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Introduction

The equations system for convective motion in the Oberbeck–Boussinesq approximation is
given by [1]

ut + (u · ∇)u+
1

ρ
∇p = ν∆u+ gβθe,

divu = 0, (1)

θt + u · ∇θ = χ∆θ.

Here u=(u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) is velocity vector; θ(x, y, z, t) is temperature;
p(x, y, z, t) is modified pressure; ρ, ν, g, β, χ are positive physical constants of the liquid medium;
e = (0, 0,−1). The system (1) admits operator ∂z −A(∂θ + ρgβz∂p) with constant A. Invariant
solutions of rank three are sought in the form [1]

u = (u(x, y, t), v(x, y, t), w(x, y, t)),

p = −ρgβAz
2

2
+ q(x, y, t), θ = −Az + T (x, y, t).

(2)
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Substitution the form of solution (2) into (1) leads to a system that includes Navier-Stokes
equations for the plane motion of a purely viscous fluid for u, v, q and equations

wt + uwx + vwy = ν(wxx + wyy) + ρgβT,

Tt + uTx + vTy = Aw + χ(Txx + Tyy).
(3)

Suppose that u = v = 0, q = q(t), then (3) is converted into linear parabolic equations system

wt = ν(wxx + wyy) + ρgβT,

Tt = Aw + χ(Txx + Tyy).
(4)

The equations (4) are satisfied in a certain region Ω on variables plane x, y with boundary Γ.
Here we consider boundary conditions on Γ of the first kind

w|Γ = 0, T |Γ = 0. (5)

The first of them is a no-slip condition, and the second, by virtue of (2), means that a
constant temperature gradient is applied along the lateral surface of heat exchanger. For a
complete formulation of the problem it is necessary to set initial conditions

w|t=0 = w0(x, y), T |t=0 = T0(x, y). (6)

Of course, for a smooth solution we need to require that the matching conditions w0(x, y) = 0
and T0(x, y) = 0 when x, y ∈ Γ.

The problem (4)–(6) is the first initial boundary value problem. We introduce dimensionless
variables t = χt/d2, x = x/d, y = y/d, w = dw/χ, T = T/Ad, w0 = dw0/χ, T0 = T0/Ad where
d = diam Ω. Let be Ω,Γ is converted Ω and Γ. Then problem (4)–(6) will take the form (bar is
omitted)

wt =
1

P
(wxx + wyy) +GT,

Tt = Txx + Tyy + w, (x, y) ∈ Ω;

w|t=0 = w0(x, y), T |t=0 = T0(x, y);

w|Γ = 0, T |Γ = 0,

(7)

where P = χ/ν is Prandtl number, G = ρgAd4β/χ2 is Grashof number. So the problem (7) will
be subject of our study.

1. A priori estimate
Let us multiply the first equation of system (7) by w, the second by T , integrate over Ω, add

results and obtain identity

1

2

∂

∂t

∫
Ω

(w2 + T 2)dxdy =
1

P

∫
Ω

w div∇wdxdy +
∫
Ω

T div∇Tdxdy + (G+ 1)

∫
Ω

wTdxdy. (8)

By virtue of the boundary conditions we have∫
Ω

w div∇wdxdy = −
∫
Ω

|∇w|2dxdy,
∫
Ω

T div∇Tdxdy = −
∫
Ω

|∇T |2dxdy.

Hence identity (8) is equivalent to the following

1

2

∂

∂t

∫
Ω

(w2 + T 2)dxdy +
1

P

∫
Ω

|∇w|2dxdy +
∫
Ω

|∇T |2dxdy = (G+ 1)

∫
Ω

wTdxdy. (9)
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Since w|Γ = 0, T |Γ = 0, the Friedrichs inequality is satisfied [2]∫
Ω

w2dxdy 6 C

∫
Ω

|∇w|2dxdy,
∫
Ω

T 2dxdy 6 C

∫
Ω

|∇T |2dxdy.

In these inequalities constant C depends only on Ω. Moreover, it is known from [3] that
C = 1/µ, where µ is smallest eigenvalue of operator −∆ in region Ω under zero boundary
condition.

