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1. Introduction and preliminaries

A special empirical processes of independence has been introduced in works of Abdushukurov
and Kakadjanova [1,2] in the case of indexing of empirical processes by class of measurable
functions F. The modern asymptotic theory of empirical processes indexed by a class F is
actively developed and the current results of this theory allow us to establish uniform versions of
the laws of large numbers and central limit theorems for empirical measures under the imposing
of the entropy conditions for a class F. These results are essentially generalization of classical
theorems of Glivenko-Cantelli and Donsker [3,4]. In applied mathematics, in order to generalize
of Glivenko-Cantelli theorems for a class of sets Vapnik and Chervonenkis in 70-s years of the
last centure made a significant contribution to the development of statistical (machine) learning
theory (theory of Vapnik-Chervonenkis), which justifies the principle of minimizing of empirical
risk (for details, see the monograph [5]).

In the papers of authors [1,2] the limiting properties of generalized empirical processes of
independence of random variables (r.v.-s) and events indexed by a class F were investigated.
Here we extend this model to the regression case. The necessity of considering such processes
stems from practical situation, where we are investigated in joint properties of the triple of
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observed data: r.v.-s, event and covarate. Let us consider the sequence of observed triples
{(Zk, Ak, X%), k = 1}, where Z, are positive random elements defined on a probability space
(Q, A, P) with values in a measurable space (X,%B). Events A have a common probability
p =P (Ax) € (0,1). For our analysis, we consider the observed data (Z1, 61),...,(Zn, d,) at n
fixed design points 0 < 1 < 2 < ... <, < 1 of covariate X, where 6, = I (Ay) is an indicator
variable of the event Aj. The observed r.v.-s at design points = € [0,1] are Z, and §,. Here
d; = 1 denotes that event A, occurs. Each pair (Z,, d,) of sample induces a statistical model
(Xx{0,1}, B x {0,1}, P,) for a given X = x, where distribution

{P.(BxD)=P(ZeB,6eD/X =1x),Be®B,DcC{0,1}},
for each Borel set B represented through subdistribution:
P, (B X {07 1}) = Qx (B) = QOx (B) + le (B) ) me (B) =Py (B X {m}) , M= 07 1.

Our interest is focused on hypothesis H of independence of Z, and d,. It’s easy to see that
under validity of H: Q14 (B) = p»Qs (B) and Qo (B) = (1 — p;) Q (B), for all B € 9B, where
Pz = Q1 (X). Let’s introduce the signed measure

which is equal to zero under hypothesis H. Using this measure, we construct an empirical
process for testing a hypothesis H. In this regard, we introduce empirical analogues of the above
measures for B € B:

Qo (B) =Y wni () I (Z; € B) = Qoan (B) + Quon (B), (1)
=1
where .
Quan (B) =Y _wni (w3 hn) I (Z; € B, 6; =m), m=0,1,
=1
and

Azn (B) = Quan (B) — PzhQan (B) s Pah = Qian (x) .

The nonparametric estimators above involve a sequence of smoothing weights {wy; (x; hy,)}, de-
pending on a positive bandwidth sequence {h,,, n > 1}, tending to zero as n — co. In our present
case of fixed design points, it is common to use the Gasser-Muiiller - type weights, given by

1 il x—z ,

i—1

Tno 1 T —z
Cy (z; hy :/ k< >dz.
(5 hn) T ™

Here zy = 0 and k is a known probability density function (kernel).

2. Asymptotic results

Under B = (—o0,t], let’s define conditional distribution function (d.f.) and subdistribution

functions for a given X = x:

Go(t) = Qu (—00,t)) =P(Z <t/ X =2) =P (Z, < 1),
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and

Gz (t) = Quaz ((—00,t)) =P(Z<t,0=m/ X =2)=P(Z, <t, 6, =m), m=0,1.

