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Introduction

The equations system for convective motion in the Oberbeck—Boussinesq approximation is
given by [1]

1
ug + (u-Viu+ ;Vp = vAu + gffe,

divu = 0, (1)
0, +u- VO = yAS.

Here u=(u(x,y, z,t),v(z,y, 2, t), w(x,y, z,t)) is velocity vector; 0(z,y, z,t) is temperature;
p(x,y, 2, t) is modified pressure; p, v, g, 3, x are positive physical constants of the liquid medium;
e =(0,0,—1). The system (1) admits operator 0, — A(9y + pgSz0,) with constant A. Invariant
solutions of rank three are sought in the form [1]

u = (u(z,y,t),v(z,y,t), w(z,y,t)),

(2)

2
z
P —pgﬁAg +q(z,y,t), 0=—-Az+T(x,y,t).
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Substitution the form of solution (2) into (1) leads to a system that includes Navier-Stokes
equations for the plane motion of a purely viscous fluid for u, v, ¢ and equations

Wy + UWg + VWy = V(Wey + Wyy) + pgpT,

3
Ty +uTy + 0Ty, = Aw + (T + Tyy).- (3)

Suppose that u = v = 0, ¢ = ¢(t), then (3) is converted into linear parabolic equations system

wi = V(Way + Wyy) + pgfbT,

4
Ty = Aw + X (Tpe + Tyy). (4)

The equations (4) are satisfied in a certain region €2 on variables plane z,y with boundary T.
Here we consider boundary conditions on I' of the first kind

’w‘r = 0, T|r =0. (5)

The first of them is a no-slip condition, and the second, by virtue of (2), means that a
constant temperature gradient is applied along the lateral surface of heat exchanger. For a
complete formulation of the problem it is necessary to set initial conditions

wli=o = wo(z,y), T|i=o = To(z,y). (6)

Of course, for a smooth solution we need to require that the matching conditions wq(x,y) =0
and To(x,y) = 0 when z,y € T

The problem (4)—(6) is the first initial boundary value problem. We introduce dimensionless
variables t = xt/d*, & = z/d, y = y/d, W = dw/x, T = T/Ad, Wy = dwy/x, To = Tp/Ad where
d = diam . Let be Q,T is converted {2 and I'. Then problem (4)—(6) will take the form (bar is
omitted)

1
wy = f(w” + wyy) + GT,

Ty =Tpw + Tyy +w, (-’If,y) € Q; (7)
wli=0 = wo(2,y), Tli=0 = To(z,y);
w|1‘ = 07 T|F = 07

where P = x /v is Prandtl number, G = pgAd*3/x? is Grashof number. So the problem (7) will
be subject of our study.

1. A priori estimate

Let us multiply the first equation of system (7) by w, the second by T, integrate over 2, add
results and obtain identity

10 5 9 1 ) .

—— [ (w*+T%)dedy = = [ w divVwdxdy + | T divVTdxdy+ (G+ 1) [ wTdzdy. (8)
By virtue of the boundary conditions we have

/w divVwdzdy = —/ |Vw|?dzdy, /TdivVTdmdyz —/ |VT|?dzdy.
Q Q Q Q

Hence identity (8) is equivalent to the following
10

1
f—/(w2+T2)da:dy+f/|Vw|2dxdy+/ VT 2dady = (G+1)/ wTdzdy. 9)
20t Jq, P o o
)

-6 —



Victor K. Andreev, Alyona I. Uporova Initial Boundary Value Problem on the Motion. ..

Since w|r = 0,T|r = 0, the Friedrichs inequality is satisfied [2]

/wzdajdy < C/ |Vw|*dzdy, /Tzdxdy§ C/ |VT|?dxdy.
Q o Q Q

In these inequalities constant C' depends only on Q. Moreover, it is known from [3]| that
C = 1/u, where p is smallest eigenvalue of operator —A in region  under zero boundary
condition.