Now from (9) let us derive the inequality

∂

∂t

∫
Ω

(w2 + T 2)dxdy 6 (|G+ 1| − 2α)

∫
Ω

(w2 + T 2)dxdy,

with constant α = C−1 min(1, P−1) > 0. Wherefrom∫
Ω

(w2 + T 2)dxdy 6 eγt
∫
Ω

(w2
0 + T 2

0 )dxdy, (10)

with γ = |G + 1| − 2α. We get two cases: I) If G ∈ (−2α − 1, 2α − 1), then γ < 0; II) If
G ∈ (−∞,−2α− 1] ∪ [2α− 1,+∞) then γ > 0.

It follows from (I), (II) that the solution of initial boundary value problem (7) is unique on
a finite time interval (0, t0) and in case I) additionally exponential damping of the solution in
L2(Ω) norm with increasing time.

2. Solution of the problem in case of a rectangular section
Consider an arbitrary rectangular area {0 < x < l1, 0 < y < l2}. Without loss of generality

we will assume l1 < l2, so that d = l2. Then Ω and Γ in dimensionless variables are

Ω = {0 < x < l, 0 < y < 1}, Γ = {x = 0} ∪ {x = l} ∪ {y = 0} ∪ {y = 1},

where l = l1/l2. The matching conditions for a smooth solution will have the form

w0(0, y) = 0, w0(l, y) = 0, 0 6 y 6 1,

T0(0, y) = 0, T0(l, y) = 0, 0 6 y 6 1,

w0(x, 0) = 0, w0(x, 1) = 0, 0 6 x 6 l,

T0(x, 0) = 0, T0(x, 1) = 0, 0 6 x 6 l.

Let’s estimate solution of the problem by inequality (10); to do this, we find constant C. The
smallest of numbers µ for which there exists a solution other than identical zero of the problem

−∆w = µw, w|Γ = 0,

in this case is µ = π2(1+ l2)/l2 [4]. Thus, solution of the problem in case of a rectangular section
is bounded by inequality (10) in the L2 norm, where C = l2/π2(1 + l2). Note that if

G ∈
(
−2π2(1 + l2)min(1, P−1)

l2
− 1,

2π2(1 + l2)min(1, P−1)

l2
− 1

)
,

then solution tends to zero as t→ +∞ in the L2(Ω) norm.
To solve the problem we use the Fourier method. The solution is sought in form

w(x, y, t) =
∞∑

n=1

∞∑
m=1

Snm(t) sin
πnx

l
sinπmy, T (x, y, t) =

∞∑
n=1

∞∑
m=1

Fnm(t) sin
πnx

l
sinπmy. (11)
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The boundary conditions are identically satisfied. Substitution (11) into system (7) gives the
equalities

∞∑
n=1

∞∑
m=1

(
S′
nm(t) +

π2(n2 +m2l2)

Pl2
Snm(t)−GFnm(t)

)
sin

πnx

l
sinπmy = 0,

∞∑
n=1

∞∑
m=1

(
F ′
nm(t) +

π2(n2 +m2l2)

l2
Fnm(t)− Snm(t)

)
sin

πnx

l
sinπmy = 0.

(12)

Denote q2nm = π2(n2 + m2l2)/l2. Due to the completeness of basis functions, system (12)
reduces to system of ordinary differential equations

S′
nm +

q2nm
P

Snm = GFnm, F ′
nm + q2nmFnm = Snm. (13)

From initial conditions of the problem we determine initial conditions for the system (13) [5]

Snm(0) =

∫ l

0

∫ 1

0

w0(x, y) sin
πnx

l
sinπmy dxdy ≡ S0

nm,

Fnm(0) =

∫ l

0

∫ 1

0

T0(x, y) sin
πnx

l
sinπmy dxdy ≡ F 0

nm.

(14)

The general solution of system (13) has representation

Snm(t) = D(1)
nm(q2nm + λ(1)nm)eλ

(1)
nmt +D(2)

nm(q2nm + λ(2)nm)eλ
(2)
nmt, Fnm(t) = D(1)

nme
λ(1)
nmt +D(2)

nme
λ(2)
nmt,

where

λ(1,2)nm = −q
2
nm(P + 1)

2P
± 1

2

√
q4nm(P − 1)2

P 2
+ 4G, (15)

and constants

D(1)
nm =

F 0
nm(q2nm + λ

(2)
nm)− S0

nm

λ
(2)
nm − λ

(1)
nm

, D(2)
nm =

S0
nm − F 0

nm(q2nm + λ
(1)
nm)

