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Abstract. A three-dimensional joint flow of a liquid and a binary mixture with common interface is
considered. It is assumed that the temperature field in the layers has a quadratic distribution. An exact
solution of certian model problem is constructed, explicit expression for all the required function are
obtained using a specific closing relation.
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The theory of the motion of liquid media with interfaces or with a free boundary attracts a
lot of attention, due to the numerous technological applications. Thermocapillary flows induced
by the surface tension forces arising at the interface can influence the movement of the liquid
in the volume. To take into account various factors affecting the fluid dynamics, it is necessary
to use new mathematical models and to formulate initial-boundary value problems. Therefore,
there is a need to construct nontrivial exact solutions, to study stability issues, and to develop
efficient numerical algorithms for such models.

Work [1] presents various formulations of problems on the motion of two immiscible liquids
with a common interface. Possible generalizations and consequences of the formulations of the
arising initial-boundary value problems are discussed. Exact solutions obtained in the frame
of the different statements of the problem are the useful tool to study features of convection
in fluidic systems. The works [2, 3] describe the construction of exact solutions of the classical
convection equations which describe flows with evaporation, in the two-dimensional and three-
dimensional cases. Basic characteristics obtained with the help of the exact solutions allowed one
to analyze the impact of different factors affecting the convective regime structure. In [4], a three-
dimensional flow of a viscous incompressible fluid in a single-layer system with a non-uniform
temperature distribution at free boundaries was studied.

In this paper, we construct an exact solution to the problem describing a three-dimensional
flow in a liquid-binary mixture system with a common interface. The Navier—Stokes equations
in the Oberbeck—Boussinesq approximation are used as a mathematical model. Thermal and
diffusion processes are described by heat and mass transfer equations.
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1. Problem statement and form of exact solution

We consider flow of two viscous incompressible media (liquid and binary mixture) filling the
plane channel and having the common interface I'. The domain occupied by the liquid is denoted
by Q1 ={(z,y, 2) : |z|<o0, |y| <oo, =1 <z<0} and Qa={(x,y, 2) : x| <00, |y| <o0,0< z< s} is
domain filled by the binary mixture.

For description of the motion in regions Q; (j = 1,2) we use the Boussinesq approximation.
Indexes 7 = 1 and j = 2 refer to the lower liquid and upper binary mixture, respectively. We
assume that the temperature and the concentration slightly differ from constant mean values
therefore the Oberbeck-Boussinesq approximation is valid. The state equation is taken in the
following form

pj = poj(1 — B]6 — B5c),
where pg; is the characteristic density of j the medium corresponding to the mean values of
the temperature and concentration in the layer, § and ¢ are the functions giving deviations of
the temperature and concentration, respectively, from their mean values (¢ corresponds to the
concentration of light component in the binary mixture), B]e and f3f are the temperature and
concentration expansion coefficients; 8¢ = 0. Then, the equations describing the convective flows
in the two-layer system incompressible media can be written in the form

1
u; + (v, - V)u; = —Evpj +vjAu; — g(ﬂ?(ﬂj —bo;) + 5;-(03' — coj))s
j
9]'75 + uj; - VQJ = XjA(gj,
¢t +us-Ve=DAc+ aDAb,,

div llj =0.

where u; = (uj,v;,w;) is the velocity vector, p; is the pressure deviation from hydrostatic
pressure, g = (0,0, —g) is vector of the gravity acceleration, v; = p;/p; is the kinematic viscosity,
X; is the thermal diffusivity, D is the coefficient diffusion and «a is the thermal diffusion parameter.
All thermophysical parameters are assumed to be constant and correspond to the average values
temperature and concentration.