Now from (9) let us derive the inequality

gt/(w T2V dady < (|G+1\—2@)/(w2+T2)dxdy,
Q

with constant & = C~! min(1, P~1) > 0. Wherefrom
/(w2 +T?)dzdy < et / (w2 + T2)dxdy, (10)
Q Q

with v = |G + 1] — 2a. We get two cases: I) If G € (—2a — 1,2 — 1), then vy < 0; II) If
G e (—o0,—2a — 1] U [2a — 1, +00) then v > 0.

It follows from (I), (II) that the solution of initial boundary value problem (7) is unique on
a finite time interval (0,¢g) and in case I) additionally exponential damping of the solution in
Lo () norm with increasing time.

2. Solution of the problem in case of a rectangular section

Consider an arbitrary rectangular area {0 < z < I1,0 < y < lo}. Without loss of generality
we will assume [; <[5, so that d = [5. Then Q and I" in dimensionless variables are

O={0<z<l,0<y<l1l}, I'={z=0U{z=1}U{y=0}u{y=1},
where [ = Iy /l5. The matching conditions for a smooth solution will have the form

wO(Ovy

) = 0, wly) =0, 0<y<L,
To(0,y) = 0, To(ly) =0, 0<y<l,
wo(z,0) = 0, wo(z,1)=0, 0<x<],
To(x,0) = 0, To(z,1)=0, 0<z <.

Let’s estimate solution of the problem by inequality (10); to do this, we find constant C. The
smallest of numbers p for which there exists a solution other than identical zero of the problem

—Aw = pw, w|p =0,

in this case is p = 72(1+412)/1? |4]. Thus, solution of the problem in case of a rectangular section
is bounded by inequality (10) in the Ly norm, where C' = [?/72(1 + [2). Note that if

_92 2 3 -1 2 2 : —1
Ge < 2 (1 +1 l)zrmn(l,P ) _17271' (1+1 )lrznln(l,P )_1>’

then solution tends to zero as t — +o0o in the Ly(£2) norm.
To solve the problem we use the Fourier method. The solution is sought in form

(x,y,t i iS ) sin —x sinmmy, T(x,y,t) Z Zan ) sin —smwmy. (11)

n=1m=1 n=1m=1
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The boundary conditions are identically satisfied. Substitution (11) into system (7) gives the
equalities

o % 20,2 272
Z Z (S;Lm(t) + 7T(%lzml)snm(t) - Gan(t)) sin anx sinmmy = 0,
n=1m=1 (12)

o 2(2 272
Z Z (F,’Lm(t) + Mﬂm(ﬂ - Snm(t)) sin FTM sinTmy = 0.

Denote ¢2,, = 72(n? +m?21?)/I?>. Due to the completeness of basis functions, system (12)
reduces to system of ordinary differential equations

2
S q"Pm Spm = GFum, F. 42, Fum = Som. (13)

From initial conditions of the problem we determine initial conditions for the system (13) [5]

Snm(0) = / / wo (2, y) sin Y in mmy dedy = S°,.,

Frm(0) = / / To(x,y)sin ﬂ-lﬂ sinmmy dzdy = FP
0 Jo
The general solution of system (13) has representation
Spm(t) = DX (2 + AL )erimt 1 D@ (g2 L \@AIE B (1) = D) At D) AL

where

2 (P4+1) 1 [¢4, (P—1)2
AL2) ,% + 2\/qnm(Pz) + 4G, (15)

and constants

e Aﬁ?& - A% o A — Al

)

are found from initial conditions (14). The formal solution of the problem will be functions

0o (2 (1) 2 (2) At _ At
) =3 3 S [P (s M) (s + ) (2500 = 220

n=1m=

+sgm{(qzm+A;%L)eAmat (24 362) A9} ] sin T sin g,

=555 [ ) ()

n=1m=1

(2) (1) . TNT
+8°. (e)‘nmt Anmt) ] - sin —— sinmmy.