We will need the following additional notation. For the design points xi,...,x, we denote
A, = 11<nl£ (v; —m;_1) and A, = max (z; —x;-1). For the kernel k we use the following
assymptions the design points and the kernel (see, [6-8]):

(C1) x, — 1, A, O( ) n—2A4, (%)

(C2) k is a probability den51ty function with support [—M, M] for some M > 0, my(k) =
= | yk(y)dy =0 and k is Lipschitz of order 1.
—00

Note that Cy, (x; hy,) = 1 for n sufficiently large since z,, — 1 and k& has finite support. This
makes that in all proofs of asymptotic results we may take C,, (z; h,) =1

Further we will need typical smoothness condition of G, (t) and G, (t), m = 0,1 and
probability p, = G, (+00) = tgglm Gz (1)

. 92 ; 92
(C3) The second-order partial derivatives G (t) = ﬁGaj(t), Gmz(t) = @Gmgj(t) and
2 2
GlI'(t) = %Gx(t) and G _(t) = %Gmm(t), m = 0,1, exist and are continuous for 0 < z < 1

and t € R.
d2
5P exist and are continuous for 0 < z < 1.

dx?
In what follows, we also use the notation
’ . ; ’ ..z

Pzl = sup [p|, |Pz|l= sup [Pe].

z€[0,1] z€[0,1]

(C4) The second-order partial derivatives p, =

o |G
(t,z)€[0,T]x[0,1]

sup ‘G
(t,2)€o, T]><[O 1

We denote a weighted estimates for G, (¢t) and G, (t), m = 0,1 obtained from (1) as

( ) th anz x; h )
(2)
szh( ) Qmwh anz x; h 6 :m)a mzovla

and by defenition wy; (x;hy), wni (z;h,) + -+ + wpn (23h,) = 1. Note that, when we put
wni (@3 hyn) = 1/n, i = 1,...,n, then estimators (2) transformated to usual empirical estimator
for G, (t) and Gz (t), m =0, 1.

For a sufficient large n by condition (C1), we shall suppose that C, (x;h,) ~ 1. Hence, in
future calculation in asymptotic results we will put C,, (z; h,) =1

Now we give some asymptotic results for estimators (2) from works [6,8]. Let T < Tp¢ =
=inf{t: G, (t) =1}

Lemma 2.1 ([6]) (Bias and variance). (a) Let conditions (C1)-(C3) satisfies and at n — oo,
h, — 0, nh,, — co. Then under n — oo

sup |EGyp (t) — Gy (£)] =0 (hy) .
0<t<T
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(b) Let conditions (C1)-(C3) satisfies and at n — oo, h,, — 0. Then under n — oo
1
sup [EGun(0) - G0 =0 (1241 ).
0<t<T n
In particular,
1

sup |EGup (t) — G (t) — sma (k) Gac (t) hi
0<t<T 2

o(hﬁ)+0<i).

(¢) Under conditions of (a) at n — oo

! ) 1
DG () = -G (0 (1= G () 115 +0 ().
where ma ( f v2k (y) dy and |[k||3 = f k% (y) dy.

Lemma 2.2 ([6]) (Pointwise strong consistency). Let conditions (C1)-(C3) satisfies and at

1
n — oo, hy, — 0, 08T

=o0(1). Then undern — oo andt < T

G ()3 G (1)

Lemma 2.3 ([6]) (Ezponential estimator of Dworetzky—Kiefer—Wolfowitz).  Let conditions
(C1), (C2) satisfies and at n — oo, nhy, — 0.
(a) For e >0 and large n such that

3 1
2 —
> Sk =

and for T >0
P ( sup |Gzp (t) — EGyp ()] > 5) < 2dgnhy,e exp (—dlnhn52) )
0<t<T

(b) Moreover, in condition (C3) hold for sufficient for € > 0 and n such that

e > max { (VBllkl, (k) 2) (2 B)||Ca||n2) }
then ) )
P ( sup |Ggn (t) — Gy (1)] > 5) < =donhye exp (—dlnhnEQ) (3)
0<t<T 2 4
8e? 4 .
where dy = W and di = W From (8) by Borel-Cantelli lemma under ¢ = &, =
2 2

= c(nhn)fl/Q(log n)1/2 we have

Lemma 2.4 ([6]) (Rate of strong uniform consistency). Let conditions (C1)-(C3) satisfies and
nh?

at n — oo, —= = O(1). Then under n — o©

logn
a.s. logn 1/2
sup |Gazn (t) — Gy (1) = O ( > .
0<t<T nhy
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For a measure G, and a class F of Borel measurable functions f : X — R, we introduce the
integral over X

Gof = /xfdax, feF.

which is expectation by measure G, of function f. Let us introduce the following F indexed
extensions of (1) for f € F:

/%fdG:vh = ani (wa hn) f (Z’L) = GOa:hf + Gla:hfa
=1

where .
Goznf =Y wni (wihn) (1= &) f (Z0),
Granf = wni (w3 hn) 6 f (Z:).

i=1

Introduce the empirical processes under the validity of H,

1/2
<ph(nhn)> (Amh - Am) f = Alth — Pz Azhf - Grf : Alzh]- - th (f) ’ f € F (5)

1= pan
where 12
Aot = () [ paG -6,
R (f) = (M)w<mh ~pa) [ 116~ G

In order to considering the uniform variants of the Glivenko-Cantelli theorem and the Donsker
theorem we need some notations from bracketing entropy theory. Let £, (Q) be the space of
functions f : X — R with norm

1/q
1l = (@LF9Y7 = ( / Iflqd@> |

To determine the complexity or entropy of a set of a set of Borel measurable functions F it is
necessary to define a concept of e-brackets in £, (Q). So e-bracket in £, (Q) is a pairs of functions

¢, ¥ € Lg(Q) such that Q(¢(Z) < ¢(2)) = 1 and [[¢ — ¢llg, < e, that is Q(y — ) < &7,
Function f € F is covered by bracket [¢, 9] if Q (p(Z) < f(Z) < ¢(Z)) = 1. Not that functions
o and 1 may not belong to the set F but they must have finite norms. The bracketing number
Ny (e, F, L4 (Q)) is the minimum number of e-brackets in £, (Q) needed to cover the set F [3,4]:

k: forsome fi,..., fr € L,(Q),
Npj (e, F, £q (Q) =min § 7 U [fis fil = f5 = fillg, <&
%)

The number H,(e) = log Njj(e, F,Ly(Q)) is called the metric entropy of class F in
L,(Q). The metric entropies of class F in £, (Q,,), m = 0,1 is we denoted by Hp(c) =
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= log Ny(e, F, L4(Qr)). Integrals of metric entropies are

)
D (0) = i) (5, F, £ (@) = /0 (Hong (£))/%de, 0<6<1, m=0,1.

Let us recall the important properties of numbers Njj (). They tend to +oc when € | 0.
However, for the Donsker theorems they should converge to +o0o not very fast. This rate of
convergence is measured by integrals Jr(g[)] (6). For example, for a class F of monotone functions
f:X% —[0,1] and each measure Q,, one has

Hyq (E) < koE_l,
where ko is depends only on ¢. In particular, for a class F of indicators F = {I(—o0,t],t € R}

entropy is H,,1 (€) ~ |loge| and at n — oo

On
736 = [ o0 ()] e =0 (572) 0. 5, Lo,

In future we can investigate the relation (5) and its summands (6). Next lemma is useful in
estimating of convergence to zero of remainder term Ry, (f) in (6).

Lemma 2.5 ([8]) Assume (C1), (C2) and (C4), h, — 0.
(a) For e > 0 and n sufficiently large such that

e > 2||pall An + 2ma(k) ||| h2

we have
2

€
P (|pzh — Da <2 —dnh,—— |,
(|peh — pz| > €) exp( n 1—|—5/6>

where d is some absolute constant.

1
(b) If Oin — 0, then pyp — pz — 0 a.s.
Ny
nhi ~1/2 1/2
(c) If logn O(1), then pyp — pr = O ((nhn) (logn) ) a.s.

Now we prove that two-dimensional vector field (A, f, A1zn9), f, g € F weakly converges
to corresponding Gaussian field uniformly with respect to space {*° (F) x I* (F) for every class
of measurable functions F. This is necessary for investigating of expansion (5).

Theorem 2.1 Let us consider conditions (C1)-(C4) and the class F measurable functions f
such that

F C Ly (Qua) and JZ) (1) <00, m=0,1. (7)

Then for n — oo sequence of random vector field (Aznf, A12ng), f, g € F weakly converge in
[°(F) x I*°(F) to the Gaussian field (A f, A1z9), f, g € F with zero mean and covariance
structure

cov (Ao f, Acg) = |1k|3{Gafg — Gof Gug}
cov (A1of, A1ag) = |kl {G1afg — Graf G1ag}, (8)

cov (Auf, A1z9) = ||k|l3 {G1afg — Gof G1ag) -
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Proof. Consider the first condition in (7). Then for the fixed f € F it follows that Q,,, f? < oo,
m = 0,1, and hence Q,f? = Quuf? + Q1. f? < co. For every such Donsker class F with the
second condition in (7) the sequences A, f and Aj,,g are asymptotically tight (see, Lemma 1.3.8
in [3]). There exist a tight Borel measurable version of Gaussian processes A, f and A;.g, that is,
the Gaussian processes with zero mean and jointly covariance (8). Tightness and measurability of
limiting process A, f and A;,g are equivalent to the existence of versions of all sample paths f —
A.f, g — Ajzg uniformly bounded and uniformly continuous with respect to the corresponding
mean square metrics (see, [3], p. 226)