The boundary conditions on solid walls are

z==l1: w1 =0, 0 =6b(z,y);
z=1ly: uy=0, 6,=0, ¢,=0.
On the interface surface z = 0 the following conditions are set:
u=uy, u-n=Vy,,, (Po—P)n=20Hn+vi0;
01 =02, ka2, — k161, = @10 V11 Uy,
cn + aby, =0,

where k; is coefficient of thermal conductivity, n is unit vector normal to the interface I
and it directed into the domain €y to Qs, Vi, is velocity of motion of the surface I' by n,
P; = —p;E +2p;v;D; is the stress tensor, E is unit tensor, H; is the mean curvature of the
surface I', 711 = vV — (n - v7)n is the operator of surface gradient, o = (0, ¢) is the coefficient of
surface tension at the interface. For most mixtures, the linear law provides a good approximation
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of this dependence o (61,c) = 0% — &1(0 — 0p) — @2(c — ¢p) with the constants ¢ > 0, a; > 0,
xX9.
Let us assume that solution of systems (1) has the form [4]

uj = (fj(z,t) + hj(z, )z, v;=(f;(z1) = hi(2,0)y, w;= _2/ fi(z1, t)dz;
0; = a;(z, )z + b (2, 1)y* + 0,(z, 1), (2)
c=M(z,t)x* + N(z,t)y* + C(z,1).

Substitution of solution (2) into system of equations (1) leads to the following system of
equations describing heat transfer in layers::

ajt + 2a;(fj + hy) — 2a;; /OZ fi(z1,t)dz1 = X502z,
bjt +20;(f; — hj) — 2b;. /OZ [i(z1,t)dz1 = x;bjzz, (3)
00 — 20, /OZ fi(z1,t)dz1 = x;0;.. + 2x;(a; + bj).
From the equation of momentum and continuity, we obtain
o+ 1312 =2 [ i+ sa(0) =
=V fjzz — Q/OZ <aj(zl,t) +b(z1,t) +6;(M(z1,t) + N(zl,t))>dz1,
hje +2fjhj = 2h;. /OZ fi(z1,)dz1 + sj0(t) =
=Vjhj.. — g/oz (aj(zl,t) —bj(21,t) + 0;(M(21,t) — N(zht)))dzl,
where s;1(t), s;2(t) are arbitrary functions. Physically, they represent additional pressure gradi-

ents. Here and below, we assume that §; = 0.

Equations for determining the functions describing the distribution of concentration in a layer
with a binary mixture have the following form:

My +2M(f2 + h2) — 2Mz/ fa(z1,t)dzy = DM, + aDas.,
0
z
Ni 4+ 2N (fa — ha) — 2N, / fa(z1,t)dz1 = DN, + aDbs, ., (5)
0
Ct - QCZ/ fg(zl,t)dzl = Dsz + 2D(M + N) + aD <0_sz —+ 2(0,2 + bQ)) .
0

The pressure functions in the layers are determined by the formulas:
1 z
;Pj = 1’2 <g/ (B]eaj(zl, t) + 5jBCM(zl, t))le + nﬂ) +
J 0
+ y2 <g/ (B?bj(zl, t) + 5jBCN(2‘1, t))dzl + nj2> -
0

2

—2u;f; —QZ+9/O (5?(‘7(21775)+5jﬁcc(21,t))d21 —2</0 fj(th)d21> + gjo,
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gjo are arbitrary constants.
Substituting solution (2) into the boundary conditions, we obtain the following relations being
the result of the no-slip condition for velocities

2

fil=l) =hi(=l) =0, fa(l2) = ha(l2) = | fa(z1,t)dz1 = 0. (6)

We assume that the upper wall is thermally insulated and impenetrable, and at the lower bound-
ary the temperature distribution has the form a; = ai9x? + b1oy? + Tio. Then,
z=—li: a1 =aw, by =b, 6 =To,

_ (7)
z=ly: @y =by.=0p.=0, M, =N,=C,=0.

Boundary conditions at the interface z = 0 are written as:

fi=fo, hi=ha, a1=az, b =by, 05 =0,

pavafor, — pivifi. = —& <a2 + b2> — &9 (M + N),
P2V2hzz - ,01V1h1z = —& <a2 — bg) — &9 <M — N),

koas, — ka1, = 2@1a1 f1, koba, — k1b1, = 220101 f1,
k‘gégz — k‘lélz = 2331élf1,
M, +aay, =0, N,4+aby, =0, C,+aby, =0.