(16)

Suppose that 0 < G < g2,/ P (it suffices to require fulfillment of inequality 0 < G < ¢i, /P ),
thereat )\%17,12 ) <0 and

P+1 1 [(P-1)2 4G
LD = =g, <2p 5\ p2 + @ = ~Grm iy (17)

— 8 —
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where d%ly’,?) > 0. It’s clear that )\%ly’nz) — —oo when n,m — co. From formula (17) we obtain
P-1) 4G

PN CI RN CD R — (7 — < 0. 18

So 1 P P2 (19)
A2, — AL TP —1e2,  mP P —1{(n? +m2?)
Using equalities (15) and (17) we find
Qo + A2 = @2 (L= dS5D), (@R + A (@ + A2 = =G,
1(|P—1] (P-1)? 4G (20)
1—d32| < = = B.
L-d? <G (e[St

Let us prove that for 0 < G < ¢f,/P series (16) are a classical solution of problem (7) for
all ¢ > 0 if the series of initial data wo(x,y), To(x,y) absolutely converge

i i Sl < 00, i i |Fp| < 0. (21)

n=1m=1 n=1m=1

Employing (19), (20), from representations of the solution in form of series (16) we find

— Fr? BWQ|ng| A ¢ AG) ¢
(2, 1)| < 2|P_1|ZZ[ m212 . }(6 B g M) <

(22)
Pl2 G BT( o\ 1) (2)
S p o (1 NP > > (Fl + 18%,00) (Xt + eXint),
n=1m=1
1) (2)
T (z,y,t)| < 7Tzua_ 1] & Z Z PR (BGam| Fil + 150m) (eAmt +6Amt) <
(23)

S ii (F [ +15%.) (eAi%t ngggnt)
S P -1 12 ’1+z2 = '

(1,2),

Series (22), (23) converge since exp (/\ < 1. Moreover, the functions w(x, y,t), T (z,y,t)

tend exponentially to zero when ¢t — oco. Indeed due to (18)

At n A2t e,\( )t exp K)\Sn)1 _ /\gll)) t} {1 + exp K)\an)@ - )\slln)q) t} } <
(1)
<26t exp [(*% _ Aﬁ)) t] . (24)

It is easy to see that for G > 0 the quantity A, — )\gll) < 0, then from (22), (23) and (24)
we derive estimates o .
w(z,y,t)] < HieMv?, |T(z,y,t)] < HzeMr™, (25)

with constants H; > 0, Hy > 0. Recall that )\511) = —qlld(l) < 0, and therefore w — 0,7 — 0
when ¢t — oo uniformly in a rectangle €.

Remark 1. By what was proved above, series (16) converge absolutely and uniformly, their terms
are continuous, which means that their sums (functions w(z,y,t), T(z,y, t)) are also continuous
on QUL t > 0.
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Let’s now prove that the functions w(z,y,t), T(x,y,t) (sums of series (16)) have first deriva-
tives with respect to ¢ and second derivatives with respect to z and y for ¢ > 0. To this end
it suffices to prove that differentiation of series (16) with respect to x,y, and ¢, corresponding
number of times results in series that converge uniformly in QU T and ¢ > e, where ¢ is arbi-
trary positive number. Truly, when differentiating series (16) with respect to ¢, the expressions
AL exp()\(1 )t) arise. Since A2 < 0, then A2 exp(/\gll,;f)t)’ < [A(:2) exp(— AL2) £) <