B(Aof — Aug)® =03, (f)+ 03, (9)+ 03 (f—9),

E(Awf — Aweg)® = 0, (f) + 08, (9) + 03, (f —9),
where Uéz (f)=Qu.(f - wa)z, Uélx (f) = Qua(f — lef)Q.

On the other hand, the considered vector-field is the normalized sum of independent and
identically distributed random vectors

(Atha Alxhg) = (nhn)il/Z Z (wni (.’E, hn) (f (Zz) - sz) y Wni (1'; hn) (519 (Zz) - leg))v (9)
i=1

then by the multivariate central limit theorem the marginals of the sequence of vector-fields
converge to the marginals of a Gaussian vector-valued field with zero mean and covariance matrix
defined by structure (8). Vector-field (9) is element of product-space [*° (F) x [°° (F), and it also
induces tight sequences of distributions in product-space by Lemma 1.4.3 [3]. The limiting value
of covariance structure of vector (9) is coincides with covariance structure (8). These arguments
complete the proof of Theorem 2.1. O

Remark 2.1. Consider formulas (8). At g =1 for f € F we have A;,1 = p, and hence
cov (Arf7 Alz]-) =Giof —Gof Gzl = G f —p.Gof = Azf (10)

Because covariance (10) is zero under validity of hypothesis H, then Gaussian fields {A, f, f € F}
and normal r.v. Aj,1 with variance p, (1 — p.), are independent.

Remark 2.2. By Lemmas 2.1-2.4 and Lemma 2.5, by consistency of G, for G, and p, for p,
we see that remainder Ry, (f) tends to zero as n — oo: |Ryy (f)| = o(1) in probability.

Now we study normalized empirical process (5) without remainder term R, (f), which tends
to zero as n — oco. Let’s denote

Ath = (nhn)1/2 (Axh - Aac) f = (p:ch(l _pxh))l/Q {Alth — Dz - Awhf - Gacf : Alxhl} .

This process is the intermediate random field plays a supporting role in the study of basic process
(5) which property of weak convergence to a corresponding Gaussian process is contained in the
following statement.

Theorem 2.2 Under conditions (C1)-(C4) and (7). Then for n — oo we have
Agnf = Asf in 1> (F), (11)

where {A,f, f € F} is a Gaussian fields with zero mean and with covariance

cov (Amfv Arg) = ||k||;p7«(l - pr) {Gmfg -Gy f Gmg} . (12)
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Proof. Let us consider process Agp f, which is zero mean Gaussian by Theorem 2.1. We then
consider only covariance

9
cov (Agnf, Apng) = K12 pa(1 —px>{2 cj}, (13)
j=1

where
Ci =Giafg— GiafGizg,  Co= —pu(Giafg— GofG1a9),
Cs=—-(1=pz)GafGrag, Ci=—pa(Giafg—GogGiaf),
Cs = p2(Gafg — GofGag), Co =paGaf(Grag — psGag), (14)
Cr=—(1-ps)GagGraf,  Cs=pGag(Graf — p2Gag),
Co = pu(l = pa)Ga fGay.

Now adding of all elements (14) by formula (13) we obtain (12). Theorem 2.2 is proved. O

Thus, statistics for testing of hypothesis H one can construct from normalized process as a

nh 1/2
{(M) IEly" (Aen — As) £, f € J-'} . 15)

3. Application to random censoring

some functional

Let us consider a right random censoring model, where Z; = min {T;,C;}, A; = {T; < C;}.
Here r.v.-s T; and C; denote life times and censoring times, which is independent at fixed design
points 0 < 7 < 2 < -+ <z, < 1. Hence at each design points z;, there is a r.v. C; such that
we only observe the pair (Z;, d;), where ¢; = I (A;). Furthermore, we suppose that d.f.-s F;, and
K, of r.v.-s T; and C; are continuous and Fy, (0) = K, (0) = 0. Consequently we have that the
d.f.