λ
(2)
nm − λ

(1)
nm

,

are found from initial conditions (14). The formal solution of the problem will be functions

w(x, y, t) =

∞∑
n=1

∞∑
m=1

1

λ
(2)
nm − λ

(1)
nm

[
F 0
nm

(
q2nm + λ(1)nm

)(
q2nm + λ(2)nm

)(
eλ

(1)
nmt − eλ

(2)
nmt
)
+

+ S0
nm

{(
q2nm + λ(2)nm

)
eλ

(2)
nmt −

(
q2nm + λ(1)nm

)
eλ

(1)
nmt
}]

· sin πnx
l

sinπmy,

T (x, y, t) =
∞∑

n=1

∞∑
m=1

1

λ
(2)
nm − λ

(1)
nm

[
F 0
nm

{(
q2nm + λ(2)nm

)
eλ

(1)
nmt −

(
q2nm + λ(1)nm

)
eλ

(2)
nmt
}
+

+ S0
nm

(
eλ

(2)
nmt − eλ

(1)
nmt
)]

· sin πnx
l

sinπmy.

(16)

Suppose that 0 < G 6 q4nm/P (it suffices to require fulfillment of inequality 0 < G 6 q411/P ),
thereat λ(1,2)nm 6 0 and

λ(1,2)nm = −q2nm

(
P + 1

2P
∓ 1

2

√
(P − 1)2

P 2
+

4G

q4nm

)
≡ −q2nmd(1,2)nm , (17)
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where d(1,2)nm > 0. It’s clear that λ(1,2)nm → −∞ when n,m→ ∞. From formula (17) we obtain

λ(2)nm − λ(1)nm = −q2nm

√
(P − 1)2

P 2
+

4G

q4nm
< 0. (18)

So
1

|λ(2)nm − λ
(1)
nm|

6 P

|P − 1|q2nm
=

Pl2

π2|P − 1|(n2 +m2l2)
. (19)

Using equalities (15) and (17) we find

q2nm + λ(1,2)nm = q2nm(1− d(1,2)nm ), (q2nm + λ(1)nm)(q2nm + λ(2)nm) = −G,

|1− d(1,2)nm | 6 1

2

(
|P − 1|
P

+

√
(P − 1)2

P 2
+

4G

q411

)
≡ B.

(20)

Let us prove that for 0 < G 6 q411/P series (16) are a classical solution of problem (7) for
all t > 0 if the series of initial data w0(x, y), T0(x, y) absolutely converge

∞∑
n=1

∞∑
m=1

|S0
nm| <∞,

∞∑
n=1

∞∑
m=1

|F 0
nm| <∞. (21)

Employing (19), (20), from representations of the solution in form of series (16) we find

|w(x, y, t)| 6 Pl2

π2|P − 1|

∞∑
n=1

∞∑
m=1

[
G|F 0

nm|
n2 +m2l2

+
Bπ2|S0

nm|
l2

](
eλ

(1)
nmt + eλ

(2)
nmt
)
6

6 Pl2

π2|P − 1|
max

(
G

1 + l2
,
Bπ2

l2

) ∞∑
n=1

∞∑
m=1

(
|F 0

nm|+ |S0
nm|
) (
eλ

(1)
nmt + eλ

(2)
nmt
)
,

(22)

|T (x, y, t)| 6 Pl2

π2|P − 1|

∞∑
n=1

∞∑
m=1

1

n2 +m2l2
(
Bq2nm|F 0

nm|+ |S0
nm|
) (
eλ

(1)
nmt + eλ

(2)
nmt
)
6

6 Pl2

π2|P − 1|
max

(
Bπ2

l2
,

1

1 + l2

) ∞∑
n=1

∞∑
m=1

(
|F 0

nm|+ |S0
nm|
) (
eλ

(1)
nmt + eλ

(2)
nmt
)
.