< Ly 2/e with positive constants L 5. This is a consequence of fact that function g(x) = z%e~*,

a > 0 is bounded Vz > 0,namely z%™* < a®e™® = L. In our case a« = 1. Thus series for w, T}
converge absolutely and uniformly in Q for t > €.
When differentiating series (16) twice with respect to x (with respect to y), the expressions

n2 exp()\gllfr?)t), m>2 exp()\gﬁ?)t) arise. Insofar as

- 2Pd3) A, Pdy) |)\§,2L
2 12| X _ m2(1— Z’f) e m2(1 - q—P)
n2di) 212P|\2)| 2P| A0
w2 (P +1) w2 (P +1)

then, by the same considerations as above, series for wy,, Wyy, Ty, Tyy converge absolutely and
uniformly in 2 for all ¢ > ¢ with arbitrary € > 0. This proves

Theorem 1. Let us 0 < G < qf,/P and series (21) converge absolutely in the rectangle QUT.
Then solution of problem (7) is classical and estimates (25) are satisfied.

Remark 2. In fact, solution of the problem for ¢ > 0 has derivatives of all orders in x,y and
t, that is, it is infinitely differentiable (one should use the inequality z®e~* < M = const for
natural «).

Remark 3. The fluid flow rate @ in case of a rectangular section is equal to

Al
t) = Ly, 1)dQ =
: /Q/w(x y kzljzm 2k = 1)(25 — 1) (A 10501 = A5 )X

2k—1,2j—1 2k—1,25—1

0 2 (1) (2) )\(1) t A2y
X |:F2k1,2j1<q2k1,2j1+>‘2k—1,2j—1 Tan— 121 A%K—1,2j1 2h=1,2j-10 — 72k —1,2j 17 ) 4

0 2 (2) A t 2 (1) AD
+S2k—1,2j—1<(q2k—1,2j—1+>‘2k—1,2j—1) 212510 — (Qop 1 951 T Agp_1.05-1 ) €121 ||

Note that if F? =0, 5% =0 for odd n and m, then the fluid flow rate is zero.

Remark 4. Solution of the problem in case of MS-20 oil flow at a temperature of 0°C [6] in a
vertical heat exchanger of rectangular cross section with initial data wo(z,y) = sin(wz /1) sin 7wy,
To(z,y) = sin(wz /1) sin my and constants I; = 0.05 m,ly = 0.1 m, A =1 K/m, p = 903.6 kg/m?3,
B=627-10"4 1/K, y = 62.06-10~3m?2/c, v = 7.59-10~3m?2/c with G = 0.144 < ¢%, /P = 6.036
has the form

w(z,y,t) = (1.00325¢ T — 0.00325¢*" 1) sin 27 sin 7y,
T(z,y,t) = (0.023166)\1t + 0.976846/\2t) sin 27z sin 7y,

where A\! = —6.032925, A2 = —49.35134. Fig. 1 shows the vertical velocity profile w(z,y,t) at
t =0 and at ¢t = 0.15 in dimensionless coordinates; as t increases w(z, y,t) tends to zero.

If in previous example we take initial data wo(x,y) = sin(2wz/l)sin2ny, To(x,y) =
= sin(27z/l)sin 2y then G = 0.144 < ¢3,/P = 24.145 and solution of the problem has rep-
resentation

— 10 —
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= (1.06076/\1t - 0.06076’\2t) sin 4mx sin 27y,

w(z,y,t)
(0.02316¢*'* + 0.97684¢*°?) sin 47 sin 27y,

T(z,y,t)
with A\! = —24.0838, A2 = —197.4532. Fig. 2 shows the vertical velocity profile w(x,y,t) at t = 0
and at t = 0.05 in dimensionless coordinates; as t grows the quantity w(z,y, t) also tends to zero.
Here the fluid flow rate is Q(t) = 0 and there are zones of reverse motion near the corners of

rectangle.
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Fig. 2. Velocity profile w(z,y,t) at t =0, t = 0.05

3. Solution of the problem in case of a circular cross section

Consider region (2 in the form of a circle with boundary I"
Q= {7'a¢) |7' <l,¢€ [0327'(]}7 I'= {T’,Qﬁ |7' =1l,¢9€ [0727T]}
In general, the radius of a circle is a, so d = a. Problem (7) can be written as

1 1 1
Wy = F (’LUTT + ;wT + T*Qw(bqﬁ) + GT,
1 1
Ty =T, + ;T,. + T—2T¢¢ +w, (r,¢)eN (26)

wli=0 = wo(r, @), Tli=o = To(r, ¢),
w(l,6,8) =0, T(1,,t) = 0.