The kinematic condition on the immovable and non-deformable interface is equivalent to the

integral equality
0

fl(zl,t)dzl =0.
—I;
For the complete definiteness of the problem posed, it is necessary to set additional integral

conditions
0 Iy

h1(2’1, t)d2’1 = 0, h2(2’1, t)dZ1 =0. (10)
-l 0

2. Solution of a stationary problem

The stationary case of problem (3)-(10) is considered. We introduce the nondimensional
variables x = ¢l;, y=nl;, z=C(lj,

X1 X1 * * n *
fj = ﬁFj? hj = ﬁHJ aj =a Aj, bj =a Bj 9j = 9 T’j,
2 0 * 6 % 672 %
X Bza Bza B3lia .3 -
sy = @Sy, M=K, N="grk, C=25Ky p;= g8 ;.

Here, a* = max{|a1(—1)|,]b1(=1)|} > 0, 6* is the characteristic temperature at the point x = 0,
y=0,z=-1
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Then, system of equations (3)—(5) in dimensionless variables takes the following form:
¢ X
24 (Fj + Hj) — 2Aj</ Fj(G)d¢ = TAjcc’

¢
2B;(F; — H;) — 2ng/ 5(C)d¢ = == B, (11)

¢ X3
—2ch/0 F;(¢1)d¢ = léT ]11 (A; + Bj).

¢ vl?
Fj2 +H]2 — 2Fj</ F;(1)d¢ + Sj1 = ]7112Fj<< -G;j (A + B + 0;(Kq +K2)>d<13
" 12 (12)
2F;H; — 2Hj4f0 (€1)d¢ + Sjo == ? Hjce — Gy / (Aj Bj +6;(K; — 2))d§1,
2K1(F2 4+ Hg) — 2ch/ FQ(Cl dCl <K1<( + ¢A2<<>
0
¢
2Ky (Fy — Hy) — 2K2</ F5(¢1)d¢r = Lel? (Kzgc + ¢32<g> (13)
¢
—QKSC/ Fo(G)d¢ = Le(l Ko +2(K1 + Ka) + ¢< Tace +2(A2 + Bz)))
0
Boundary conditions in dimensionless form will be written as follows:
0 0
(=-1: F =0, H;,=0, / Fi(¢)d¢ =0, / Hy(¢)d¢ = 0; (14)
—1 —1
Ai=a1, Bi=ay Ti=as; (15)
1 1
(=1: F,=0, H,=0, / F5(¢1)d¢ =0, / Hy(C1)d¢r = 0; (16)
0 0
AQC == 0, BQC - O7 TQC = 07 ch = 0, KQC = 0, K3< = 0; (17)
CZO: F1:F23 H1:H27 A1:A27 BIZBQa TIZTQa (18)
K1< —+ LZJA2< =0, Kzg —+ QZJBQC =0, Kgg + dngg =0, (19)
IAse — KAy = 2881"1 APy, 1By — kBye = 23;12‘1311?1, (20)
IToe — kTye =2 llli“ T\ F, (21)
leC - pVFIC == —2MpV(A2 + Bg) - 2Mpr(K1 + Kg), (22)
ZHQC — pl/ch = —2MpV(A2 — BQ) — 2Mp1/w(K1 — KQ) (23)

Here, the following dimensionless complexes are introduced in the problem: the Prandtl
number Pr;, the Marangoni number M, the Grashof number G, the Lewis number Le and other
parameters and relationships determined by the formulas

v, e1a*l} gﬁ?llljm D

Prj:—', Mzi, Gj:MPrle, szi, Le:—,
X3 P1V1X1 ®1 X1
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To reveal the characteristic features of the thermocapillary flow, we consider an approximate
analytical solution in each of the layers. To do this, we construct an asymptotic solution of the

problem in the form of a power series in the parameter M << 1:

Fj = MF) + M*F}, H; =MH?+M°H},

Aj =AY+ MA}, B;=B)+MBj, T;=T)+MT}, (24)
Ky =K{+MK], K,=K{+MK]}; Ks;=K§+MKj, S;=MS+MSL.