(23)

Series (22), (23) converge since exp
(
λ
(1,2)
nm t

)
6 1. Moreover, the functions w(x, y, t), T (x, y, t)

tend exponentially to zero when t→ ∞. Indeed due to (18)

eλ
(1)
nmt + eλ

(2)
nmt = eλ

(1)
11 t exp

[(
λ(1)nm − λ

(1)
11

)
t
]{

1 + exp
[(
λ(2)nm − λ(1)nm

)
t
]}

6

6 2eλ
(1)
11 t exp

[(
λ(1)nm − λ

(1)
11

)
t
]
. (24)

It is easy to see that for G > 0 the quantity λ(1)nm − λ
(1)
11 6 0, then from (22), (23) and (24)

we derive estimates
|w(x, y, t)| 6 H1e

λ
(1)
11 t, |T (x, y, t)| 6 H2e

λ
(1)
11 t, (25)

with constants H1 > 0,H2 > 0. Recall that λ(1)11 = −q111d
(1)
11 < 0, and therefore w → 0, T → 0

when t→ ∞ uniformly in a rectangle Ω.
Remark 1. By what was proved above, series (16) converge absolutely and uniformly, their terms
are continuous, which means that their sums

(
functions w(x, y, t), T (x, y, t)

)
are also continuous

on Ω ∪ Γ, t > 0.
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Let’s now prove that the functions w(x, y, t), T (x, y, t) (sums of series (16)) have first deriva-
tives with respect to t and second derivatives with respect to x and y for t > 0. To this end
it suffices to prove that differentiation of series (16) with respect to x, y, and t, corresponding
number of times results in series that converge uniformly in Ω ∪ Γ and t > ε, where ε is arbi-
trary positive number. Truly, when differentiating series (16) with respect to t, the expressions
λ
(1,2)
nm exp(λ

(1,2)
nm t) arise. Since λ(1,2)nm < 0, then

∣∣∣λ(1,2)nm exp(λ
(1,2)
nm t)

∣∣∣ < ∣∣∣λ(1,2)nm

∣∣∣ exp(− ∣∣∣λ(1,2)nm

∣∣∣ ε) <
< L1,2/ε with positive constants L1,2. This is a consequence of fact that function g(x) = xαe−x,
α > 0 is bounded ∀x > 0,namely xαe−x 6 ααe−α ≡ L. In our case α = 1. Thus series for wt, Tt
converge absolutely and uniformly in Ω for t > ε.

When differentiating series (16) twice with respect to x (with respect to y), the expressions
n2 exp(λ

(1,2)
nm t), m2 exp(λ

(1,2)
nm t) arise. Insofar as

n2 <
l2
∣∣λ(1,2)nm

∣∣
π2d

(1,2)
nm

<


l2Pd

(2)
11

∣∣λ(1)nm

∣∣
π2
(
1− GP

q411

)
2l2P

∣∣λ(2)nm

∣∣
π2(P + 1)

, m2 <


Pd

(2)
11

∣∣λ(1)nm

∣∣
π2
(
1− GP

q411

)
2P
∣∣λ(2)nm

∣∣
π2(P + 1)

.

then, by the same considerations as above, series for wxx, wyy, Txx, Tyy converge absolutely and
uniformly in Ω for all t > ε with arbitrary ε > 0. This proves

Theorem 1. Let us 0 < G 6 q411/P and series (21) converge absolutely in the rectangle Ω ∪ Γ.
Then solution of problem (7) is classical and estimates (25) are satisfied.

Remark 2. In fact, solution of the problem for t > 0 has derivatives of all orders in x, y and
t, that is, it is infinitely differentiable (one should use the inequality xαe−x 6 M = const for
natural α).
Remark 3. The fluid flow rate Q in case of a rectangular section is equal to

Q(t) =

∫∫
Ω

w(x, y, t)dΩ =
∞∑
k=1

∞∑
j=1

4l

π2(2k − 1)(2j − 1)
(
λ
(2)
2k−1,2j−1 − λ

(1)
2k−1,2j−1

)×
×
[
F 0
2k−1,2j−1

(
q22k−1,2j−1+λ

(1)
2k−1,2j−1

)(
q22k−1,2j−1+λ

(2)
2k−1,2j−1

)(
eλ

(1)
2k−1,2j−1t− eλ

(2)
2k−1,2j−1t

)
+

+ S0
2k−1,2j−1

((
q22k−1,2j−1 + λ

(2)
2k−1,2j−1

)
eλ

(2)
2k−1,2j−1t −

(
q22k−1,2j−1 + λ

(1)
2k−1,2j−1

)
eλ

(1)
2k−1,2j−1t

)]
.