— 11 —
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For the a priori estimate w,T by inequality (10) let’s find constant C. In case of a circular
section pu = (£5)?, where £} = 2.40482 is first zero of the zero-order Bessel function [4,7]. Thus,
the solution to problem (26) is bounded in Lo from 0 to 1 with weight r by inequality (10), where
C = 0.172915. Moreover, if

G € (—11.56632min(1, P~*) — 1,11.56632 min(1, P~*) — 1),

then solution tends to zero as t — +oo in the norm Lo (§2) with weight r.
To solve problem, we also use the Fourier method. Solution is sought in form

601 = 35 3 S0, () { 220 ),

n=1m=1 ¢ (27)
m cosn
T(r, 1) ;leF”m (57(‘ )7"){ sin n¢ }’

where §§Lm) is mth zero of nth order Bessel function. Substitution (27) into (26) gives the
equalities

33 (S;m(t) + ( ’(’;)) 2Smn(t) —~ Gan(t)> In (55;’%) { cos } -0,

sin ng
n=im=l 2 ) (28)
’ (m) . (m) cosn _
52 3 (B0 (67 Funtt) = Sun)) 5 (607) { G0 =0
(m))?
If we denote ¢2,, = ( n ) , then system (28) reduces to a system similar to (13)
@
S':Lﬂl 1]’1;77. Snm = Gann Frllm + qsznm = Snm? (29)
with initial data [5]
Lo (m) cosng
0) :/0 /(; wo(T7 ¢)Jn (fn ’I’) { sinn(b }d d¢ nm7
Lo (m) cos ne
— m — 10
0) = /0 /0 To(r, 8)Jn (€77) { G }drd<z> = F
The general solution of system (29) has representation
Sm(t) = K3 (a2 + M) X+ K2 (@2 + A2, ) 40,
Fom(t) = K7()1n)16/\(1,31t + Kv(ﬁr):e)\gi)"t
where
(1,2) _ qnm 1 q;%,m 2

A = 9P T(P+1)+ 5 E(P —1)24+4G, (30)

and constants

o (qim + Aﬁl) s
A2, = A0

Ao = Aon

K = K=

- 12 —
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are found from initial conditions. The formal solution of problem will be functions

w(r, ¢,t) Z Z A2 o) )\(1 [Fr?m <q721m )\(1)> ( )\(2)) (e,\ﬁf)nt - e’\gf"bt) +

n=1m=1

489, { (+ Anm) P (g 200 N | () f e L

T(r,:t) Z Z )\(2 )\(1 [ nm {(q”m + )‘(2) ) Nint ( + )\(1) ) N }+

n=1m=1

- (8 =2 o () { 5008 -

Assume that 0 < G < ¢i,,/P (here it is also sufficient to require inequality 0 < G < ¢f;/P ),
then )\%1,;? ) <0 and

P+1 1 [(P-1)2 4G
PYCE NS e i R O Gty I S [N SN (¥ 9
with z,%nz) > 0. Here it is seen that )\%ly’nz) — —o0o when n, m — oo. From formula (32) we obtain
(P-1)2 4G
A2 A — g2 Tt < 0. (33)
So
’ 1 P P
< = . (34)
Using equalities (30) and (32), we find
G + A5 = @2 (L= 2002), (@ + A0 (@R + A2)) = =G,
PITTI [B [ VLT W ()
P P2 a, |