sz‘ (t) :P(Zl <t/X:x2) = 1_(1_F1i (t)>(1_KCDz (t>)

Subdistributions defined as

Qos; (B)=P(Z;€B,6,=0/X =x;) =P (C,, e BNI[0,T,,]) = / (1—F,,(t) K, (dt),
B

Qu; (B)=P(Z; €B,6;, =1/ X =u;) =P (T, € BN|[0,Cy,]) = / (1 — K., (t)) Fy,(dt).
B

As in the situation without covariates, we can also define in this model a Koziol-Green type
sub-model by assuming that for a given design point z, the conditional survival function of C,
is some power of the conditional survival function of T,: for ¢ > 0,

1— K, (t)=(1-F, ()",

where 8, > 0 and is allowed to depend on the covariate z. We note that here

P [ 0K ©= [ 0= F @)
PG=0= [ Q-R@ =6 [ 0= FO) RO,

- 73 —



Abduraxim A.Abdushukurov, Farkhad A. Abdikalikov On Special Empirical Processes of Independence. ..

P (6, =0)
P, =1)

By this extra assumption the estimator in this sub-model has a simpler form than in the
general model and is given by

and hence (3, =

Fon (t) =1 = (1= Hop (1)),

(2 2

where Hyp (1) = Y. whi (z5hn) I (Z; < t) and vpn = Y wai (25 hy) 6; are Stone type estimators
=1 i—1
1

for H, (t) = P(Z, <t) and v, = = P (0, =1). This estimator has been studied more

1+ 5,
extentively by Veraverbeke and Cadarso-Suarez [7]. These authors noted the superiority of

methods for estimating and the testing in Koziol-Green proportional hazards model and methods
are based on F}, rather than on the product-limit estimator of KaplanMeier [10] or relative risk
power estimator of Abdushukurov [9]. Hence the question arises as to when the advantages of
the Koziol-Green model can be used. In other words, there is now a need for testing of validity of
composite hypothesis described by by relation (10). But this relation is equivalent to hypothesis
‘H on independence of r.v.-s Z, and d,, in sample. Let us consider the following special normalized

empirical process, special Kolmogorov-type statistics, obtained from (15): sup ’Agh (t)|, where
[t]<oo
1/2
0 nhn —1
890 = () M (i () = pan L (0. i <oe, (16
pwh(l - ch)

where Hyzp (t) = > wni (@3 hn) I (Z; < t,0; =1). Then we have consequence of Theorem 2.2: if
i=1
H holds, then as n — oo

AR (1) = B (H, (1)), (17)

where {B(y), 0 < y < 1} is a Brownian bridge. Note that these statistics based on convergence
(17) are consistent. Moreover, by Theorem 2.2 one can consider more general classes of statistics
using F- indexed processes that are more flexible in application than (16).
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CHeHI/IaJIbeIe AMIINPpNYIECKHEe IIpoecCbl HE3aBUMCIMOCTHU
B IIPUCYTCTBAMN KOBapuart

Abnypaxum A. AbaynryKyposB

Ounnan MockoBckoro rocynapcrseHHoro yuusepcurera nmenu M. B. Jlomonocosa B r. Tarmkenre
TarmkenT, Y36ekucran

MNucruryr maremaruku umenn B. V1. Pomanosckoro AH PVY3

TarmkenT, Y36ekucran

®apxana A. A6auKaIMKOB

KapaxkaJsmakckunii rocyjapcTBEeHHbBIM YHUBEPCUTET

Hyxkyc, ¥Y36ekucran

MucruryT maremaruku umenn B. 1. Pomanosckoro AH PY3
Tamkent, Y30ekucran

Amnnoranusi. B pabore mccieayorcsi acCHMITOTHIECKHE CBONCTBA OTHOTO KJIACCA IMIUPUIECKUAX ITPO-
[IECCOB MPU HAJIMYUU KOBAPHUAT JIJISI ONPEIEJIEHHOIO KJIacCa U3MEPUMBIX (DYHKITHIA.

Kurouesnle ciioBa: IMIIMPUYIECKHUE IIPOIECChI, METPUYIECKad JHTPOIINSA, I'ayCCOBCKUE IIPOILECCHI.
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