Note that if F 0
nm = 0, S0

nm = 0 for odd n and m, then the fluid flow rate is zero.
Remark 4. Solution of the problem in case of MS-20 oil flow at a temperature of 0◦C [6] in a
vertical heat exchanger of rectangular cross section with initial data w0(x, y) = sin(πx/l) sinπy,
T0(x, y) = sin(πx/l) sinπy and constants l1 = 0.05 m, l2 = 0.1 m, A = 1 K/m, ρ = 903.6 kg/m3,
β = 6.27 ·10−4 1/K, χ = 62.06 ·10−3m2/c, ν = 7.59 ·10−3m2/c with G = 0.144 < q411/P = 6.036
has the form

w(x, y, t) = (1.00325eλ
1t − 0.00325eλ

2t) sin 2πx sinπy,

T (x, y, t) = (0.02316eλ
1t + 0.97684eλ

2t) sin 2πx sinπy,

where λ1 = −6.032925, λ2 = −49.35134. Fig. 1 shows the vertical velocity profile w(x, y, t) at
t = 0 and at t = 0.15 in dimensionless coordinates; as t increases w(x, y, t) tends to zero.

If in previous example we take initial data w0(x, y) = sin(2πx/l) sin 2πy, T0(x, y) =
= sin(2πx/l) sin 2πy then G = 0.144 < q422/P = 24.145 and solution of the problem has rep-
resentation

– 10 –
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w(x, y, t) = (1.0607eλ
1t − 0.0607eλ

2t) sin 4πx sin 2πy,

T (x, y, t) = (0.02316eλ
1t + 0.97684eλ

2t) sin 4πx sin 2πy,

with λ1 = −24.0838, λ2 = −197.4532. Fig. 2 shows the vertical velocity profile w(x, y, t) at t = 0
and at t = 0.05 in dimensionless coordinates; as t grows the quantity w(x, y, t) also tends to zero.
Here the fluid flow rate is Q(t) = 0 and there are zones of reverse motion near the corners of
rectangle.

Fig. 1. Velocity profile w(x, y, t) at t = 0, t = 0.15

Fig. 2. Velocity profile w(x, y, t) at t = 0, t = 0.05

3. Solution of the problem in case of a circular cross section
Consider region Ω in the form of a circle with boundary Γ

Ω = {r, ϕ |r < 1, ϕ ∈ [0, 2π]}, Γ = {r, ϕ |r = 1, ϕ ∈ [0, 2π]}.
In general, the radius of a circle is a, so d = a. Problem (7) can be written as

wt =
1

P

(
wrr +

1

r
wr +

1

r2
wϕϕ

)
+GT,

Tt = Trr +
1

r
Tr +

1

r2
Tϕϕ + w, (r, ϕ) ∈ Ω

w|t=0 = w0(r, ϕ), T |t=0 = T0(r, ϕ),

w(1, ϕ, t) = 0, T (1, ϕ, t) = 0.

(26)
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For the a priori estimate w, T by inequality (10) let’s find constant C. In case of a circular
section µ = (ξ10)

2, where ξ10 = 2.40482 is first zero of the zero-order Bessel function [4, 7]. Thus,
the solution to problem (26) is bounded in L2 from 0 to 1 with weight r by inequality (10), where
C = 0.172915. Moreover, if

G ∈ (−11.56632min(1, P−1)− 1, 11.56632min(1, P−1)− 1),

then solution tends to zero as t→ +∞ in the norm L2(Ω) with weight r.
To solve problem, we also use the Fourier method. Solution is sought in form

w(r, ϕ, t) =

∞∑
n=1

∞∑
m=1

Snm(t)Jn

(
ξ(m)
n r

){ cosnϕ
sinnϕ

}
,

T (r, ϕ, t) =
∞∑

n=1

∞∑
m=1

Fnm(t)Jn

(
ξ(m)
n r

){ cosnϕ
sinnϕ

}
,

(27)

where ξ
(m)
n is mth zero of nth order Bessel function. Substitution (27) into (26) gives the

equalities

∞∑
n=1

∞∑
m=1

(
S′
nm(t) +

(
ξ
(m)
n

)2
P

Snm(t)−GFnm(t)

)
Jn

(
ξ(m)
n r

){ cosnϕ
sinnϕ

}
= 0,

∞∑
n=1

∞∑
m=1

(
F ′
nm(t) +

(
ξ(m)
n

)2
Fnm(t)− Snm(t)

)
Jn

(
ξ(m)
n r

){ cosnϕ
sinnϕ

}
= 0.