Let us prove that for 0 < G < ¢f,/P series (31) are a classical solution of problem (7) for
all ¢ > 0 if the series of initial data wq(r, ¢), To(r, ¢) converge

n=1m=1 n=1m=1

Utilazing (34), (35) and the fact that e < §n+1 <&l < §n+1 < ... [8] from the represen-
tations of solution in form of series (31) we find

(1) (2)
"ml 7+l nm] (Xt + Xir) <

P G 0o 00 o A ¢ A ¢
Sip o ™ <(£§1))2’¢> > Z (1F Sl 4 1S9,a) (X007 eMint) |

(37)

0
YIF | + ':m"l ] (Mt + eMint) <

P 1 0o oo ) N
<m max | 1, o > Z Z (|F2m| + |52m|) (eknmt +eknmt)
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Series (37) converge because exp (A%’?t) < 1. Moreover, the functions w(r, ¢,t), T(r, ¢, 1)

tend exponentially to zero as t — co. Really, due to (33)

P+ A = M [(00 =) o] {1 e [(M2 - 20) 1] | <
<2l (MR -AY) ¢ 69)

It is clear that for G > 0 the quantity A — /\(111) < 0, then from (37), (38) the estimates
follow

lw(r, é,t)| < RieMLt, |T(r, ¢,1)] < RoeMii', (39)

with constants R; > 0, Ro > 0. Recall that )\(1) —quz;l) < 0, and therefore w — 0,7 — 0
uniformly in a circle € when ¢ — oo.

Remark 5. By what was proved above, series (31) converge absolutely and uniformly, their terms
are continuous so their sums (functions w(r, ¢, t), T(r, p, t)) also are continuous on QUTI', ¢ > 0.

To prove that the functions w(r, ¢,t), T(r,¢,t) are a classical solution of problem (7), we
need to show that the series wy, T}, Wy, Ty Wy /7, Ty /7, W /7%, Ty /r? converge uniformly in
QUT and t > ¢, where ¢ is an arbitrary positive number.

When once differentiating series (31) with respect to ¢ expressions )\%,’n) exp()\%l;n2 ) t) arise.
Since )\ng) < 0 then ‘)\ 1m2) exp()\gﬁf)t ‘ ’/\(1 :2) ’exp ‘)\ ‘ < Ly,2/e with positive con-
stants L o. Therefore the series for wy, T; converge absolutely and uniformly in 2 for ¢ > e.

If series (31) are differentiated twice with respect to r, then the expression (E&m ) gy (f (m) )

is formed. It is known from [9] that for uniform convergence on the segment [0, 1] of a series

.- (m))? (m)
> Zu GRINAGNE

where n = 1, n > 2, it is sufficient that all coefficients Z,,, satisfy the inequality |Z,.,| <
< Z/ ( Slm))BH, 0 >0, Z = const. Actually, the double series also converges

N m))? (m)
>3 Zun () (gbmm)

so far as 57(Lm) is equivalent to n for n > 1 (just like 57(17") is equivalent to m for m > 1)[10]. Hence

and from estimates (37) we obtain that if [F,, |+ [S9,.| < Z/( m))3+5 then the series wy,, Ty
converge absolutely and uniformly in Q for all ¢ > ¢, £ > 0. Moreover, the series w,./r, T, /r also
converge under this condition.

Consider now the series wgy /1%, Tpe/r?. Differentiating functions w(r,¢,t), T(r, ¢,t) twice

with respect to ¢ gives the expression n2J, ( ﬁbm)r). Since J, (€7(Lm )7”) is a solution to the Bessel
equation we have
2

2 g (6r) = (66)° a2 () + £ () + (0) o (680). (a0

Replacing in series wgg /12, Tpey/r? expression ann ( (m),, ) /r? to the right side of identity

(40) we get that, by what was proved earlier, for |F°, |+|SY, . | < Z/ (f(m)) , 0 >0, Z = const

these series converge absolutely and uniformly in  for all ¢t > ¢, € > 0.
Thereby theorem is proved

— 14 —
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Theorem 2. Let be 0 < G < qi,/P, series (36) absolutely converge in circle QUT and |F2,, |+
3446
+S0 | < Z/ (g,(f")) ,0 > 0,7 = const, where fﬁbm) is mth zero of the nth order Bessel

function. Then the solution of problem (7) is classical and estimates (39) are satisfied.