Substituting (24) into (11)—(13) and neglecting the terms with the parameter M, we obtain a
linear system of equations. The desired functions that determine the fields of velocities, temper-
atures, and concentrations are found by simple integration (here and below, we omit the upper
index of 0 denoting the first term of the expansion). As a result, we have

A1 =Ci(+Cy, By =C3(+ Cy,

d
Ty =~ (1 + Co)¢* = di(Ca + Ca)¢* + CsC + Ci,

L S
Fi = h(C1 + Ca)! + 2H(Ca+ COG® + 1L+ CrC 4+ G,

Ly

L S
Hy = 3(Cr = C3)¢* + (G = O + o

C2 + Co( + Cho;

Ay = C1i(+ Cia, By = Ci3¢ + Cha,

d
T = 3l2 = (Ch1 + C13)¢% — 721(012 + Ca)¢* + Ci5¢ + Cue,
Ky = Ci7¢+ Cis, Ko = Ci9¢ + Oy,
1
K3 = —3z (C17 + C19)¢* — *(018 + C20)¢* 4 Ca1€ + Cog,
L2 (04 Crat Crrt Cro)C+ 22 (Crat Crat Cast Con)cP 4 2224 24 Gt ©
2= 2412( 11+ Ciz+ Cir+ Ci9)C + o2 (Ci2+ Crat Crs+ Co0)(°+ oPr ZQC + Ca3C+ Cau,
L S
2= ;/4;2 (C11= C1z+ Cry— Cro)¢* + 6[2 2(C1a— Cra+ Cis— Coo)P+ oo mn C2+ Ca5C+ Css.

The unknown constants C,,, as well as the functions S;; are found from the boundary conditions.
Note that conditions (20), (21) taking into account the effect of energy on the interfaces under
the above assumption will be rewritten in the following form:

[Agc — kAyc = 2Bdy Ay Fy,  1Bye — kBye = 2Edy By (25)
[Ty — kT1e = 2Bdi Ty Fy, (26)
where E = pjeilel; Conditions (22), (23) take the form:
IFac = prFi = =2pv( Az + By — w(K: + K3) ), (27)
IHye — pvHyc = —2pv (A2 — By —w(K; — Kg)). (28)
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3. Algorithm for computing the integration constants

To determine the integration constants, we use boundary conditions (14)—(19), given condi-
tions (25)—(28).

From (15), (17), (18) we obtain that Cy; = Ci3 = C17 = C1g = 0, Cyy = Cg, Co = Ch,
Cro = Cz, Cu= C4, Cie = Cs, Ci =0 — ai, C3 =04 — as.

The third condition in (15) determines the connection

2d;

d
Cs =Cg — ?(CQ +C4) — 31(041 —|—Oéz) — Q3.

Taking Th¢ = 0 on the wall ( = 1, we have

2d;
NER

Cis = (Cy + Cy).

Further, we consider conditions (19). Two of them are fulfilled identically. The third condition

gives relation Cy = 7%(02 +Cy).

From the condition K3¢(1) = 0 we define C13 = —1)(Cy + C4) — Cop.
In the joint solution of equations (14), the following constants are determined:

Co+Cy a1+ Qg
=4 L ;
Cy Cs + 1< 20 + 30 >,

_Cg <02_C4 041—012>

b

80 120
7(02 —|—C4) 3(041 —|—O¢2))

)

20 + 20

11(02 — 04) + a1 — Q2
40 10 '

S11 = 6CgPry + PI‘lLl(

3
S1o = 509})1“1 + PI‘lLl(

Further, conditions (16) complete the following relation:

L
Cay = —4Cs — T3 (Co + C) (¥ = 1);
vL
Cos = —4Cyo — ?122 (2020 +1(Co+ Cy) — (Co — 04));

602 1
So1 = 708P1“1 + §PT1L2(¢ — 1)(Cs + Cu);

6Pr, 12 LoP
ry Cho + ol'T]