(28)

If we denote q2nm =
(
ξ
(m)
n

)2
, then system (28) reduces to a system similar to (13)

S′
nm +

q2nm
P

Snm = GFnm, F ′
nm + q2nmFnm = Snm, (29)

with initial data [5]

Snm(0) =

∫ 1

0

∫ 2π

0

w0(r, ϕ)Jn

(
ξ(m)
n r

){ cosnϕ
sinnϕ

}
drdϕ ≡ S0

nm,

Fnm(0) =

∫ 1

0

∫ 2π

0

T0(r, ϕ)Jn

(
ξ(m)
n r

){ cosnϕ
sinnϕ

}
drdϕ ≡ F 0

nm.

The general solution of system (29) has representation

Snm(t) = K(1)
nm

(
q2nm + λ(1)nm

)
eλ

(1)
nmt +K(2)

nm

(
q2nm + λ(2)nm

)
eλ

(2)
nmt,

Fnm(t) = K(1)
nme

λ(1)
nmt +K(2)

nme
λ(2)
nmt,

where

λ(1,2)nm = −q
2
nm

2P
(P + 1)± 1

2

√
q4nm
P 2

(P − 1)2 + 4G, (30)

and constants

K(1)
nm =

F 0
nm

(
q2nm + λ

(2)
nm

)
− S0

nm

λ
(2)
nm − λ

(1)
nm

, K(2)
nm =

S0
nm − F 0

nm

(
q2nm + λ

(1)
nm

)
λ
(2)
nm − λ

(1)
nm

,
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are found from initial conditions. The formal solution of problem will be functions

w(r, ϕ, t) =

∞∑
n=1

∞∑
m=1

1

λ
(2)
nm − λ

(1)
nm

[
F 0
nm

(
q2nm + λ(1)nm

)(
q2nm + λ(2)nm

)(
eλ

(1)
nmt − eλ

(2)
nmt
)
+

+S0
nm

{(
q2nm + λ(2)nm

)
eλ

(2)
nmt −

(
q2nm + λ(1)nm

)
eλ

(1)
nmt
}]

Jn

(
ξ(m)
n r

){ cosnϕ
sinnϕ

}
,

T (r, ϕ, t) =

∞∑
n=1

∞∑
m=1

1

λ
(2)
nm − λ

(1)
nm

[
F 0
nm

{(
q2nm + λ(2)nm

)
eλ

(1)
nmt −

(
q2nm + λ(1)nm

)
eλ

(2)
nmt
}
+

+ S0
nm

(
eλ

(2)
nmt − eλ

(1)
nmt
)]
Jn

(
ξ(m)
n r

){ cosnϕ
sinnϕ

}
.

(31)

Assume that 0 < G 6 q4nm/P (here it is also sufficient to require inequality 0 < G 6 q411/P ),
then λ(1,2)nm 6 0 and

λ(1,2)nm = −q2nm

(
P + 1

2P
∓ 1

2

√
(P − 1)2

P 2
+

4G

q4nm

)
≡ −q2nmz(1,2)nm , (32)

with z(1,2)nm > 0. Here it is seen that λ(1,2)nm → −∞ when n,m→ ∞. From formula (32) we obtain

λ(2)nm − λ(1)nm = −q2nm

√
(P − 1)2

P 2
+

4G

q4nm
< 0. (33)

So,
1

|λ(2)nm − λ
(1)
nm|

6 P

|P − 1|q2nm
=

P

|P − 1|
(
ξ
(m)
n

)2 . (34)

Using equalities (30) and (32), we find

q2nm + λ(1,2)nm = q2nm(1− z(1,2)nm ), (q2nm + λ(1)nm)(q2nm + λ(2)nm) = −G,

|1− z(1,2)nm | 6 1

2

(
|P − 1|
P

+

√
(P − 1)2

P 2
+

4G

q411

)
≡ ψ.