Remark 6. The fluid flow rate @ in case of a circular cross section will be equal to zero:

Q(t) = /Olrdr /0% li i Spm (£) T (g};ﬂh) { zfszg }] dp = 0.

n=1m=1

Remark 7. Solution of the problem in case of MS-20 oil flow at a temperature of 0°C' [6] in a ver-
tical heat exchanger of circular cross section with initial data wg(r, ¢) = J; (,551%) sin @, To(r, @) =
=J; (59)7“) sin ¢ and constants d = 0.1m, A =1 K/m, p = 903.6 kg/m?, 3 =6.27-107* 1/K,
X = 62.06-1073m?/c, v = 7.59 - 1073m? /¢ with G = 0.144 < ¢}, /P = 26.36745 has the form

w(r, ¢, t) = (1.0103eX* — 0.0103¢X1) ., (3.83171r){ if’ii }

AL A2 cos @
T(r,¢,t) = (—0.07833e* * 4 0.92166e* *).J, (3.83171r){ sin 6 }

where A\ = —1.784727, \? = —14.693177. Fig. 3 shows the vertical velocity profile w(r, ¢,t) at
t =0 and at t = 0.6 in dimensionless coordinates; as t increases, w(r, ¢,t) tends to zero. Here
the fluid flow rate is Q(¢) = 0 and a reverse flow occurs.

=0 i » t=0.6

il I B : :

: \\\1\1\\\\\!\\}“5 R T S
AR | i R
Dol il it : 5
T

e
\\\‘\\‘\\\\\\\“\\{\\\%\“@"

Fig. 3. Velocity profile w(r, ¢,t) at t =0, t = 0.6
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HagaabHo-KpaeBas 3aava O JIBUXKEHUN BASKOI
TEIIJIONPOBOAHOI >KMJIKOCTH B BEPTUKAJILHOI TpyOe

Bukrop K. Anapees

NucruryT Boraucauresbaoro mogenuposanus CO PAH

Kpacnosipck, Poccuiickas ®eneparus

Cubupckuii dheepasbHbIil YHUBEPCUTET

Kpacnosipck, Poccuiickas ®eneparus

Agnena U. Ynoposa

Denepanbblil uccienoBaTe/bekuii enTp Kpacuosipekuii nayuanstit nenrp CO PAH
Kpacnosipck, Poccuiickass @eneparust

Awnnoranusi. Vccmenyercs nHadaabHO-KpaeBasi 3a/1a4a, BOSHHUKAIONIAS [IPU MOJEIUPOBAHUM HECTAIHO-
HapHOI'O OJHOHAIIPABJIEHHOTO KOHBEKTHUBHOI'O TE€YEHUS B BEPTUKAJIbHBIX TEIJIOOOMEHHHKAX C IIOIIeped-
HBIM CeYeHMeM Mpon3BOJIbHON dopMmbl. [lomyuena ampuopHast oreHka B Lo U JOKa3aHa €INHCTBEHHOCTD
pemrenus 3a7aqn. B ciaydyae mpsMOYTOJBHOTO W KPYIJVIOTO CEYEHMs PeIleHne HaiiZleHO B BUE ABOIHBIX
psanoB Pypree. aHbl TOCTATOYHBIE YCJIOBUS CTAOMIM3AIMN C POCTOM BPEMEHH DEIIEHUs K IIOKOO.

KuroueBsbie ciioBa: HavabHO-KpaeBas 3a/a4a, allpuopHasi OleHKa, psiabl Pypbe, KOHBEKITHS.
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