Sag = Pr1LaCy + (7/1(02 +Cy) — (Cy — C4))~

14

Dynamic condition projection (28) results in relation

Cy = _u(glz(;tfilzjw) 20 lip:,, (€= Ca—vu(Cr+ )+
lLl Z/L2
+W (3(02 - 04) + 2(061 - 042)) - m (¢(CQ + 04) — (C2 — C4))

Condition of heat transfer (26) at the interface ¢ = 0 determines the constant Cg

Cr — 2d, (3 + kl)(CQ + 04) kd; (Oél + 042) kas
67 " 31(k + 2Ed, Cs) 3(k + 2Ed;Cs) 'k + 2Ed;Cs’
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Finally, we determine the constants Cs, Cjy, Cs, Cog, Ca2 when substituting into boundary
conditions (25), (27). These conditions are not enough. Therefore, we introduce the condition
that determines the distribution of the average concentration in the layer {2

1
/ (K1€% + Kon® + K3)d¢ = 11&% + 721 + 73.
0

From this, we obtain the following relations

2 + o
Co = V25 Coo = % — 73, Co = 07204,
O‘Q(’Yl +72) k < ¢(Oé1 +042)>
Cy=——1 120 COg=— 1+ :
! Yo + ) ® 2Ed; 71+ 2

In addition, the following relationship between the physical parameters of the system results

_ Y1+ 72
21 (60ky (1 + pv) — prvELidi (71 + 72))

15udi E(Y — 1) (1 + 72) + 3prldi E(Ly + 40(wp — 1)) (71 + 72)).

ay+ag = (120klw(l + o)+

So, all constants have been defined. The functions that determine the field of velocities,
temperatures, and concentrations (2) are written out explicitly.

Conclusion

In this paper, an exact solution of three-dimensional Oberbeck-Boussinesque equations is
found that describes the stationary flow of a two-layer system of liquid media with a common
interface in a channel bounded by solid walls. The construction of exact solutions is of particular
value in the study of mathematical models of fluid dynamics in domains with interfaces. The
solutions in the close formulas make it possible to determine the role of different mechanisms in
the formation of certain types of flows.

The solution obtained can be used in the development of experiments to study joint flows of
liquid media in a closed channel. In further work, it is planned to analyze the physical parameters
of the system and to select fluids that meet the conditions of the problem, to elucidate the effect
of thermocapillary, gravitational and other forces on the nature of the flow, and to consider
special cases of heating a solid substrate. In particular, when there is radial heating at a19 = b1g
(7) or the case when aig + b1g = 0. Moreover, the constructed solution is planned to be used as
a test at finding of corresponding non-stationary solution during a modeling of evolution process
of heat and mass transfer with parabolic temperature field. Also using the obtained solution as
a test one, it is planned to simulate a non-stationary process.

This work received financial support from RFBR (20-01-00234).
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IlocTpoerme TOYHOrO penieHusl COEMUAJILHOTO BUJIA JIJIs
TpPEXMEPHON 3aa4l TEPMOKOHIIEHTPAIIMOHHON KOHBEKIIAN
B JIByXCJIOMHOW cUcTeMe

Mapwuna B. Edumosa
WucTuryT BeraucanrensHoro monenupoanns CO PAH
Kpacnosipck, Poccuiickas ®eneparus

AnHoTamusi. PaccMoTpeHo TpexMepHOe COBMECTHOE TedYeHWE YKUJIKOCTH W OMHAPHOUW cMecHu C oOIei
rpanureii pazzena. [Ipejnosaraercs, 94To 1moje TemMueparypbl B CIOSX UMeeT KBaJPATHIHOE PacCIpejie-
sierre. [TocTpoeHO TOYHOE pellleHre HEKOTOPOU MOJEIbHON 3aaun. [lo/ryueHbl siBHbIE BBIPAYXKEHUS JIJIsT
BCEX MCKOMBIX (DYHKITHI C TOMOIIBIO OMPEIETIEHHOTO 3aMBIKAIOIIETO COOTHOITEHNUSI.

KuaroueBsie cioBa: npubmmkenrne Obepbeka—byccnHecka, MOBEpXHOCTHAS SHEPTUsT, OUHAPHASA CMECH.
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