(35)

Let us prove that for 0 < G 6 q411/P series (31) are a classical solution of problem (7) for
all t > 0 if the series of initial data w0(r, ϕ), T0(r, ϕ) converge

∞∑
n=1

∞∑
m=1

|S0
nm| <∞,

∞∑
n=1

∞∑
m=1

|F 0
nm| <∞. (36)

Utilazing (34), (35) and the fact that ξ(1)n < ξ
(1)
n+1 < ξ

(2)
n < ξ

(2)
n+1 < . . . [8] from the represen-

tations of solution in form of series (31) we find

|w(r, ϕ, t)| 6 P

|P − 1|

∞∑
n=1

∞∑
m=1

[
G|F 0

nm|(
ξ
(m)
n

)2 + ψ|S0
nm|

](
eλ

(1)
nmt + eλ

(2)
nmt
)
6

6 P

|P − 1|
max

(
G(
ξ
(1)
1

)2 , ψ
) ∞∑

n=1

∞∑
m=1

(
|F 0

nm|+ |S0
nm|
) (
eλ

(1)
nmt + eλ

(2)
nmt
)
,

|T (r, ϕ, t)| 6 P

|P − 1|

∞∑
n=1

∞∑
m=1

[
ψ|F 0

nm|+ |S0
nm|(

ξ
(m)
n

)2
](

eλ
(1)
nmt + eλ

(2)
nmt
)
6

6 P

|P − 1|
max

(
ψ,

1(
ξ
(1)
1

)2
) ∞∑

n=1

∞∑
m=1

(
|F 0

nm|+ |S0
nm|
) (
eλ

(1)
nmt + eλ

(2)
nmt
)
.

(37)
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Series (37) converge because exp
(
λ
(1,2)
nm t

)
6 1. Moreover, the functions w(r, ϕ, t), T (r, ϕ, t)

tend exponentially to zero as t→ ∞. Really, due to (33)

eλ
(1)
nmt + eλ

(2)
nmt = eλ

(1)
11 t exp

[(
λ(1)nm − λ

(1)
11

)
t
]{

1 + exp
[(
λ(2)nm − λ(1)nm

)
t
]}

6

6 2eλ
(1)
11 t exp

[(
λ(1)nm − λ

(1)
11

)
t
]
. (38)

It is clear that for G > 0 the quantity λ
(1)
nm − λ

(1)
11 6 0, then from (37), (38) the estimates

follow

|w(r, ϕ, t)| 6 R1e
λ
(1)
11 t, |T (r, ϕ, t)| 6 R2e

λ
(1)
11 t, (39)

with constants R1 > 0, R2 > 0. Recall that λ(1)11 = −q111z
(1)
11 < 0, and therefore w → 0, T → 0

uniformly in a circle Ω when t→ ∞.

Remark 5. By what was proved above, series (31) converge absolutely and uniformly, their terms
are continuous so their sums

(
functions w(r, ϕ, t), T (r, ϕ, t)

)
also are continuous on Ω ∪ Γ, t > 0.

To prove that the functions w(r, ϕ, t), T (r, ϕ, t) are a classical solution of problem (7), we
need to show that the series wt, Tt, wrr, Trr, wr/r, Tr/r, wϕϕ/r

2, Tϕϕ/r
2 converge uniformly in

Ω ∪ Γ and t > ε, where ε is an arbitrary positive number.
When once differentiating series (31) with respect to t expressions λ(1,2)nm exp(λ

(1,2)
nm t) arise.

Since λ(1,2)nm < 0 then
∣∣λ(1,2)nm exp(λ

(1,2)
nm t)

∣∣ < ∣∣λ(1,2)nm

∣∣ exp(−∣∣λ(1,2)nm

∣∣ε) < L1,2/ε with positive con-
stants L1,2. Therefore the series for wt, Tt converge absolutely and uniformly in Ω for t > ε.

If series (31) are differentiated twice with respect to r, then the expression
(
ξ
(m)
n

)2
J ′′
n

(
ξ
(m)
n r

)
is formed. It is known from [9] that for uniform convergence on the segment [0, 1] of a series

∞∑
m=1

Znm

(
ξ(m)
n

)2
J ′′
n

(
ξ(m)
n r

)
,

where n = 1, n > 2, it is sufficient that all coefficients Znm satisfy the inequality |Znm| 6
6 Z/

(
ξ
(m)
n

)3+δ
, δ > 0, Z = const. Actually, the double series also converges

∞∑
n=1

∞∑
m=1

Znm

(
ξ(m)
n

)2
J ′′
n

(
ξ(m)
n r

)
,

so far as ξ(m)
n is equivalent to n for n≫ 1 (just like ξ(m)

n is equivalent to m for m≫ 1)[10]. Hence
and from estimates (37) we obtain that if |F 0

nm|+ |S0
nm| 6 Z/

(
ξ
(m)
n

)3+δ, then the series wrr, Trr
converge absolutely and uniformly in Ω for all t > ε, ε > 0. Moreover, the series wr/r, Tr/r also
converge under this condition.

