and energy. The influence of various effects on the
flow pattern is estimated using parametric analysis. Analytical solutions are obtained for the
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Fig. 3. Changing the position of the interface with time, homogeneous heating of the substrate,
s = 0. 1: nitial position of the interface; 2: ¢ = 10~%, ethanol; 3: ¢t = 10~%, HFE-7100;
4: t = 1073, ethanol; 5: ¢t = 1073, HFE-7100

principal terms of the decomposition. The evolution equation of the thickness of the liquid layer
allows to take into account the influence of evaporation, capillary and thermocapillary forces,
gravity on the process of liquid flowing. The influence of the type of liquid on the rate of decrease
in the liquid layer thickness as well as the impact of an additional term in the energy condition
on the nature of the flow are shown using the numerical solution of the evolutionary equation.

This work was supported by the Russian Science Foundation, grant 22-11-00243,
https://rscf.ru/project /22-11-00243 /.
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MaTremaTrndeckoe MOAeJIMPOBaHUE IIPOIECCa CTEKAHUS
TOHKOT'O CJIOH »KUJIKOCTH Ha OCHOBE OODOOIIEHHBIX yCJIOBUIA
Ha IpaHUIle pa3jaesa: mapaMeTpudecKuii aHaJIu3
1 YUCJIEHHOE pelieHue

Exarepuna B. JlackoBerr

Aurraiickmii TOCyJapCTBEHHBIN YHUBEPCUTET

Bapmayn, Poccuiickas @enepartisa

WNucruryT Burauciauresbuoro mozgenuposanns CO PAH
Kpacnosapck, Poccuiickaa Penepariust

Amnnoranus. PaccmarpuBaercs 3a/1ada 0 CTEKAHUN TOHKOT'O CJIOSI YKUJKOCTHU 110 HAKJIOHHOM ITO/IJIOXKKE
B YCJIOBHSIX CI[yTHOI'O IIOTOKA ra3a. MaTreMarnieckoe MOIeINPOBaHUe IPOBOJAUTCS Ha OCHOBE YPaBHEHUIT
Hasbe-Croxca u mepenoca Temia, a Tak»Ke OOOOIIEHHDBIX [JIs CJIydasl HEHYJIEBOI'O IIOTOKa IIapa yCJIo-
BUII Ha TEPMOKAIIMJLIsIDHON rpanulie. [IpoBesen napamerpudeckuii anaaus 3aga4u. Jjist 9BOJIOIUOHHOTIO
YPaBHEHHsI, OIIPEIEJISIIOIIEr0 TOJIIIIHY YKIAJIKOIO CJIOsl, TOCTPOEH aJrOPUTM YKCJIEHHOro pernenust. [Ipen-
CTaBJIEHO CPABHEHUE YHCJIEHHBIX PACUIETOB st Kuakocreit tuna sranoa u HFE-7100. ITokazano Biusinue
JIOHOJIHUTEJILHOI'O CJIATAeMOT0 B SHEPIeTHUYECKOM YCJIOBUM HA JUHAMUKY KHUJIKOTO CJIOS.

KuaroueBsie cioBa: ypasuenusi Happe—CTOKCa, rpaHunia pasjesa, NpubInKeHne TOHKOTO CJIOsI, UCIIa-
peHue, mapaMeTpPUUeCKuil aHaJIN3, YUCICHHOE PEIIeHHE.
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