Consider now the series wϕϕ/r
2, Tϕϕ/r

2. Differentiating functions w(r, ϕ, t), T (r, ϕ, t) twice
with respect to ϕ gives the expression n2Jn

(
ξ
(m)
n r

)
. Since Jn

(
ξ
(m)
n r

)
is a solution to the Bessel

equation we have

n2

r2
Jn

(
ξ(m)
n r

)
=
(
ξ(m)
n

)2
J ′′
n

(
ξ(m)
n r

)
+
ξ
(m)
n

r
J ′
n

(
ξ(m)
n r

)
+
(
ξ(m)
n

)2
Jn

(
ξ(m)
n r

)
. (40)

Replacing in series wϕϕ/r
2, Tϕϕ/r2 expression n2Jn

(
ξ
(m)
n r

)
/r2 to the right side of identity

(40) we get that, by what was proved earlier, for |F 0
nm|+|S0

nm| 6 Z/
(
ξ
(m)
n

)3+δ

, δ > 0, Z = const

these series converge absolutely and uniformly in Ω for all t > ε, ε > 0.
Thereby theorem is proved
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Theorem 2. Let be 0 < G 6 q411/P , series (36) absolutely converge in circle Ω∪Γ and |F 0
nm|+

+|S0
nm| 6 Z/

(
ξ
(m)
n

)3+δ

, δ > 0, Z = const, where ξ
(m)
n is mth zero of the nth order Bessel

function. Then the solution of problem (7) is classical and estimates (39) are satisfied.

Remark 6. The fluid flow rate Q in case of a circular cross section will be equal to zero:

Q(t) =

∫ 1

0

rdr

∫ 2π

0

[ ∞∑
n=1

∞∑
m=1

Snm(t)Jn

(
ξ(m)
n r

){ cosnϕ
sinnϕ

}]
dϕ = 0.

Remark 7. Solution of the problem in case of MS-20 oil flow at a temperature of 0◦C [6] in a ver-
tical heat exchanger of circular cross section with initial data w0(r, ϕ) = J1

(
ξ
(1)
1 r

)
sinϕ, T0(r, ϕ) =

= J1
(
ξ
(1)
1 r

)
sinϕ and constants d = 0.1m, A = 1 K/m, ρ = 903.6 kg/m3, β = 6.27 · 10−4 1/K,

χ = 62.06 · 10−3m2/c, ν = 7.59 · 10−3m2/c with G = 0.144 < q411/P = 26.36745 has the form

w(r, ϕ, t) =
(
1.0103eλ

1t − 0.0103eλ
2t
)
J1 (3.83171r)

{
cosϕ
sinϕ

}
,

T (r, ϕ, t) =
(
− 0.07833eλ

1t + 0.92166eλ
2t
)
J1 (3.83171r)

{
cosϕ
sinϕ

}
,

where λ1 = −1.784727, λ2 = −14.693177. Fig. 3 shows the vertical velocity profile w(r, ϕ, t) at
t = 0 and at t = 0.6 in dimensionless coordinates; as t increases, w(r, ϕ, t) tends to zero. Here
the fluid flow rate is Q(t) = 0 and a reverse flow occurs.

Fig. 3. Velocity profile w(r, ϕ, t) at t = 0, t = 0.6
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Начально-краевая задача о движении вязкой
теплопроводной жидкости в вертикальной трубе

Виктор К. Андреев
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация
Сибирский федеральный университет

Красноярск, Российская Федерация
Алена И. Упорова

Федеральный исследовательский центр Красноярский научный центр СО РАН
Красноярск, Российская Федерация

Аннотация. Исследуется начально-краевая задача, возникающая при моделировании нестацио-
нарного однонаправленного конвективного течения в вертикальных теплообменниках с попереч-
ным сечением произвольной формы. Получена априорная оценка в L2 и доказана единственность
решения задачи. В случае прямоугольного и круглого сечения решение найдено в виде двойных
рядов Фурье. Даны достаточные условия стабилизации с ростом времени решения к покою.

Ключевые слова: начально-краевая задача, априорная оценка, ряды Фурье, конвекция.
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